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Abstract: In this paper, we present a new result that allows for studying the global stability of the
disease-free equilibrium point when the basic reproduction number is less than 1, in the fractional
calculus context. The method only involves basic linear algebra and can be easily applied to study
global asymptotic stability. After proving some auxiliary lemmas involving the Mittag–Leffler
function, we present the main result of the paper. Under some assumptions, we prove that the
disease-free equilibrium point of a fractional differential system is globally asymptotically stable.
We then exemplify the procedure with some epidemiological models: a fractional-order SEIR model
with classical incidence function, a fractional-order SIRS model with a general incidence function,
and a fractional-order model for HIV/AIDS.

Keywords: epidemiology; mathematical modeling; fractional calculus; equilibrium; stability

1. Introduction

Fractional differential equations play an important role in modeling real-life phe-
nomena. By replacing an integer-order derivative with a real-order fractional derivative,
often we can fit the system of equations to the real data more efficiently because many
dynamical systems cannot be completely described by ODEs. To mention a few of them,
we refer applications to bioengineering [1,2], biology [3], Lévy motion [4], harmonic os-
cillators with damping [5], economy [6,7], and engineering [8,9]. In this work, we are
particularly interested in applications of fractional calculus in epidemiological models.
This topic has been intensively studied in the recent past, from the well formulation of the
problem, the existence of equilibrium points, modeling, and forecasting of epidemiological
systems. For example, Refs. [10–12] proposed fractional epidemiological models to study
the spread of COVID-19 in different countries, Ref. [13,14] investigated the HIV infection,
in Ref. [15], a varicella outbreak in China was considered, the spread of dengue fever out-
break in the Cape Verde islands was studied in [16], and in [17] a fractional measles model
was proposed. Stability studies were given in e.g., [13,18–21] and numerical methods in
e.g., [22–24]. We also refer to [25] where a review of several fractional epidemiological
models was carried out.

An important problem is the study of the global stability of the equilibrium points,
in order to better understand the evolution of the disease over time. That is, the system will
evolve to the equilibrium point, independently of the starting points. The study of local
stability is a relatively simple matter, as it usually involves finding the eigenvalues of the
Jacobian matrix and studying their sign. However, the question of global stability is not,
in many cases, simple to answer as it usually involves constructing suitable Lyapunov-like
functions and there is no routine on how to find them. We emphasize here the fact that
the use of the Lyapunov stability theory to establish the global asymptotic stability for
fractional differential equations is more complicated than for the ODEs (see, e.g., [26–29]).
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This was the motivation to investigate a new method to study global asymptotic stability
for dynamical systems described by fractional differential equations. In [30], a novel
method was presented. By writing the system in a matricial form and analyzing the
matrices involved is such procedure, under some simple assumptions, we can ensure that
the equilibrium point is globally stable if the basic reproduction number R0 is less than
1. The aim of this work is to generalize the main result of [30] to the fractional setting.
To our knowledge, this is the first work on global stability following this last approach to
the problem.

The paper is organized as follows. In Section 2, we present some concepts and known
results needed for this work. Section 3 presents the new contributions of this paper.
After deducing some auxiliary lemmas, we prove the main result of this work, Theorem 2.
Under some assumptions that can be easily verified for a wide range of epidemiological
models given by fractional differential systems, we prove that, if the basic reproduction
number is less than 1, then the equilibrium point is globally asymptotically stable. Lastly,
in Section 4, we present three examples to show the utility of our research.

2. Preliminaries

We begin this section with some basic definitions and results of the fractional calculus
needed in this work. For more details, we refer the reader to [31,32].

Throughout the text, α ∈]0, 1[ and Γ(z) =
∫ ∞

0 tz−1et dt, z > 0, is the Gamma function.

Definition 1. Let f : R+
0 → R be an integrable function. The (left-sided) Riemann–Liouville

fractional integral of function f of order α is given by

Iα
0+ f (t) :=

1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, t > 0.

Definition 2. The (left-sided) Caputo fractional derivative of order α of function f ∈ C1(R+
0 ,R)

is defined by
CDα

0+ f (t) :=
1

Γ(1− α)

∫ t

0
(t− τ)−α f ′(τ) dτ, t > 0.

Next, we recall the definition of the generalized Mittag–Leffler function, which is a
special function that generalizes the standard exponential function. The Mittag–Leffler
function is of great importance in fractional calculus because it arises naturally in the
solution of fractional-order differential and integral equations.

Definition 3. The Mittag–Leffler function with two parameters is defined by

Eα,β(t) :=
∞

∑
k=0

tk

Γ(αk + β)
, t ∈ C,

with α, β ≥ 0. When β = 1, we define the one parameter Mittag–Leffler function Eα(t) := Eα,1(t).

To understand the theory of fractional differential equations, one needs to know
properties of these special functions. Its main properties and applications can be found,
for example, in [33]. We emphasize here the fact that Eα,β(t) can take negative values
(cf. [34]).

Recently, we have observed an increasing interest in the Mittag–Leffler function for
matrix arguments, since the solution of many systems of differential equations of noninteger
order can be expressed using this matrix function. For theoretical properties and a survey
on numerical approximation of the matrix Mittag–Leffler function, we recommend the
recent paper [35] and the references cited therein.
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Definition 4. Given A ∈ Cn×n, the matrix Mittag–Leffler function with two parameters is defined
through the convergent series

Eα,β(A) :=
∞

∑
k=0

Ak

Γ(αk + β)

where α, β ≥ 0. If β = 1, we define the one parameter matrix Mittag–Leffler function Eα(A) :=
Eα,1(A).

Remark 1. For α = β = 1, the matrix Mittag–Leffler function is the matrix exponential, that is,
E1,1(A) = exp(A) = ∑∞

k=0
Ak

k! . Unfortunately, as noticed in [36], there are several works where
some properties of the matrix exponential were incorrectly extended to the matrix Mittag–Leffler
function and then used to solve certain linear matrix fractional differential equations. One of the
properties that cannot be extended to the matrix Mittag–Leffler function is the semigroup property:
for given commutating matrices A and B, in general, we have Eα(A + B) 6= Eα(A) · Eα(B). We
note, however, that, if matrices A and B commute and α ≈ 1, then Eα(A + B) ≈ Eα(A) · Eα(B).

We recall now two properties of the matrix Mittag–Leffler function that are useful in
the present work (see [35]):

1. if A = diag(a11, . . . , ann), then Eα,β(A) = diag(Eα,β(a11), . . . , Eα,β(ann));
2. if there exists a non-singular matrix P such that A = PDP−1, then Eα,β(A) =

PEα,β(D)P−1.

To finalize this section, we review some concepts on matrix theory.

Definition 5. We say that a square matrix A is an M-matrix if the off-diagonal entries are
nonpositive and the real parts of all eigenvalues are nonnegative.

Given a square matrix A, the set of eigenvalues of A is denoted by σ(A). The spectral
bound of matrix A is defined as m(A) = max{Re(λ) : λ ∈ σ(A)}, where Re(λ) denotes
the real part of λ, and the spectral radius of A is defined as ρ(A) = max{|λ| : λ ∈ σ(A)}.

The following result is a fundamental tool in the proof of Lemma 4.

Lemma 1. ([36]) Let A =

[
a b
c d

]
be a diagonalizable matrix of order 2 with eigenvalues

λ1 = (a+d)−Ω
2 and λ2 = (a+d)+Ω

2 where Ω :=
√
(a− d)2 + 4bc. Let e1 := Eα,β(λ1) and

e2 := Eα,β(λ2). If Ω and c are not zero, the matrix Mittag–Leffler function of matrix A is

Eα,β(A) =
1

2Ω

[
(d− a)(e1 − e2) + Ω(e1 + e2) −2b(e1 − e2)

−2c(e1 − e2) −(d− a)(e1 − e2) + Ω(e1 + e2)

]
.

We remark that, in Lemma 1, if Ω = 0 or c = 0, a simple formula for the Mittag–Leffler
function of a diagonalizable matrix of order 2 can be easily obtained.

Theorem 1. (cf. [37]) Let A ∈ Rn×n. If the spectrum of A satisfies the relation

σ(A) ⊆
{

λ ∈ C \ {0} : | arg(λ)| > απ

2

}
,

then limt→∞ ‖Eα(Atα)‖ = 0.
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3. Main Results

Suppose that the epidemiological model under study is described by the fractional
differential system 

CDα
0+X(t) = F(X, I)

CDα
0+ I(t) = G(X, I)

G(X, 0) = 0

(1)

with nonnegative initial conditions X(0) = X0 ∈ Rm and I(0) = I0 ∈ Rn, where the
components of the vector X denote the number of uninfected individuals (e.g., susceptible,
recovered, vaccinated, etc.) and the components of I denote the number of the infected and
infectious (the ones that can transmit the disease, such as the asymptomatic but infectious
and active infected). In addition, we assume that function F is continuous, G is of class C1,
and the fractional differential system (1) with initial conditions X(0) = X0 and I(0) = I0
admits a unique solution.

Throughout this paper, we denote by U0 = (X?, 0) ∈ Rm+n the disease-free equilib-
rium (DFE) point of the system (1), that is, F(X?, 0) = G(X?, 0) = 0.

Let A := ∂G
∂I (X?, 0) and assume that matrix A can be written in the form A = M− D,

where M, D are two square matrices with M ≥ 0 (all entries are nonnegative), and D > 0
is a diagonal matrix. The following result was proven in [38]:

m(A) < 0 if and only if ρ(MD−1) < 1,

or
m(A) > 0 if and only if ρ(MD−1) > 1.

The value
R0 := ρ(MD−1)

plays an important role in epidemiological models, and it is known as the basic reproduc-
tion number. This number gives the average number of secondary cases produced by one
infected individual in a population where all individuals are susceptible to the infection.

The following result is well known in the literature. For the convenience of the reader,
we present here one possible proof that follows from the fact that the scalar Mittag–Leffler
function is completely monotonic ([39,40]).

Lemma 2. For 0 < α < 1, Eα,α(t) ≥ 0, for all t ∈ R.

Proof. Clearly, Eα,α(t) ≥ 0, for all t ≥ 0. To prove that Eα,α(−t) ≥ 0, for all t > 0, we use
the fact that the scalar Mittag–Leffler function Eα(−t), t ≥ 0, is completely monotonic,
that is,

(−1)m dm

dtm Eα(−t) ≥ 0, ∀m ∈ N. (2)

Since
α

d
dt

Eα(−t) = −Eα,α(−t), t ≥ 0,

it follows from (2) that
Eα,α(−t) ≥ 0, t ≥ 0.

This completes the proof.

The following result is also useful in this work.

Lemma 3. For 0 < α < 1, Eα,α : R→ R is an increasing function.
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Proof. It is clear that Eα,α is an increasing function on R+
0 . Now, we prove that d

dt Eα,α(t) ≥ 0,
for all t ∈ R−0 . Since

d
dt

Eα,α(t) = α
d2

dt2 Eα(t) =
∞

∑
k=1

ktk−1

Γ(kα + α)
,

from (2), we conclude that d
dt Eα,α(t) ≥ 0, proving the desired result.

Now, we prove the following lemma that shows the applicability of our main result
(Theorem 2).

Lemma 4. Let A ∈ R2×2 be a matrix and 0 < α < 1. If matrix A is diagonalizable and −A is an
M-matrix, then Eα,α(A) ≥ 0.

Proof. With our assumptions and using the notations from Lemma 1, we have that b, c, Ω ∈
R+

0 , λ1, λ2 ∈ R−0 , and λ2 ≥ λ1. First, suppose that Ω 6= 0 and c 6= 0. Hence, from Lemmas 2
and 3, we conclude that e2 := Eα,α(λ2) ≥ e1 := Eα,α(λ1) ≥ 0. It remains to be proved that

Ω(e1 + e2) ≥ −(d− a)(e1 − e2) and Ω(e1 + e2) ≥ (d− a)(e1 − e2).

Suppose that d ≥ a (the other case is similar). Then, we just need to prove the first
inequality. Since both sides of the inequality are nonnegative, we have that

[(a− d)2 + 4bc](e1 + e2)
2 ≥ (d− a)2(e1 − e2)

2,

which is equivalent to

(a− d)2e2
1 + (a− d)2e2

2 + 2(a− d)2e1e2 + 4bc(e1 + e2)
2

≥ (a− d)2e2
1 + (a− d)2e2

2 − 2(a− d)2e1e2

proving the desired. Now, we suppose that c = 0 and a 6= d. If a < d, then we get

Eα,β(A) =

[
e1

b
a−d (e1 − e2)

0 e2

]
≥ 0,

and, if a > d, then

Eα,β(A) =

[
e2

b
a−d (e2 − e1)

0 e1

]
≥ 0.

If c = 0 and a = d, then

Eα,β(A) =

[
e1 0
0 e1

]
≥ 0

since b = 0 (otherwise, A is not diagonalizable). If Ω = 0, the proof is trivial since in this
case A is diagonalizable iff a = d and c = d = 0.

The following result is a fundamental tool in the proof of Theorem 2.

Lemma 5. Let B ∈ Rn×n be an invertible matrix and H : Rm+n → Rn be a continuous function.
Suppose that the fractional differential equation

CDα
0+ I(t) = B · I(t)− H(X(t), I(t))

with initial condition I(0) = I0 ∈ Rn, has a unique solution. Then, the solution of this initial value
problem satisfies

I(t) = Eα(Btα) · I0 −
∫ t

0
B−1 · d

ds
Eα(Bsα) · H(X(t− s), I(t− s)) ds.



Axioms 2021, 10, 238 6 of 17

Proof. The proof follows the ideas from [41] (Theorem 7.2). First, observe that

CDα
0+(Eα(Btα) · I0) = B · Eα(Btα) · I0.

To compute

CDα
0+

(∫ t

0
B−1 · d

ds
Eα(Bsα) · H(X(t− s), I(t− s)) ds

)
,

let

y(t) =
∫ t

0
B−1 · d

ds
Eα(Bsα) · H(X(t− s), I(t− s)) ds.

Since

B−1 · d
ds

Eα(Bsα) = αsα−1E′α(Bsα) = αsα−1
∞

∑
k=1

k(Bsα)k−1

Γ(kα + 1)
=

∞

∑
k=1

Bk−1sαk−1

Γ(kα)
,

we get the following:

y(t) =
∞

∑
k=1

Bk−1

Γ(kα)

∫ t

0
sαk−1 H(X(t− s), I(t− s)) ds

=
∞

∑
k=1

Bk−1

Γ(kα)

∫ t

0
(t− τ)αk−1 H(X(τ), I(τ)) dτ

=
∞

∑
k=1

Bk−1 · Iαk
0+H(X(t), I(t)).

Thus,

CDα
0+y(t) =

∞

∑
k=1

Bk−1 · CDα
0+Iαk

0+H(X(t), I(t)) =
∞

∑
k=1

Bk−1 · Iα(k−1)
0+ H(X(t), I(t))

=
∞

∑
k=0

Bk · Iαk
0+H(X(t), I(t)) = H(X(t), I(t)) +

∞

∑
k=1

Bk · Iαk
0+H(X(t), I(t))

= H(X(t), I(t)) + B · y(t).

Hence, we may conclude that

CDα
0+ I(t) = B · Eα(Btα) · I0 − H(X(t), I(t))− B · y(t)

= B ·
(

Eα(Btα) · I0 − y(t)
)
− H(X(t), I(t))

= B · I(t)− H(X(t), I(t)),

proving the desired result.

We are now in conditions to present a new global stability condition for the DFE of
system (1) when R0 < 1. Knowing that an equilibrium point is globally asymptotically
stable with respect to the system that describes the evolution of the uninfected individuals,
and with some extra assumptions related to the matrices involved in the system associated
with infected and infectious individuals, we can conclude that the equilibrium point is
in fact globally asymptotically stable with respect to the complete system. Although the
result imposes some restrictions in order to be applied, for many epidemiological models,
it can be easily used, as we will illustrate in Section 4.

Theorem 2. Suppose that

1. For CDα
0+X(t) = F(X, 0), the vector X? is globally asymptotically stable;
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2. Function G can be written as G(X, I) = A · I − Ĝ(X, I), where Ĝ(X, I) ≥ 0 for all (X, I),
and A = ∂G

∂I (X?, 0) can be written as A = M− D, where M ≥ 0 and D > 0 is a diagonal
matrix;

3. Matrix A is diagonalizable, the real parts of the eigenvalues of A are nonpositive, and Eα,α(A)
≥ 0;

4. I(t) ≥ 0 for all t > 0 (nonnegativity of solutions).

IfR0 < 1, then the DFE, U0 = (X?, 0), is a globally asymptotically stable equilibrium of system
(1), for all 0 < α < 1.

Proof. First, observe that, since R0 < 1, then m(A) < 0 (see [38]), and so matrix A is
invertible. Since

CDα
0+ I(t) = G(X(t), I(t)) = A · I(t)− Ĝ(X(t), I(t)),

then, by Lemma 5, we get

0 ≤ I(t) = Eα(Atα) · I0 −
∫ t

0
A−1 d

ds
Eα(Asα) · Ĝ(X(t− s), I(t− s)) ds ≤ Eα(Atα) · I0,

since
A−1 d

ds
Eα(Asα) = αsα−1E′α(Asα) = sα−1Eα,α(Asα) ≥ 0.

Since the real parts of the eigenvalues of matrix A are negative, from Theorem 1, we
get

lim
t→∞
‖Eα(Atα)‖ = 0,

and hence
lim
t→∞

I(t) = 0.

Since X? is globally asymptotically stable with respect to CDα
0+X(t) = F(X, 0), which

in turn is the limiting system of CDα
0+X(t) = F(X, I), then we get

lim
t→∞

X(t) = X?(t),

which completes the proof.

Remark 2. Note that the assumption Eα,α(A) ≥ 0 in Theorem 2 is trivially satisfied if matrix A
has dimensions 1 or 2 (by Lemmas 2 and 4, respectively). In addition, if α ≈ 1, since Eα,α(A) ≈
exp(A), the above condition also holds for any matrix A ∈ Rn×n.

4. Examples

In this section, we illustrate our main result, Theorem 2, by considering three Caputo
fractional-order compartmental models and show that the disease free equilibrium is
globally stable in all the cases, wheneverR0 < 1. We stress that usually (see e.g., [21]) the
global stability of the disease free equilibrium is proved by considering an appropriate
Lyapunov function and LaSalle’s invariance principle [42], which are often difficult to
apply especially when the model has a considerable number of variables and parameters.
Our main result allows us to prove the global stability of the disease free equilibrium in an
easier and simpler way. For the numerical implementation of the fractional derivatives, we
have used the Adams–Bashforth–Moulton scheme, which has been implemented in the
Matlab code fde12 by Garrappa [43].

The code implements the predictor–corrector PECE method of Adams–Bashforth–
Moulton type described in [44]. We fixed a time step size of h = 2−6 and consider,
without loss of generality, the fractional-order derivatives α ∈ {0.8, 0.85, 0.9, 0.95, 1.0}.
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4.1. A Fractional SEIR Model with Traditional Incidence Rate

We start by considering a Caputo fractional-order version of the classical SEIR model
that has been applied to describe the transmission dynamics of infectious diseases where
there exists a significant latency period during which the individuals are infected but not
yet infectious. During this period, the individual is in the so-called exposed compartment E,
see e.g., [45]. The other compartments of the model are susceptible S, infected I, and recovered
R, and each of them denotes a fraction of the total population. The following assumptions
are considered: the birth and death rates are assumed to be equal, and denoted by µ; the
incidence rate is the traditional one, given by βSI, where β represents the transmission
rate; the latent period is denoted by ε; infected individuals recover at a rate γ and remain
recovered with permanent immunity. All parameters are assumed to be positive. The model
is given by the following system:

CDα
0+S(t) = µ− µS(t)− βS(t)I(t),

CDα
0+E(t) = −(ε + µ)E(t) + βS(t)I(t),

CDα
0+ I(t) = εE(t)− (γ + µ)I(t),

CDα
0+R(t) = γI(t)− µR(t).

(3)

The disease-free equilibrium of the model (3) is given by

Σ0 =
(

S0, E0, I0, R0
)
= (1, 0, 0, 0) .

Following the notation from Section 3, we have

A =

[
−ε− µ β

ε −γ− µ

]
.

The matrix A can be written as A = M− D with

M =

[
0 β

ε 0

]

and

D =

[
ε + µ 0

0 γ + µ

]
.

The point X? = (1, 0) is globally asymptotically stable for the system of uninfected in-
dividuals: 

CDα
0+S(t) = µ− µS(t),

CDα
0+R(t) = −µR(t).

(4)

It is easy to verify that the function

R(t) = R0 Eα(−µtα)

satisfies the second equation of (4). From [41] (Theorem 7.2), the solution of the first
equation of (4) is the function

S(t) = S0 Eα(−µtα) +
∫ t

0
µsα−1Eα,α(−µsα) ds.

Simple computations lead to

S(t) = S0 Eα(−µtα)− Eα(−µtα) + 1.
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Thus,
(S(t), R(t))→ (1, 0) as t→ ∞.

In addition, by Lemma 4, Eα,α(A) is nonnegative and so, by Theorem 2, the disease-free
equilibrium of the model (9) is globally asymptotically stable.

Consider the following parameter values: µ = 1/80, β = 0.05 and γ = 1, ε = 1. Then,
the eigenvalues of the matrix A are −0.7888 and −1.2361; therefore, m(A) < 0. Moreover,
we confirm thatR0 := ρ(MD−1) = 0.2893 < 1.

Through adequate numerical simulations, we illustrate the global stability of the
disease free equilibrium, whenever R0 < 1, considering different values of α and initial
conditions. In Figure 1, we consider different values for α and the initial condition x0
from (5).

0 500 1000 1500 2000
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1.1

0 500 1000 1500 2000
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-0.05
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Figure 1. Stability of the disease free equilibrium Σ0 = (1, 0, 0, 0), for the SEIR fractional model (3),
considering different values of α ∈ {0.8, 0.85, 0.9, 0.95, 1.0}. On the left: S. On the right: E + I + R.

The global stability of the disease free equilibrium Σ0 = (1, 0, 0, 0) is illustrated in
Figure 2, considering different initial conditions xi, i = 0, . . . , 7, given by (5):

x0 = (S0,0, E0,0, I0,0, R0,0) = (0.3, 0.5, 0.1, 0.1) ,
x1 = (S0,1, E0,1, I0,1, R0,1) = (0.4, 0.1, 0.3, 0.2) ,
x2 = (S0,2, E0,2, I0,2, R0,2) = (0.5, 0.05, 0.4, 0.05) ,
x3 = (S0,3, E0,3, I0,3, R0,3) = (0.6, 0.1, 0.2, 0.1) ,
x4 = (S0,4, E0,4, I0,4, R0,4) = (0.7, 0.05, 0.1, 0.15) ,
x5 = (S0,5, E0,5, I0,5, R0,5) = (0.8, 0.1, 0.1, 0.0) ,
x6 = (S0,6, E0,6, I0,6, R0,6) = (0.85, 0.05, 0.1, 0.0) ,
x7 = (S0,7, E0,7, I0,7, R0,7) = (0.95, 0.025, 0.025, 0.0) .

(5)
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Figure 2. Global stability of the disease free equilibrium Σ0 = (1, 0, 0, 0), for the fractional model (3),
considering α = 0.9 and different initial conditions xi, i = 0, . . . , 7, from (5). On the left S and on the
right E + I + R.



Axioms 2021, 10, 238 10 of 17

4.2. A Fractional SIRS Model with General Incidence Rate

In the second example, we consider the Caputo fractional-order version of the classical
SIRS model from [21], given by the following system:

CDα
0+S(t) = Λ− µS(t)− βI(t)S(t)

1+k1S(t)+k2 I(t)+k3S(t)I(t) + λR(t),
CDα

0+ I(t) = βI(t)S(t)
1+k1S(t)+k2 I(t)+k3S(t)I(t) − (µ + r)I(t),

CDα
0+R(t) = rI(t)− (µ + λ)R(t).

(6)

The model considers a homogeneous population divided into three subgroups: sus-
ceptible individuals S(t), infected and infectious individuals I(t), and recovered R(t),
individuals at time t. The parameters Λ, β, µ, and r, represent the recruitment rate of the
population, the infection rate, the natural death rate, and the recovery rate of the infected
individuals, respectively. The rate that recovered individuals lose immunity and return
to the susceptible class is represented by λ. While contacting with infected individuals,
the susceptible become infected at the incidence rate

βSI
1 + k1S + k2 I + k3SI

,

where k1, k2, and k3 are nonnegative constants [21]. We remark that system (6) admits a
unique positive solution (see [21] (Theorem 7)).

The disease-free equilibrium of the model (6) is given by

Σ0 =
(

S0, I0, R0
)
=

(
Λ
µ

, 0, 0
)

.

In this case, following the notation from Section 3,

A = M− D =
[ Λβ

Λk1 + µ
− µ− r

]
with

M =
[ Λβ

Λk1 + µ

]
and D = [µ + r].

Hence,

R0 = ρ(MD−1) =
Λβ

(µ + r)(Λk1 + µ)
.

We easily conclude that A < 0 wheneverR0 < 1.
In what follows, we prove that the first condition of Theorem 2 holds, that is, X? =

(Λ/µ, 0) is globally asymptotically stable for the system of uninfected individuals:{
CDα

0+S(t) = Λ− µS(t) + λR(t),
CDα

0+R(t) = −(µ + λ)R(t).
(7)

The solution of the fractional differential equations (7) is the functions

R(t) = R0 Eα(−(µ + λ)tα)

and

S(t) = S0 Eα(−µtα) +
∫ t

0

[
Λ + λR0 Eα(−(µ + λ)(t− s)α)

]
sα−1Eα,α(−µsα) ds.
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Obviously R(t)→ 0, as t goes to infinity. Now, we prove that S(t)→ Λ/µ, as t→ ∞.
First, observe that∫ t

0
sα−1 Eα,α(−µsα) ds =

∞

∑
k=0

(−µ)k

Γ(kα + α)

∫ t

0
skα+α−1 ds =

∞

∑
k=0

(−µ)k

Γ(kα + α + 1)
tkα+α

= − 1
µ

∞

∑
k=0

(−µ)k+1

Γ((k + 1)α + 1)
t(k+1)α = − 1

µ
(Eα(−µtα)− 1).

For the other term inside the integral, we get

∫ t

0
Eα(−(µ + λ)(t− s)α)sα−1Eα,α(−µsα) ds

=
∞

∑
m=0

∞

∑
k=0

(−(µ + λ))m(−µ)k

Γ(mα + 1)Γ(kα + α)

∫ t

0
(t− s)mαskα+α−1 ds.

To evaluate this integral, we use the known formula involving the Beta function:

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

, x, y > 0.

With the change of variable u = s/t, we get∫ t

0
(t− s)mαskα+α−1 ds = tmα

∫ t

0
(1− s/t)mαskα+α−1 ds = tmα+kα+α

∫ 1

0
(1− u)mαukα+α−1 du

= tmα+kα+αB(kα + α, mα + 1) = tmα+kα+α Γ(kα + α)Γ(mα + 1)
Γ(mα + kα + α + 1)

.

Thus, we prove that the solution S(·) is given by

S(t) = S0 Eα(−µtα) +
Λ
µ
(1− Eα(−µtα)) + λR0

∞

∑
m=0

∞

∑
k=0

(−(µ + λ))m(−µ)k

Γ(mα + kα + α + 1)
tmα+kα+α.

Observe that, as t goes to infinity,

S0 Eα(−µtα)→ 0 and
Λ
µ
(1− Eα(−µtα))→ Λ

µ
.

To sum up, it remains to prove that the double sum converges to zero. For that
purpose, we recall the concept of the Mittag–Leffler function of two variables (cf. [46])
Eα,β(x, y, ·). With such notation, we can write

∞

∑
m=0

∞

∑
k=0

(−(µ + λ))m(−µ)k

Γ(mα + kα + α + 1)
tmα+kα+α = tαEα,α(−(µ + λ)tα,−µtα, α + 1)

which converges to zero, as t goes to infinity, by [46] (Theorem 3.1). This proves the
desired conclusion. We also remark that, by Lemma 2, Eα,α(A) is nonnegative. Therefore,
by Theorem 2, the disease-free equilibrium of the model (6) is globally asymptotically stable.

Considering the parameter values from [21], Λ = 0.8, µ = 0.1, λ = 0.5, β = 0.1,
r = 0.5, k1 = 0.1, k2 = 0.02, and k3 = 0.003, we have R0 = 0.7407 < 1. For initial
conditions, we consider the following ones and without any specific criteria:

y0 = (S0,0, I0,0, R0,0) = (10, 1, 1) , y1 = (S0,1, I0,1, R0,1) = (100, 10, 5) ,

y2 = (S0,2, I0,2, R0,2) = (200, 20, 10) , y3 = (S0,3, I0,3, R0,3) = (300, 30, 20) ,

y4 = (S0,4, I0,4, C0,4, A0,5) = (400, 40, 50) .

(8)
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The stability of the disease free equilibrium for model (6) is illustrated in Figure 3.
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Figure 3. Stability of the disease free equilibrium Σ0 = (Λ
µ = 8, 0, 0), for the SIRS fractional model

(6). In the left: I + R, considering different values of α ∈ {0.8, 0.85, 0.9, 0.95, 1.0} and initial condition
y1 from (8). On the right: S and I + R, considering the initial conditions yi, i = 0, . . . , 4 from (8) and
fixed α = 0.9.

4.3. A Modified Fractional SICA Model for HIV/AIDS

In this example, we consider a modified Caputo fractional-order model for HIV/AIDS,
based on the model proposed in [14,47]. We show that this fractional model satisfies the
conditions of Theorem 2 and, through some numerical simulations, we illustrate the global
stability of the disease free equilibrium, whenR0 < 1.

In this model, the total population is assumed to be homogeneous and divided
into four mutually-exclusive compartments: susceptible individuals (S); HIV-infected
individuals with no clinical symptoms of AIDS but able to transmit HIV to other individuals
(I); HIV-infected individuals under antiretroviral (ART) treatment (the so called chronic
stage) with a viral load remaining low (C); and HIV-infected individuals with AIDS clinical
symptoms (A). Analogously to the assumption made in [47], we consider that individuals
in the chronic stage C have a very low viral load and do not transmit HIV infection [48],
but, differently from [47], we assume that individuals with AIDS A, due to their higher
viral load, may transmit HIV virus, at a rate ηA β with ηA > 1. Therefore, effective contact
with people infected with HIV is at a rate λ, given by

λ = β(I + ηA A),

where β is the effective contact rate for HIV transmission. We assume that the recruitment
rate is equal to the natural death rate and is denoted by µ. The following assumptions
are the same as in [14]. HIV-infected individuals with no AIDS symptoms I progress
to the class of individuals with HIV infection under ART treatment C, at a rate φ, and
HIV-infected individuals with AIDS symptoms are treated for HIV at rate γ. Individuals in
the class C leave for the class I, at a rate ω. HIV-infected individuals with AIDS symptoms
A that start treatment move to the class of HIV-infected individuals I, moving to the
chronic class C only if the treatment is maintained. HIV-infected individuals with no
AIDS symptoms I that do not take ART treatment progress to the AIDS class A, at rate
ρ. Only HIV-infected individuals with AIDS symptoms A suffer from an AIDS induced
death, at a rate d. The total population at time t, denoted by N(t), is given by N(t) =
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S(t) + I(t) + C(t) + A(t). The Caputo fractional-order system that describes the previous
assumptions is given by

CDα
0+S(t) = µ− β(I(t) + ηA A(t))S(t)− µS(t),

CDα
0+ I(t) = β(I(t) + ηA A(t))S(t)− (ρ + φ + µ)I(t) + ωC(t) + γA(t),

CDα
0+C(t) = φI(t)− (ω + µ)C(t),

CDα
0+A(t) = ρ I(t)− (γ + µ + d)A(t) .

(9)

The disease free equilibrium of system (9) is given by

Σ0 =
(

S0, I0, C0, A0
)
= (1, 0, 0, 0). (10)

Using the notation from Section 3, we have

A =

[
β− ρ− φ− µ βηA + γ

ρ −γ− µ− d

]
.

The matrix A can be written as A = M− D with

M =

[
β β ηA + γ

ρ 0

]

and

D =

[
ρ + φ + µ 0

0 γ + µ + d

]
.

In this case, we will prove that X? = (1, 0) is globally asymptotically stable for the
system of uninfected individuals:

CDα
0+S(t) = µ− µS(t),

CDα
0+C(t) = −(ω + µ)C(t).

(11)

The solution of (11) is
C(t) = C0 Eα(−(ω + µ)tα)

and

S(t) = S0 Eα(−µtα) +
∫ t

0
µsα−1Eα,α(−µsα) ds.

Similarly to Example 4.1, we can prove that the disease-free equilibrium of the model
(9) is globally asymptotically stable.

Let us consider the parameter values from Table 1.

Table 1. Parameter values of model (9) corresponding toR0 = 0.1863 < 1.

Symbol Description Value

µ Recruitment rate/natural death rate 1/69.54
β HIV transmission rate 0.05

ηA Modification parameter 1.3
φ HIV treatment rate for I individuals 1
ρ Default treatment rate for I individuals 0.1
γ AIDS treatment rate 0.33
ω Default treatment rate for C individuals 0.09
d AIDS induced death rate 1
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Then, the eigenvalues of the matrix A are −0.9612 and −1.4474; therefore, m(A) < 0.
Moreover, we confirm thatR0 := ρ(MD−1) = 0.1863 < 1.

We now show, using numerical simulations, that for different values of α and initial
conditions, the global stability of the disease free equilibrium holds, wheneverR0 < 1.

In Figure 4, we consider different values for α and the initial conditions x0 from (12).
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Figure 4. Stability of the disease free equilibrium Σ0 = (1, 0, 0, 0), for the SICA fractional model (9),
considering different values of α ∈ {0.8, 0.85, 0.9, 0.95, 1.0}. On the left: S. On the right: I + C + A.

The global stability of the disease free equilibrium (10) is illustrated in Figure 5,
considering different initial conditions xi, i = 0, . . . , 7, given by (12).

x0 = (S0,0, I0,0, C0,0, A0,0) = (0.8, 0.1, 0.1, 0) ,
x1 = (S0,1, I0,1, C0,1, A0,1) = (0.4, 0.2, 0.2, 0.2) ,
x2 = (S0,2, I0,2, C0,2, A0,2) = (0.7, 0.1, 0.1, 0.1) ,
x3 = (S0,3, I0,3, C0,3, A0,3) = (0.5, 0.1, 0.2, 0.2) ,
x4 = (S0,4, I0,4, C0,4, A0,4) = (0.9, 0.05, 0.05, 0) ,
x5 = (S0,5, I0,5, C0,5, A0,5) = (0.6, 0.2, 0.1, 0.1) ,
x6 = (S0,6, I0,6, C0,6, A0,6) = (0.55, 0.25, 0.1, 0.1) ,
x7 = (S0,7, I0,7, C0,7, A0,7) = (0.75, 0.1, 0.1, 0.05) .

(12)
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Figure 5. Global stability of the disease free equilibrium Σ0 = (1, 0, 0, 0), for the fractional model (9),
considering α = 0.9 and different initial conditions xi, i = 0, . . . , 7, from (12), on the x-axis S and on
the y-axis I + C + A.
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5. Conclusions

A new and simple result for the global stability for the disease-free equilibrium of
fractional epidemiological models is presented. We highlight here the fact that the approach
available in the literature so far involves the determination of an appropriate Lyapunov
function, very laborious computations and, in the end, the application of LaSalle’s invari-
ance principle. Our new method uses only basic results from matrix theory and some
well-known results from fractional-order differential equations.

We also remark that the applicability of our main result, Theorem 2, is only possible
if the matrix A satisfies the condition Eα,α(A) ≥ 0. We proved that, under the assump-
tions of Theorem 2, this condition holds if matrix A has dimensions 1 or 2. It would
be interesting to check under what conditions we can guarantee that Eα,α(A) ≥ 0 if the
matrix A has dimensions greater than 2. Since many epidemiological models divide the
population into subpopulations of epidemiological significance where the number of the
infectious compartments are at most 2, our main result can be applied to a wide variety of
epidemiological models.
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