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Abstract: Let R be a finite ring and r ∈ R. The r-noncommuting graph of R, denoted by Γr
R, is a

simple undirected graph whose vertex set is R and two vertices x and y are adjacent if and only if
[x, y] 6= r and [x, y] 6= −r. In this paper, we obtain expressions for vertex degrees and show that
Γr

R is neither a regular graph nor a lollipop graph if R is noncommutative. We characterize finite
noncommutative rings such that Γr

R is a tree, in particular a star graph. It is also shown that Γr
R1

and

Γψ(r)
R2

are isomorphic if R1 and R2 are two isoclinic rings with isoclinism (φ, ψ). Further, we consider
the induced subgraph ∆r

R of Γr
R (induced by the non-central elements of R) and obtain results on

clique number and diameter of ∆r
R along with certain characterizations of finite noncommutative

rings such that ∆r
R is n-regular for some positive integer n. As applications of our results, we

characterize certain finite noncommutative rings such that their noncommuting graphs are n-regular
for n ≤ 6.

Keywords: finite ring; noncommuting graph; isoclinism

1. Introduction

Throughout the paper, R denotes a finite ring and r ∈ R. Let Z(R) := {z ∈ R : zr =
rz for all r ∈ R} be the center of R. For any element x ∈ R, the centralizer of x in R is a
subring given by CR(x) := {y ∈ R : xy = yx}. Clearly, Z(R) = ∩

x∈R
CR(x). For any two

elements x and y of R, [x, y] := xy− yx is called the additive commutator of x and y. Let
K(R) = {[x, y] : x, y ∈ R} and [R, R] and [x, R] for x ∈ R denote the additive subgroups of
(R,+) generated by the sets K(R) and {[x, y] : y ∈ R}, respectively.

The study of graphs defined on algebraic structures has been an active topic of research
in the last few decades. The main question in this area is to recognize finite groups/rings
through the properties of various graphs defined on it. In 2015, Erfanian, Khashyarmanesh
and Nafar [1] considered noncommuting graphs of finite rings. Recall that the noncommut-
ing graph of a finite noncommutative ring R is a simple undirected graph whose vertex set
is R \ Z(R) and two vertices x and y are adjacent if and only if xy 6= yx. The complement
of noncommuting graph, called commuting graph, of a finite noncommutative ring is
considered in [2–5]. The motivation for studying commuting/noncommuting graphs of
finite rings comes from the study of commuting/noncommuting graphs of finite groups.
Many interesting results on commuting/noncommuting graphs of finite groups can be
found in [6–16]. There are many generalizations of noncommuting graphs of finite groups.
The g-noncommuting graph of a finite group, studied extensively in [17–20], is a kind
of generalization of noncommuting graph of a finite group. It is worth mentioning that
commuting/noncommuting graphs and their generalizations for finite rings are not much
studied. Some people want to know whether commuting/noncommuting graphs and their
generalizations for finite rings possess results analogous to the results for finite groups.

In this paper, we introduce and study the r-noncommuting graph of a finite ring
R for any given element r ∈ R analogous to g-noncommuting graph of a finite group.
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The r-noncommuting graph of R, denoted by Γr
R, is a simple undirected graph whose

vertex set is R and two vertices x and y are adjacent if and only if [x, y] 6= r and [x, y] 6= −r.
Clearly, Γr

R = Γ−r
R . If r = 0, then the induced subgraph of Γr

R with vertex set R \ Z(R),
denoted by ∆r

R, is nothing but the noncommuting graph of R. Note that Γr
R is a 0-regular

graph if r = 0 and R is commutative. In addition, Γr
R is complete if r /∈ K(R). Thus, for

r /∈ K(R), Γr
R is n-regular if and only if R is of order n + 1. Therefore throughout the paper

we shall consider r ∈ K(R).
In Section 2, we first compute degree of any vertex of Γr

R in terms of its centralizers.
Then we characterize R if Γr

R is a tree, in particular a star graph. We further show that Γr
R is

not a regular graph (if r ∈ K(R)) or a lollipop graph for any noncommutative ring R. We
conclude this section by showing that Γr

R1
is isomorphic to Γψ(r)

R2
if (φ, ψ) is an isoclinism

between two finite rings R1 and R2 such that |Z(R1)| = |Z(R2)|. In Section 3, we consider
the induced subgraph ∆r

R of Γr
R, induced by R \ Z(R), and obtain results on clique number

and diameter of ∆r
R along with certain characterizations of finite noncommutative rings

such that ∆r
R is n-regular for some positive integer n. As applications of our results, we

characterize certain finite noncommutative rings such that their noncommuting graphs are
n-regular for n ≤ 6.

It was shown in [21] that there are only two noncommutative rings (up to isomor-
phism) having order p2, where p is a prime, and the rings are given by

E(p2) = 〈a, b : pa = pb = 0, a2 = a, b2 = b, ab = a, ba = b〉

and F(p2) = 〈x, y : px = py = 0, x2 = x, y2 = y, xy = y, yx = x〉.

The following figures (Figures 1–4) show the graphs Γr
E(p2)

for p = 2, 3.

a

b

a + b

0

Figure 1. Γ0
E(4): r-noncommuting graph of E(4) when r = 0.

a

b

a + b

0

Figure 2. Γa+b
E(4): r-noncommuting graph of E(4) when r = a + b.

2a

b
2ba + b

2a + 2b

a + 2b

2a + b 0
a

Figure 3. Γ0
E(9): r-noncommuting graph of E(9) when r = 0.
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2a

b
2ba + b

2a + 2b

a + 2b

2a + b 0
a

Figure 4. Γr
E(9): r-noncommuting graph of E(9) when r = a + 2b or 2a + b.

It is worth noting here that the graphs Γ0
F(4), Γx+y

F(4), Γ0
F(9) and Γx+2y

F(9) are isomorphic to

Γ0
E(4), Γa+b

E(4), Γ0
E(9) and Γa+2b

E(9) , respectively.

2. Some Properties

In this section, we characterize R when Γr
R is a tree or a star graph. We also show the

non-existence of finite noncommutative rings R whose r-noncommuting graph is a regular
graph (if r ∈ K(R)), a lollipop graph or a complete bipartite graph. However, we first
compute degree of any vertex in the graph Γr

R. For any two given elements x and r of R,
we write Tx,r to denote the generalized centralizer {y ∈ R : [x, y] = r} of x. The following
proposition gives the degree of any vertex of Γr

R in terms of its generalized centralizers.

Proposition 1. Let x be any vertex in Γr
R. Then

(a). deg(x) = |R| − |CR(x)| if r = 0.

(b). If r 6= 0 then deg(x) =

{
|R| − |Tx,r| − 1, if 2r = 0
|R| − 2|Tx,r| − 1, if 2r 6= 0.

Proof. (a) If r = 0, then deg(x) is the number of y ∈ R such that xy 6= yx. Note that |CR(x)|
gives the number of elements that commute with x. Hence, deg(x) = |R| − |CR(x)|.

(b) Consider the case when r 6= 0. If 2r = 0 then r = −r. Note that y ∈ R is
not adjacent to x if and only if y = x or y ∈ Tx,r. Therefore, deg(x) = |R| − |Tx,r| − 1.
If 2r 6= 0 then r 6= −r. It is easy to see that Tx,r ∩ Tx,−r = ∅ and y ∈ Tx,r if and only if
−y ∈ Tx,−r. Therefore, |Tx,r| = |Tx,−r|. Note that y ∈ R is not adjacent to x if and only if
y = x or y ∈ Tx,r or y ∈ Tx,−r. Therefore, deg(x) = |R| − |Tx,r| − |Tx,−r| − 1. Hence the
result follows.

The following corollary gives degree of any vertex of Γr
R in terms of its centralizers.

Corollary 1. Let x be any vertex in Γr
R.

(a). If r 6= 0 and 2r = 0 then deg(x) =

{
|R| − 1, if Tx,r = ∅
|R| − |CR(x)| − 1, otherwise.

(b). If r 6= 0 and 2r 6= 0 then deg(x) =

{
|R| − 1, if Tx,r = ∅
|R| − 2|CR(x)| − 1, otherwise.

Proof. Notice that Tx,r 6= ∅ if and only if r ∈ [x, R]. Suppose that Tx,r 6= ∅. Let t ∈ Tx,r
and p ∈ t + CR(x). Then [x, p] = r and so p ∈ Tx,r. Therefore, t + CR(x) ⊆ Tx,r. Again,
if y ∈ Tx,r then (y− t) ∈ CR(x) and so y ∈ t + CR(x). Therefore, Tx,r ⊆ t + CR(x). Thus,
|Tx,r| = |CR(x)| if Tx,r 6= ∅. Hence, the result follows from Proposition 1.

We now present some results regarding realization of the graph Γr
R and characteriza-

tion of R through certain properties of Γr
R as applications of Proposition 1.

Proposition 2. Let R be a ring with unity. The r-noncommuting graph Γr
R is a tree if and only if

|R| = 2 and r 6= 0.
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Proof. If r = 0 then, by Proposition 1(a), we have deg(r) = 0. Hence, Γr
R is not a tree.

Suppose that r 6= 0. If R is commutative, then r /∈ K(R). Hence, Γr
R is a complete graph.

Therefore Γr
R is a tree if and only if |R| = 2. If R is noncommutative, then [x, 0] 6= r,−r and

[x, 1] 6= r,−r for any x ∈ R. Therefore deg(x) ≥ 2 for all x ∈ R. Hence, Γr
R is not a tree.

Proposition 3. Let R be a noncommutative ring. If Γr
R has an end vertex then r 6= 0 and Γr 6=0

R is a
star graph if and only if R is isomorphic to E(4) = 〈a, b : 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b〉
or F(4) = 〈a, b : 2a = 2b = 0, a2 = a, b2 = b, ab = b, ba = a〉. Hence, Γr

R is not a lollipop graph.

Proof. Let x ∈ R be an end vertex in Γr
R. Then deg(x) = 1. If r = 0 then x /∈ Z(R)

and so |CR(x)| ≤ |R|
2 . In addition, by Proposition 1(a), we have deg(x) = |R| − |CR(x)|.

These give |R| − |CR(x)| = 1. Hence, |R| ≤ 2, a contradiction. Therefore, r 6= 0. By
Corollary 1, we have deg(x) = |R| − 1, |R| − |CR(x)| − 1 or |R| − 2|CR(x)| − 1. These
give |R| − |CR(x)| = 2 or |R| − 2|CR(x)| = 2. Clearly, x /∈ Z(G) and so |CR(x)| ≤ |R|

2 .
Therefore, if |R| − |CR(x)| = 2, then |R| ≤ 4. If |R| − 2|CR(x)| = 2, then |R| is even and
|CR(x)| ≤ |R|

2 . Therefore, |R| ≤ 6. Since R is noncommutative, we have |R| = 4, and so
R is isomorphic to either E(4) or F(4). In Figure 2, it is shown that Γr

E(4) is a star graph if
r 6= 0. Furthermore, Γr

E(4) is isomorphic to Γr
F(4). Hence, the result follows.

It follows that if R is noncommutative, having more than four elements, then there is
no vertex of degree one in Γr

R.
It is observed that Γr

R is (|R| − 1)-regular if r /∈ K(R). Additionally, if r = 0 and R is
commutative, then Γr

R is 0-regular. In the following proposition, we show that Γr
R is not

regular if r ∈ K(R).

Proposition 4. Let R be a noncommutative ring and r ∈ K(R). Then Γr
R is not regular.

Proof. If r = 0, then, by Proposition 1(a), we have deg(r) = 0. Let x ∈ R be a non-central
element. Then |CR(x)| 6= |R|. Therefore, by Proposition 1(a), deg(x) 6= 0 = deg(r). This
shows that Γr

R is not regular. If r 6= 0 then T0,r = ∅. Therefore, by Corollary 1, we have
deg(0) = |R| − 1. Since r ∈ K(R), there exists 0 6= x ∈ R such that Tx,r 6= ∅. Therefore,
by Corollary 1, we have deg(x) = |R| − |CR(x)| − 1 or |R| − 2|CR(x)| − 1. If Γr

R is regular,
then deg(x) = deg(0). Therefore,

|R| − |CR(x)| − 1 = |R| − 2|CR(x)| − 1 = |R| − 1

which gives |CR(x)| = 0, a contradiction. Hence, Γr
R is not regular. This completes

the proof.

The following result shows that Γr
R is not complete bipartite if |R| ≥ 3 and |Z(R)| ≥ 2.

Proposition 5. Let R be a finite ring.

(a). If r = 0 then, Γr
R is not complete bipartite.

(b). If r 6= 0 then, Γr
R is not complete bipartite for |R| ≥ 3 with |Z(R)| ≥ 2.

Proof. Let Γr
R be complete bipartite. Then there exist subsets V1 and V2 of R such that

V1 ∩V2 = ∅, V1 ∪V2 = R and if x ∈ V1 and y ∈ V2 then x and y are adjacent.
(a) If r = 0, then for x ∈ V1 and y ∈ V2, we have [x, y] 6= 0. Therefore, [x, x + y] 6= 0,

which implies x + y ∈ V2. Again [y, x + y] 6= 0, which implies x + y ∈ V1. Thus,
x + y ∈ V1 ∩V2, a contradiction. Hence Γr

R is not complete bipartite.
(b) If r 6= 0, |R| ≥ 3 and |Z(R)| ≥ 2, then for any z1, z2 ∈ Z(R), z1 and z2 are adjacent.

Let us take z1 ∈ V1 and z2 ∈ V2. Since |R| ≥ 3 we have x ∈ R such that x 6= z1 and x 6= z2.
Furthermore, [x, z1] = 0 = [x, z2]. Therefore, x is adjacent to both z1 and z2. Therefore,
x /∈ V1 ∪V2 = R, a contradiction. Hence Γr

R is not complete bipartite.
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In 1940, Hall [22] introduced isoclinism between two groups. Recently, Buckley et al. [23]
introduced isoclinism between two rings. Let R1 and R2 be two rings. A pair of additive
group isomorphisms (φ, ψ) where φ : R1

Z(R1)
→ R2

Z(R2)
and ψ : [R1, R1] → [R2, R2] is called

an isoclinism between R1 to R2 if ψ([u, v]) = [u′, v′] whenever φ(u + Z(R1)) = u′ + Z(R2)
and φ(v + Z(R1)) = v′ + Z(R2). Two rings are called isoclinic if there exists an isoclinism
between them. If R1 and R2 are two isomorphic rings and α : R1 → R2 is an isomorphism,
then it is easy to see that Γr

R1
∼= Γα(r)

R2
. In the following proposition, we show that Γr

R1
∼= Γψ(r)

R2
if R1 and R2 are two isoclinic rings with isoclinism (φ, ψ).

Proposition 6. Let R1 and R2 be two finite rings such that |Z(R1)| = |Z(R2)|. If (φ, ψ) is an
isoclinism between R1 and R2, then

Γr
R1
∼= Γψ(r)

R2
.

Proof. Since φ : R1
Z(R1)

→ R2
Z(R2)

is an isomorphism, R1
Z(R1)

and R2
Z(R2)

have the same number

of elements. Let
∣∣∣ R1

Z(R1)

∣∣∣ = ∣∣∣ R2
Z(R2)

∣∣∣ = n. Again, since |Z(R1)| = |Z(R2)|, there exists a
bijection θ : Z(R1)→ Z(R2). Let {ri : 1 ≤ i ≤ n} and {sj : 1 ≤ j ≤ n} be two transversals
of R1

Z(R1)
and R2

Z(R2)
, respectively. Let φ : R1

Z(R1)
→ R2

Z(R2)
and ψ : [R1, R1] → [R2, R2] be

defined as φ(ri + Z(R1)) = si + Z(R2) and ψ([ri + z1, rj + z2]) = [si + z′1, sj + z′2] for some
z1, z2 ∈ Z(R1), z′1, z′2 ∈ Z(R2) and 1 ≤ i, j ≤ n.

Let us define a map α : R1 → R2 such that α(ri + z) = si + θ(z) for z ∈ Z(R). Clearly,
α is a bijection. We claim that α preserves adjacency. Let x and y be two elements of R1
such that x and y are adjacent. Then [x, y] 6= r,−r. We have x = ri + zi and y = rj + zj
where zi, zj ∈ Z(R1) and 1 ≤ i, j ≤ n. Therefore,

[ri + zi, rj + zj] 6= r,−r

⇒ψ([ri + zi, rj + zj]) 6= ψ(r),−ψ(r)

⇒[si + θ(zi), sj + θ(zj)] 6= ψ(r),−ψ(r)

⇒[α(ri + zi), α(rj + zj)] 6= ψ(r),−ψ(r)

⇒[α(x), α(y)] 6= ψ(r),−ψ(r).

This shows that α(x) and α(y) are adjacent. Hence the result follows.

3. An Induced Subgraph

We write ∆r
R to denote the induced subgraph of Γr

R with vertex set R \ Z(R). It is
worth mentioning that ∆0

R is the noncommuting graph of R. If r 6= 0, then it is easy to see
that the commuting graph of R is a spanning subgraph of ∆r

R. The following result gives a
condition such that ∆r

R is the commuting graph of R.

Proposition 7. Let R be a noncommutative ring and r 6= 0. If K(R) = {0, r,−r} then ∆r
R is the

commuting graph of R.

Proof. The result follows from the fact that two vertices x, y in ∆r
R are adjacent if and only

if xy = yx.

Let ω(∆r
R) be the clique number of ∆r

R. The following result gives a lower bound
for ω(∆r

R).

Proposition 8. Let R be a noncommutative ring and r 6= 0. If S is a commutative subring of R
with maximal order, then ω(∆r

R) ≥ |S| − |S ∩ Z(R)|.

Proof. The result follows from the fact that the subset S \ S ∩ Z(R) of R \ Z(R) is a clique
of ∆r

R.
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By ([1] Theorem 2.1), it follows that the diameter of ∆0
R is less than or equal to 2.

The next result gives some information regarding diameter of ∆r
R when r 6= 0. We write

diam(∆r
R) and d(x, y) to denote the diameter of ∆r

R and the distance between x and y in ∆r
R,

respectively. For any two vertices x and y, we write x ∼ y to denote x and y are adjacent;
otherwise x � y.

Theorem 1. Let R be a noncommutative ring and r ∈ R \ Z(R) such that 2r 6= 0.

(a). If 3r 6= 0, then diam(∆r
R) ≤ 3.

(b). If |Z(R)| = 1, |CR(r)| 6= 3 and 3r = 0, then diam(∆r
R) ≤ 3.

Proof. (a) If x ∼ r for all x ∈ R \ Z(R) such that x 6= r, then it is easy to see that
diam(∆r

R) ≤ 2. Suppose there exists a vertex x ∈ R \ Z(R) such that x � r. Then [x, r] = r
or −r. We have

[x, 2r] = 2[x, r] =

{
2r, if [x, r] = r
−2r, if [x, r] = −r.

Since 2r 6= 0, we have [x, 2r] 6= 0, and hence 2r ∈ R \ Z(R). Furthermore, 2r 6= r,−r.
Therefore, [x, 2r] 6= r,−r, and so x ∼ 2r. Let y ∈ R \ Z(R) such that y 6= x. If y ∼ r,
then d(x, y) ≤ 3, noting that r ∼ 2r. If y � r, then y ∼ 2r (as shown above). In this case,
d(x, y) ≤ 2. Hence, diam(∆r

R) ≤ 3.
(b) If x ∼ r for all x ∈ R \Z(R) such that x 6= r, then it is easy to see that diam(∆r

R) ≤ 2.
Suppose there exists a vertex x ∈ R \ Z(R) such that x � r. Let y ∈ R \ Z(R) such that
y 6= x. We consider the following two cases.
Case 1: x � r and x ∼ 2r.

If y ∼ r, then d(x, y) ≤ 3; note that r ∼ 2r. Therefore, diam(∆r
R) ≤ 3. If y � r but

y ∼ 2r, then d(x, y) ≤ 2. Consider the case when y � r as well as y � 2r. Therefore [y, r] = r
or −r. If [y, r] = r, then [y, 2r] = 2[y, r] = 2r = −r; otherwise y ∼ 2r, a contradiction.
Let a ∈ CR(r) such that a 6= 0, r,−r (such an element exists, since |CR(r)| > 3). Clearly
a ∈ R \ Z(R). Suppose y ∼ a. Then x ∼ 2r ∼ a ∼ y, and so d(x, y) ≤ 3. Suppose y � a.
Then [y, a] = r or −r. If [y, a] = r, then

[y, r− a] = [y, r]− [y, a] = r− r = 0.

Note that r − a ∈ R \ Z(R); otherwise a = r, a contradiction. Therefore, y ∼ r− a.
Furthermore,

[r− a, 2r] = 2[r, a] = 0.

That is, r− a ∼ 2r. Thus, x ∼ 2r ∼ r− a ∼ y. Therefore, d(x, y) ≤ 3. If [y, a] = −r, then

[y, 2r− a] = [y, 2r]− [y, a] = −r− (−r) = 0.

Note that 2r − a ∈ R \ Z(R); otherwise a = 2r = −r, a contradiction. Therefore,
y ∼ 2r− a. Furthermore,

[2r− a, 2r] = 2[r, a] = 0.

That is, 2r− a ∼ 2r. Thus, x ∼ 2r ∼ 2r− a ∼ y. Therefore, d(x, y) ≤ 3.
If [y, r] = −r then [y, 2r] = 2[y, r] = −2r = r; otherwise y ∼ 2r, a contradiction. Let

a ∈ CR(r) such that a 6= 0, r,−r. Suppose y ∼ a. Then x ∼ 2r ∼ a ∼ y and so d(x, y) ≤ 3.
Suppose y � a. Then [y, a] = r or −r. If [y, a] = r then

[y, r + a] = [y, r] + [y, a] = −r + r = 0.

Note that r + a ∈ R \ Z(R); otherwise a = −r, a contradiction. Therefore, y ∼ r + a.
Furthermore,

[r + a, 2r] = 2[a, r] = 0.
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That is, r+ a ∼ 2r. Thus, x ∼ 2r ∼ r+ a ∼ y. Therefore, d(x, y) ≤ 3. If [y, a] = −r then

[y, 2r + a] = [y, 2r] + [y, a] = r + (−r) = 0.

Note that 2r + a ∈ R \ Z(R); otherwise a = −2r = r, a contradiction. Therefore,
y ∼ 2r + a. Furthermore,

[2r + a, 2r] = 2[a, r] = 0.

That is, 2r + a ∼ 2r. Thus, x ∼ 2r ∼ 2r + a ∼ y. Therefore, d(x, y) ≤ 3, and hence
diam(∆r

R) ≤ 3.
Case 2: x � r and x � 2r.

Let a ∈ CR(r) such that a 6= 0, r,−r.
Subcase 2.1: x ∼ a

If y ∼ r, then y ∼ r ∼ a ∼ x. Therefore, d(x, y) ≤ 3. If y � r but y ∼ 2r, then
y ∼ 2r ∼ a ∼ x. Therefore, d(x, y) ≤ 3. Consider the case when y � r as well as y � 2r.
Therefore [y, r] = r or −r. If [y, r] = r, then [y, 2r] = 2[y, r] = 2r = −r; otherwise y ∼ 2r,
a contradiction. Suppose y ∼ a. Then y ∼ a ∼ x and so d(x, y) ≤ 2. Suppose y � a. Then
[y, a] = r or −r. If [y, a] = r then [y, r− a] = 0. Therefore, y ∼ r− a ∼ a ∼ x. Therefore,
d(x, y) ≤ 3. If [y, a] = −r, then [y, 2r − a] = 0. Therefore, y ∼ 2r − a ∼ a ∼ x and so
d(x, y) ≤ 3.

If [y, r] = −r, then [y, 2r] = 2[y, r] = −2r = r; otherwise y ∼ 2r, a contradiction.
Suppose y ∼ a. Then y ∼ a ∼ x and so d(x, y) ≤ 2. Suppose y � a. Then [y, a] = r or
−r. If [y, a] = r then [y, r + a] = 0. Therefore, y ∼ r + a ∼ a ∼ x. Therefore, d(x, y) ≤ 3.
If [y, a] = −r, then [y, 2r + a] = 0. Therefore, y ∼ 2r + a ∼ a ∼ x and so d(x, y) ≤ 3. Hence,
diam(∆r

R) ≤ 3.
Subcase 2.2: x � a

In this case we have x � r and x � 2r. It can be seen that [x, r] = r implies [x, 2r] = −r,
and [x, r] = −r implies [x, 2r] = r.

Suppose [x, r] = r and [x, a] = r. Then [x, r− a] = [x, r]− [x, a] = 0. Hence, x ∼ r− a.
Now, we have the following cases.

(i) x ∼ r− a ∼ r ∼ y if y ∼ r.
(ii) x ∼ r− a ∼ 2r ∼ y if y � r but y ∼ 2r.

Suppose y � r as well as y � 2r. Then, proceeding as in Subcase 2.1, we get the
following cases:

(iii) x ∼ r− a ∼ a ∼ y if y � r and 2r but y ∼ a.
(iv) y ∼ r− a ∼ x if [y, r] = r and [y, a] = r.
(v) y ∼ 2r− a ∼ r− a ∼ x if [y, r] = r and [y, a] = −r.
(vi) y ∼ r + a ∼ r− a ∼ x if [y, r] = −r and [y, a] = r.
(vii) y ∼ 2r + a ∼ r− a ∼ x if [y, r] = −r and [y, a] = −r.

Therefore, d(x, y) ≤ 3.
Suppose [x, r] = r and [x, a] = −r. Then

[x, 2r− a] = [x, 2r]− [x, a] = −r− (−r) = 0.

Hence, x ∼ 2r− a. Now, proceeding as above, we get the following cases:

(i) x ∼ 2r− a ∼ r ∼ y if y ∼ r.
(ii) x ∼ 2r− a ∼ 2r ∼ y if y � r but y ∼ 2r.
(iii) x ∼ 2r− a ∼ a ∼ y if y � r and 2r but y ∼ a.
(iv) y ∼ r− a ∼ 2r− a ∼ x if [y, r] = r and [y, a] = r.
(v) y ∼ 2r− a ∼ x if [y, r] = r and [y, a] = −r.
(vi) y ∼ r + a ∼ 2r− a ∼ x if [y, r] = −r and [y, a] = r.
(vii) y ∼ 2r + a ∼ 2r− a ∼ x if [y, r] = −r and [y, a] = −r.

Therefore, d(x, y) ≤ 3.
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Suppose [x, r] = −r and [x, a] = r. Then

[x, r + a] = [x, r] + [x, a] = −r + r = 0.

Hence, x ∼ r + a. Proceeding as above, we get the following similar cases:

(i) x ∼ r + a ∼ r ∼ y if y ∼ r.
(ii) x ∼ r + a ∼ 2r ∼ y if y � r but y ∼ 2r.
(iii) x ∼ r + a ∼ a ∼ y if y � r and 2r but y ∼ a.
(iv) y ∼ r− a ∼ r + a ∼ x if [y, r] = r and [y, a] = r.
(v) y ∼ 2r− a ∼ r + a ∼ x if [y, r] = r and [y, a] = −r.
(vi) y ∼ r + a ∼ x if [y, r] = −r and [y, a] = r.
(vii) y ∼ 2r + a ∼ r + a ∼ x if [y, r] = −r and [y, a] = −r.

Therefore, d(x, y) ≤ 3.
Suppose [x, r] = −r and [x, a] = −r. Then

[x, 2r + a] = [x, 2r] + [x, a] = r + (−r) = 0.

Hence, x ∼ 2r + a, so we get the the following similar cases:

(i) x ∼ 2r + a ∼ r ∼ y if y ∼ r.
(ii) x ∼ 2r + a ∼ 2r ∼ y if y � r but y ∼ 2r.
(iii) x ∼ 2r + a ∼ a ∼ y if y � r and 2r but y ∼ a.
(iv) y ∼ r− a ∼ 2r + a ∼ x if [y, r] = r and [y, a] = r.
(v) y ∼ 2r− a ∼ 2r + a ∼ x if [y, r] = r and [y, a] = −r.
(vi) y ∼ r + a ∼ 2r + a ∼ x if [y, r] = −r and [y, a] = r.
(vii) y ∼ 2r + a ∼ x if [y, r] = −r and [y, a] = −r.

Therefore, d(x, y) ≤ 3. Hence, in all the cases, diam(∆r
R) ≤ 3. This completes

the proof.

As a consequence of Proposition 1(a) and Corollary 1, we get the following result.

Corollary 2. Let x be any vertex in ∆r
R.

(a). If r = 0 then deg(x) = |R| − |CR(x)|.
(b). If r 6= 0 and 2r = 0 then

deg(x) =

{
|R| − |Z(R)| − 1, if Tx,r = ∅
|R| − |Z(R)| − |CR(x)| − 1, otherwise.

(c). If r 6= 0 and 2r 6= 0 then

deg(x) =

{
|R| − |Z(R)| − 1, if Tx,r = ∅
|R| − |Z(R)| − 2|CR(x)| − 1, otherwise.

Some applications of Corollary 2 are given below.

Theorem 2. Let R be a noncommutative ring such that |R| 6= 8 and let Kn be the complete graph
on n-vertices. If ∆r

R has an end vertex then r 6= 0 and ∆r 6=0
R = 4K2 if and only if R is isomorphic to

E(9) or F(9). Hence, Γr
R is neither a tree nor a lollipop graph.

Proof. Let x ∈ R \ Z(R) be an end vertex in ∆r
R. Then deg(x) = 1. If r = 0 then, by

Corollary 2(a), we have deg(x) = |R| − |CR(x)|. Therefore, |R| − |CR(x)| = 1, and hence
|CR(x)| = 1, a contradiction. Therefore, r 6= 0. Now, we consider the following cases.
Case 1: r 6= 0 and 2r = 0.

By Corollary 2(b), we have deg(x) = |R| − |Z(R)| − 1 or |R| − |Z(R)| − |CR(x)| − 1.
Hence |R| − |Z(R)| − 1 = 1 or |R| − |Z(R)| − |CR(x)| − 1 = 1.
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Subcase 1.1: |R| − |Z(R)| = 2.
In this case, we have |Z(R)| = 1 or 2. If |Z(R)| = 1 then |R| = 3, a contradiction.

If |Z(R)| = 2 then |R| = 4. Therefore, the additive quotient group R
Z(R) is cyclic. Hence, R

is commutative; a contradiction.
Subcase 1.2: |R| − |Z(R)| − |CR(x)| = 2.

In this case, |Z(R)| = 1 or 2. If |Z(R)| = 1, then |R| − |CR(x)| = 3. Therefore,
|CR(x)| = 3 and hence |R| = 6. Therefore, R is commutative; a contradiction. If |Z(R)| = 2,
then |R| − |CR(x)| = 4. Therefore, |CR(x)| = 4 and so |R| = 8, a contradiction.
Case 2: r 6= 0 and 2r 6= 0.

By Corollary 2(c), we have deg(x) = |R| − |Z(R)| − 1 or |R| − |Z(R)| − 2|CR(x)| − 1.
Hence, |R| − |Z(R)| − 1 = 1 or |R| − |Z(R)| − 2|CR(x)| − 1 = 1. If |R| − |Z(R)| = 2,
then, as shown in subcase 2.1, we get a contradiction. If |R| − |Z(R)| − 2|CR(x)| = 2 then
|Z(R)| = 1 or 2.
Subcase 2.1: |Z(R)| = 1.

In this case, |R| − 2|CR(x)| = 3. Therefore, |CR(x)| = 3 and so |R| = 9. Hence, R is
isomorphic to either E(9) or F(9). It follows from Figure 4 that ∆r

R = 4K2, noting that ∆r
E(9)

and ∆r
F(9) are isomorphic.

Subcase 2.2: |Z(R)| = 2.
In this case, |R| − 2|CR(x)| = 4. Therefore, |CR(x)| = 4 and so |R| = 12. It follows

that the additive quotient group R
Z(R) is cyclic. Hence, R is commutative; a contradiction.

Hence, the result follows.

We have the following corollary to Theorem 2.

Corollary 3. Let R be a noncommutative ring such that |R| 6= 8. Then

(a). ∆r
R is 1-regular if and only if r 6= 0 and R is isomorphic to E(9) or F(9).

(b). The noncommuting graph of R does not have any end vertex. In particular, noncommuting
graph of such ring is neither a tree nor a lollipop graph.

Proof. The results follow from Theorem 2; note that any 1-regular graph has end vertices
and noncommuting graph of R is the graph ∆0

R.

Theorem 3. Let R be a noncommutative ring such that |R| 6= 8, 12. If ∆r
R has a vertex of degree 2

then r = 0 and ∆0
R is a triangle if and only if R is isomorphic to E(4) or F(4).

Proof. Suppose ∆r
R has a vertex x of degree 2. Consider the following cases.

Case 1: r = 0.
By Corollary 2(a), we have deg(x) = |R| − |CR(x)|. Therefore, |R| − |CR(x)| = 2, and

hence |CR(x)| = 2. Therefore, |R| = 4 and so R is isomorphic to E(4) or F(4). Hence, ∆r
R is

a triangle (as shown in Figure 1; note that ∆r
E(4) and ∆r

F(4) are isomorphic).
Case 2: r 6= 0 and 2r = 0.

By Corollary 2(b), we have deg(x) = |R| − |Z(R)| − 1 or deg(x) = |R| − |Z(R)| −
|CR(x)| − 1. Therefore, |R| − |Z(R)| − 1 = 2 or |R| − |Z(R)| − |CR(x)| − 1 = 2.
Subcase 2.1: |R| − |Z(R)| = 3.

In this case we have |Z(R)| = 1 or 3. If |Z(R)| = 1, then |R| = 4. As shown in
Figure 2, ∆r

R is a null graph on three vertices. Therefore, it has no vertex of degree 2, which
is a contradiction. If |Z(R)| = 3 then |R| = 6. Therefore, R is commutative; a contradiction.
Subcase 2.2: |R| − |Z(R)| − |CR(x)| = 3.

In this case, |Z(R)| = 1 or 3. If |Z(R)| = 1, then |R| − |CR(x)| = 4. Therefore,
|CR(x)| = 2 or 4 and hence |R| = 6 or 8; a contradiction. If |Z(R)| = 3, then |R| − |CR(x)| = 6.
Therefore, |CR(x)| = 6 and so |R| = 12, which contradicts our assumption.
Case 3: r 6= 0 and 2r 6= 0.

By Corollary 2(c), we have deg(x) = |R| − |Z(R)| − 1 or |R| − |Z(R)| − 2|CR(x)| − 1.
Hence, |R| − |Z(R)| − 1 = 2 or |R| − |Z(R)| − 2|CR(x)| − 1 = 2.
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If |R| − |Z(R)| = 3, then, as shown in Subcase 2.1, we get a contradiction. If |R| −
|Z(R)| − 2|CR(x)| = 3, then |Z(R)| = 1 or 3.
Subcase 3.1: |Z(R)| = 1.

In this case, |R| − 2|CR(x)| = 4. Therefore, |CR(x)| = 2 or 4 and hence |R| = 8 or 12,
which is a contradiction.
Subcase 3.2: |Z(R)| = 3.

In this case, |R| − 2|CR(x)| = 6. Therefore, |CR(x)| = 6 and so |R| = 18. It follows
that the additive quotient group R

Z(R) is cyclic. Hence, R is commutative; a contradiction.
Hence, the result follows.

We have the following corollary to Theorem 3.

Corollary 4. Let R be a noncommutative ring such that |R| 6= 8, 12. Then

(a). ∆r
R is 2-regular if and only if r = 0 and R is isomorphic to E(4) or F(4).

(b). The noncommuting graph of R is 2-regular if and only if R is isomorphic to E(4) or F(4).

Proof. The results follow from Theorem 3 noting the facts that any 2-regular graph has
vertices of degree 2 and noncommuting graph of R is the graph ∆0

R.

Theorem 4. Let R be a noncommutative ring such that |R| 6= 16, 18. Then the graph ∆r
R has no

vertex of degree 3.

Proof. Suppose ∆r
R has a vertex x of degree 3.

Case 1: r = 0.
By Corollary 2(a), we have deg(x) = |R| − |CR(x)|. Therefore, |R| − |CR(x)| = 3 and

hence |CR(x)| = 3. Therefore, |R| = 6 and hence R is commutative; a contradiction.
Case 2: r 6= 0 and 2r = 0.

By Corollary 2(b), we have deg(x) = |R| − |Z(R)| − 1 or deg(x) = |R| − |Z(R)| −
|CR(x)| − 1. Therefore, |R| − |Z(R)| − 1 = 3 or |R| − |Z(R)| − |CR(x)| − 1 = 3.
Subcase 2.1: |R| − |Z(R)| = 4.

In this case, we have |Z(R)| = 1 or 2 or 4. If |Z(R)| = 1 or 2, then |R| = 5 or 6
and hence R is commutative; a contradiction. If |Z(R)| = 4, then |R| = 8. Therefore,
the additive quotient group R

Z(R) is cyclic. Hence, R is commutative; a contradiction.
Subcase 2.2: |R| − |Z(R)| − |CR(x)| = 4.

In this case, |Z(R)| = 1 or 2 or 4. If |Z(R)| = 1, then |R| − |CR(x)| = 5. There-
fore, |CR(x)| = 5 and hence |R| = 10. Therefore, R is commutative; a contradiction. If
|Z(R)| = 2, then |R| − |CR(x)| = 6. Therefore, |CR(x)| = 6 and so |R| = 12. It follows
that the additive quotient group R

Z(R) is cyclic. Hence, R is commutative; a contradic-
tion. If |Z(R)| = 4, then |R| − |CR(x)| = 8. Therefore, |CR(x)| = 8 and so |R| = 16;
a contradiction.
Case 3: r 6= 0 and 2r 6= 0.

By Corollary 2(c), we have deg(x) = |R| − |Z(R)| − 1 or |R| − |Z(R)| − 2|CR(x)| − 1.
Hence, |R| − |Z(R)| − 1 = 3 or |R| − |Z(R)| − 2|CR(x)| − 1 = 3.

If |R| − |Z(R)| = 4, then, as shown in Subcase 2.1, we get a contradiction. If |R| −
|Z(R)| − 2|CR(x)| = 4, then |Z(R)| = 1 or 2 or 4.
Subcase 3.1: |Z(R)| = 1.

In this case, |R| − 2|CR(x)| = 5. Therefore, |CR(x)| = 5 then |R| = 15. Therefore, R is
commutative; a contradiction.
Subcase 3.2: |Z(R)| = 2.

In this case, |R| − 2|CR(x)| = 6. Therefore, |CR(x)| = 6 and so |R| = 18; a contradiction.
Subcase 3.3: |Z(R)| = 4.

In this case, |R| − 2|CR(x)| = 8. Therefore, |CR(x)| = 8 and so |R| = 24. It follows
that the additive quotient group R

Z(R) is cyclic. Hence, R is commutative; a contradiction.
This completes the proof.
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Corollary 5. Let R be a noncommutative ring such that |R| 6= 16, 18. Then ∆r
R is not 3-regular.

In particular, the noncommuting graph of such R is not 3-regular.

Theorem 5. Let R be a noncommutative ring such that |R| 6= 8, 12, 18, 20. Then ∆r
R has no vertex

of degree 4.

Proof. Suppose ∆r
R has a vertex x of degree 4.

Case 1: r = 0.
By Corollary 2(a), we have deg(x) = |R| − |CR(x)|. Therefore, |R| − |CR(x)| = 4

and hence |CR(x)| = 2 or 4. If |CR(x)| = 2, then |R| = 6 and hence R is commutative; a
contradiction. If |CR(x)| = 4, then |R| = 8; a contradiction.
Case 2: r 6= 0 and 2r = 0.

By Corollary 2(b), we have deg(x) = |R| − |Z(R)| − 1 or deg(x) = |R| − |Z(R)| −
|CR(x)| − 1. Therefore, |R| − |Z(R)| − 1 = 4 or |R| − |Z(R)| − |CR(x)| − 1 = 4.
Subcase 2.1: |R| − |Z(R)| = 5.

In this case we have |Z(R)| = 1 or 5. Then |R| = 6 or 10 and hence R is commutative;
a contradiction.
Subcase 2.2: |R| − |Z(R)| − |CR(x)| = 5.

In this case, |Z(R)| = 1 or 5. If |Z(R)| = 1, then |R| − |CR(x)| = 6. Therefore,
|CR(x)| = 2 or 3 or 6. If |CR(x)| = 2, then |R| = 8; a contradiction. If |CR(x)| = 3, then
|R| = 9. It follows from Figure 4 that ∆r

R = 4K2, which is a contradiction. If |CR(x)| = 6,
then |R| = 12; a contradiction. If |Z(R)| = 5, then |R| − |CR(x)| = 10. Therefore,
|CR(x)| = 10 and so |R| = 20; a contradiction.
Case 3: r 6= 0 and 2r 6= 0.

By Corollary 2(c), we have deg(x) = |R| − |Z(R)| − 1 or |R| − |Z(R)| − 2|CR(x)| − 1.
Hence, |R| − |Z(R)| − 1 = 4 or |R| − |Z(R)| − 2|CR(x)| − 1 = 4.

If |R| − |Z(R)| = 5, then, as shown in Subcase 2.1, we get a contradiction. If |R| −
|Z(R)| − 2|CR(x)| = 5, then |Z(R)| = 1 or 5.
Subcase 3.1: |Z(R)| = 1.

In this case, |R| − 2|CR(x)| = 6. Therefore, |CR(x)| = 2 or 3 or 6. If |CR(x)| = 2, then
|R| = 10. Therefore R is commutative; a contradiction. If |CR(x)| = 3 or 6, then |R| = 12 or
18; a contradiction.
Subcase 3.2: |Z(R)| = 5.

In this case, |R| − 2|CR(x)| = 10. Therefore, |CR(x)| = 10 and so |R| = 30. It follows
that the additive quotient group R

Z(R) is cyclic. Hence, R is commutative; a contradiction.
This completes the proof.

Corollary 6. Let R be a noncommutative ring such that |R| 6= 8, 12, 18, 20. Then ∆r
R is not

4-regular. In particular, the noncommuting graph of such R is not 4-regular.

Theorem 6. Let R be a noncommutative ring such that |R| 6= 8, 16, 24, 27. Then ∆r
R has no vertex

of degree 5.

Proof. Suppose ∆r
R has a vertex x of degree 5.

Case 1: r = 0.
By Corollary 2(a), we have deg(x) = |R| − |CR(x)|. Therefore, |R| − |CR(x)| = 5, and

hence |CR(x)| = 5. Then |R| = 10 and hence R is commutative; a contradiction.
Case 2: r 6= 0 and 2r = 0.

By Corollary 2(b), we have deg(x) = |R| − |Z(R)| − 1 or deg(x) = |R| − |Z(R)| −
|CR(x)| − 1. Therefore, |R| − |Z(R)| − 1 = 5 or |R| − |Z(R)| − |CR(x)| − 1 = 5.
Subcase 2.1: |R| − |Z(R)| = 6.

In this case we have |Z(R)| = 1 or 2 or 3 or 6. If |Z(R)| = 1, then |R| = 7 and
hence R is commutative; a contradiction. If |Z(R)| = 2, then |R| = 8; a contradiction. If
|Z(R)| = 3, then |R| = 9. It follows from Figure 4 that ∆r

R = 4K2, which is a contradiction.
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If |Z(R)| = 6, then |R| = 12. Therefore, the additive quotient group R
Z(R) is cyclic. Hence,

R is commutative; a contradiction.
Subcase 2.2: |R| − |Z(R)| − |CR(x)| = 6.

In this case, |Z(R)| = 1 or 2 or 3 or 6. If |Z(R)| = 1, then |R| − |CR(x)| = 7. Therefore,
|CR(x)| = 7 then |R| = 14, and hence R is commutative; a contradiction. If |Z(R)| = 2, then
|R| − |CR(x)| = 8. Therefore, |CR(x)| = 4 or 8. If |CR(x)| = 4, then |R| = 12. Therefore,
the additive quotient group R

Z(R) is cyclic. Hence, R is commutative; a contradiction.
If |CR(x)| = 8, then |R| = 16; a contradiction. If |Z(R)| = 3, then |R| − |CR(x)| = 9.
Therefore, |CR(x)| = 9, so |R| = 18. It follows that the additive quotient group R

Z(R) is
cyclic. Hence, R is commutative; a contradiction. If |Z(R)| = 6, then |R| − |CR(x)| = 12.
Therefore, |CR(x)| = 12, so |R| = 24; a contradiction.
Case 3: r 6= 0 and 2r 6= 0.

By Corollary 2(c), we have deg(x) = |R| − |Z(R)| − 1 or |R| − |Z(R)| − 2|CR(x)| − 1.
Hence, |R| − |Z(R)| − 1 = 5 or |R| − |Z(R)| − 2|CR(x)| − 1 = 5.

If |R| − |Z(R)| = 6, then, as shown in Subcase 2.1, we get a contradiction. If |R| −
|Z(R)| − 2|CR(x)| = 6, then |Z(R)| = 1 or 2 or 3 or 6.
Subcase 3.1: |Z(R)| = 1.

Here we have, |R| − 2|CR(x)| = 7. Therefore, |CR(x)| = 7 then |R| = 21 and hence R
is commutative; a contradiction.
Subcase 3.2: |Z(R)| = 2.

In this case, |R| − 2|CR(x)| = 8. Therefore, |CR(x)| = 4 or 8. If |CR(x)| = 4 or 8 , then
|R| = 16 or 24; a contradiction.
Subcase 3.3: |Z(R)| = 3.

In this case, |R|− 2|CR(x)| = 9. Therefore, |CR(x)| = 9 and so |R| = 27; a contradiction.
Subcase 3.4: |Z(R)| = 6.

In this case, |R| − 2|CR(x)| = 12. Therefore, |CR(x)| = 12 and so |R| = 36. It follows
that the additive quotient group R

Z(R) is cyclic. Hence, R is commutative; a contradiction.
This completes the proof.

Corollary 7. Let R be a noncommutative ring such that |R| 6= 8, 16, 24, 27. Then ∆r
R is not

5-regular. In particular, the noncommuting graph of this R is not 5-regular.

We conclude this section with the following characterization of R.

Theorem 7. Let R be a noncommutative ring such that |R| 6= 8, 12, 16, 24, 28. Then ∆r
R has a

vertex of degree 6 if and only if r = 0 and R is isomorphic to E(9) or F(9).

Proof. Suppose ∆r
R has a vertex x of degree 6.

Case 1: r = 0.
By Corollary 2(a), we have deg(x) = |R| − |CR(x)|. Therefore, |R| − |CR(x)| = 6 and

hence |CR(x)| = 2 or 3 or 6. If |CR(x)| = 2, then |R| = 8; a contradiction. If |CR(x)| = 3,
then |R| = 9. Therefore, ∆r

R is a 6-regular graph (as shown in Figure 3). If |CR(x)| = 6, then
|R| = 12; a contradiction.
Case 2: r 6= 0 and 2r = 0.

By Corollary 2(b), we have deg(x) = |R| − |Z(R)| − 1 or deg(x) = |R| − |Z(R)| −
|CR(x)| − 1. Therefore |R| − |Z(R)| − 1 = 6 or |R| − |Z(R)| − |CR(x)| − 1 = 6.
Subcase 2.1: |R| − |Z(R)| = 7.

In this case we have |Z(R)| = 1 or 7. If |Z(R)| = 1, then |R| = 8; a contradiction.
If |Z(R)| = 7, then |R| = 14 and hence R is commutative; a contradiction.
Subcase 2.2: |R| − |Z(R)| − |CR(x)| = 7.

In this case, |Z(R)| = 1 or 7. If |Z(R)| = 1, then |R| − |CR(x)| = 8. Therefore,
|CR(x)| = 2 or 4 or 8. If |CR(x)| = 2, then |R| = 10. Thus, R is commutative; a contradic-
tion. If |CR(x)| = 4 or 8, then |R| = 12 or 16; which are contradictions. If |Z(R)| = 7, then
|R| − |CR(x)| = 14. Therefore, |CR(x)| = 14 and so |R| = 28; a contradiction.



Axioms 2021, 10, 233 13 of 14

Case 3: r 6= 0 and 2r 6= 0.
By Corollary 2(c), we have deg(x) = |R| − |Z(R)| − 1 or |R| − |Z(R)| − 2|CR(x)| − 1.

Hence, |R| − |Z(R)| − 1 = 6 or |R| − |Z(R)| − 2|CR(x)| − 1 = 6.
If |R| − |Z(R)| = 7, then as shown in Subcase 2.1, we get a contradiction. If |R| −

|Z(R)| − 2|CR(x)| = 7, then |Z(R)| = 1 or 7.
Subcase 3.1: |Z(R)| = 1.

In this case, |R| − 2|CR(x)| = 8. Therefore, |CR(x)| = 2 or 4 or 8, and then |R| = 12 or
16 or 24; all are contradictions to the order of R.
Subcase 3.2: |Z(R)| = 7.

In this case, |R| − 2|CR(x)| = 14. Therefore, |CR(x)| = 14 and so |R| = 42. It follows
that the additive quotient group R

Z(R) is cyclic. Hence, R is commutative; a contradiction.
This completes the proof.

Corollary 8. Let R be a noncommutative ring such that |R| 6= 8, 12, 16, 24, 28. Then ∆r
R is

6-regular if and only if r = 0 and R is isomorphic to E(9) or F(9). In particular, the noncommuting
graph of such R is 6-regular if and only if R is isomorphic to E(9) or F(9).

4. Concluding Remarks

In this paper, we have obtained results on Γr
R and ∆r

R analogous to certain results for
g-noncommuting graphs of finite groups obtained in [18,20]. Of course, we have obtained
results not analogous to the results for g-noncommuting graphs of finite groups. However,
it will be interesting to discover more properties of Γr

R and ∆r
R different from the case of

groups. Many of our results that characterize finite noncommutative rings such that the
graph ∆r

R is n-regular for 1 ≤ n ≤ 6 involve conditions on |R|. Therefore, the question
of recognizing rings with these graphs is still not clear for such cases. One may continue
further research to remove those conditions on |R| and recognize the rings clearly. It is also
worth determining all the positive integers n such that ∆r

R is n-regular.
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