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Abstract: This paper is about the dynamical evolution of a family of chaotic jerk systems, which have
different attractors for varying values of parameter a. By using Hopf bifurcation analysis, bifurcation
diagrams, Lyapunov exponents, and cross sections, both self-excited and hidden attractors are
explored. The self-exited chaotic attractors are found via a supercritical Hopf bifurcation and period-
doubling cascades to chaos. The hidden chaotic attractors (related to a subcritical Hopf bifurcation,
and with a unique stable equilibrium) are also found via period-doubling cascades to chaos. A circuit
implementation is presented for the hidden chaotic attractor. The methods used in this paper will
help understand and predict the chaotic dynamics of quadratic jerk systems.

Keywords: Hopf bifurcation; limit cycle; period-doubling cascade; self-excited attractor; hidden attractor

1. Introduction

It is believed that a wide variety of natural phenomena are chaotic, including fluid
flow, heartbeat irregularities, weather, and climate [1]. A dynamical system displaying
sensitive dependence on initial conditions on a closed invariant set (which consists of more
than one orbit) is called chaotic [2]. Chaos theory has applications in a variety of fields,
including disease control and prevention [3], mechanics [1,4], biology [5], cryptography [6],
secure communications [7], etc. In the study of chaos theory and its applications, it is very
important to identify new chaotic systems or enhance the complexity of dynamics and
shapes of chaotic attractors based on existing ones [8].

According to Leonov et al. [9], the attractors in dynamical systems are categorized
as self-excited attractors and hidden attractors. A self-excited attractor has a basin of
attraction that is associated with an unstable equilibrium. Conversely, an attractor is
called hidden if its basin of attraction does not intersect with a small neighborhood of any
equilibrium point.

Since the discovery of a chaotic system by Lorenz in 1963 [10], many other chaotic sys-
tems have been found and studied, such as the Rössler system [11], the Chua circuit [12,13],
chaotic jerk circuit [14], the Chen system [15], the Lü system [16], and the Sprott systems [17].
These examples have one or more saddle-points and the associated attractors in these pa-
pers are all self-excited. Since the basin of attraction of a self-excited attractor is associated
with an unstable equilibrium, self-excited attractors can be localized numerically by the
standard computational procedure: after a transient process, a trajectory that starts in
the neighborhood of an unstable equilibrium (from a point on its unstable manifold) is
attracted to the attractor and traces it [9].

For numerical localization of hidden attractors, it needs to develop special analytical-
numerical procedures, since there are no transient processes leading to such attractors
from the neighborhoods of the unstable equilibria. An analytical-numerical algorithm
has been proposed by Leonov et al. [18,19]. Examples of hidden attractors based on this
algorithm can be found in [9,19–22]. Sprott et al. found some hidden chaotic attractors
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with an exhaustive computer search [23–28]. Recently, researchers have proposed many
dynamical systems with hidden attractors, see [20,25,28–33]. Hidden attractors may be
found in the following three families: (1) systems without equilibrium, see [23,34–39];
(2) systems with stable equilibrium, see [21,40–46]; (3) systems with an infinite number of
equilibria, see [24,26,27,47–49]. Pham et al. [50–52] explored the relationships among these
three families with hidden attractors. Many hidden attractors have been found in some
jerk systems [23,42,53–56]. Hidden attractors in fractional order systems were also studied
in [57,58].

In nonlinear dynamical systems, multistability refers to the coexistence of differ-
ent stable states [25,29,35,43,59]. Multistable dynamical systems are very sensitive to
noise, initial conditions, and system parameters [60–64]. Although multistability in-
creases the difficulty of some engineering constructions, such as bridge vibration and
wing design, chaotic systems with multistability are very useful in the field of secure
communication [65,66]. It has been shown that multistability is connected with the oc-
currence of hidden attractors [67–69]. In particular, systems with stable equilibrium and
hidden attractors are examples of multistable systems [21,40–46]. The coexisting self-
excited attractors in multistable systems can be found using the standard computational
procedure, whereas there is no standard method for predicting the existence or coexistence
of hidden attractors in a system [20]. Some jerk systems and hyperjerk systems with
multistability and chaotic dynamics have been found: self-excited chaos [63,70,71], hidden
chaos [56,72].

The paper is organized as follows. In Section 2, for a five-parameter family of
quadratic jerk systems, the Hopf bifurcation is analyzed via the first order focus quantity.
In Section 3, a two-parameter family is presented, which can be embedded in the previous
five-parameter family. The remaining sections are devoted to the two-parameter family. In
Section 4, the nonchaotic parameter region is discussed. In Section 5, the Hopf bifurcation
is analyzed for the family with two parameters. In Sections 6 and 7, the routes to chaos are
numerically studied for self-excited and hidden attractors, respectively. In Section 8, an
elegant hidden chaotic flow is introduced and analyzed. In Section 9, a circuit implementa-
tion is presented to model the hidden chaotic system. Finally, in Section 10, the conclusions
are presented.

2. Hopf Bifurcation of a Five-Parameter Family of Quadratic Jerk Systems

In physics, jerk is the third derivative of position with respect to time. Therefore,
differential equations of the form

...
x = J(x, ẋ, ẍ) (1)

are called jerk equations. As usual, the over-dot represents the derivative of the variable
with respect to t.

Letting y = ẋ, z = ẍ, Equation (1) can be transformed into the following jerk system

dx
dt

=y,

dy
dt

=z,

dz
dt

=J(x, y, z),

(2)

which can exhibit many features of regular and chaotic motions. The study of chaos (either
self-excited or hidden) in jerk systems has attracted significant attention
in [8,17,23,42,70,73,74].
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By considering many thousands of combinations of the coefficients, Molaie, Jafari and
Sprott [42] identified 23 chaotic flows with a stable equilibrium, in which the cases SE1–SE6
are some elegant quadratic jerk systems. Let us recall the first case SE1:

dx
dt

=y,

dy
dt

=z,

dz
dt

=− x− 0.6 y− 2 z + z2 − 0.4 xy,

(3)

which is an elegant system within the five-parameter family of jerk systems:

dx
dt

=y,

dy
dt

=z,

dz
dt

=− a1 x− a2 y− a3 z + a4 z2 + a5 xy,

(4)

where a1, a2, · · · , a5 are real parameters. For system (3), the initial conditions used in [42]
are x(0) = 4, y(0) = −2 and z(0) = 0.

By “elegant”, it means that as many coefficients as possible are set to zero with
the others to ±1, if possible, or to a small integer or decimal fraction with the fewest
possible digits [42,75]. The other cases SE2–SE6 are not in this family. Although so many
combinations of the coefficients have been used, there are still some more elegant chaotic
flows (with a stable equilibrium) that need to be found for the family. For the flow, the
transition to chaos should be understood via bifurcation theory.

For a1 6= 0, system (4) has a unique equilibrium at the origin. The type of this equi-
librium depends on the parameters a1, a2 and a3 of the third equation. The characteristic
polynomial of the jacobian matrix at the origin is

g(λ) = λ3 + a3 λ2 + a2 λ + a1. (5)

whose discriminant with respect to λ is

∆ = −4a1a3
3 + a2

2a2
3 + 18a1a2a3 − 4a3

2 − 27a2
1.

It is well known that the occurrence of Hopf bifurcation may be associated with the
birth of a strange attractor: self-excited or hidden, for more information see [21,76]. The
following situation is of interest for us:

a1 > 0, a2 > 0, a3 > 0, ∆ < 0. (6)

By setting (5) to zero, an application of the implicit function theorem yields the
transversality condition:

d Re λ1,2

da

∣∣∣∣
a1=a2a3

=
−1

3λ2 + 2 a3λ + a2

∣∣∣∣
λ=±√a2i

=
1

2
(
a2 + a2

3
) > 0. (7)

In view of (6) and (7), according to [77], a Hopf bifurcation occurs at a1 = a2a3.
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Setting a1 = a2a3 and 
x =− u

a2
− v

a2
+

w
a2

3
,

y =− iu√
a2

+
iv√
a2
− w

a3
,

z =u + v + w,

(8)

system (4) becomes

du
dt

=i
√

a2 u + c(1)2,0,0u2 + c(1)1,1,0uv + c(1)0,2,0v2 + c(1)1,0,1uw + c(1)0,1,1vw + c(1)0,0,2w2,

dv
dt

=− i
√

a2 v + c(2)2,0,0u2 + c(2)1,1,0uv + c(2)0,2,0v2 + c(2)1,0,1uw + c(2)0,1,1vw + c(2)0,0,2w2,

dw
dt

=− a3w + d2,0,0u2 + d1,1,0uv + d0,2,0v2 + d1,0,1uw + d0,1,1vw + d0,0,2w2,

(9)

where
c(1)p1,p2,q = c(2)p2,p1,q, dp1,p2,q = dp2,p1,q,

and

c(1)2,0,0 =
a2

2a4 − a3a5

2a2
(
a2

3 + a2
) + a2a3a4 + a5

2
√

a2
(
a2

3 + a2
) i,

c(1)1,1,0 =
a2a4

a2
3 + a2

+
a3
√

a2 a4

a2
3 + a2

i,

c(1)0,2,0 =
a2

2a4 + a3a5

2a2
(
a2

3 + a2
) + a2a3a4 − a5

2
√

a2
(
a2

3 + a2
) i,

c(1)1,0,1 =
a2a3a4 + a5

a3
(
a2

3 + a2
) + 2a2a3

3a4 + a2
3a5 − a2a5

2
√

a2 a2
3
(
a2

3 + a2
) i,

c(1)0,1,1 =
a2a4

a2
3 + a2

+
2a2a3

3a4 + a2
3a5 + a2a5

2
√

a2 a2
3
(
a2

3 + a2
) i,

c(1)0,0,2 =
a2
(
a3

3a4 − a5
)

2
(
a2

3 + a2
)
a3

3
+

√
a2
(
a3

3a4 − a5
)

2a2
3
(
a2

3 + a2
) i,

d2,0,0 =
a2

3a4

a2
3 + a2

+
a2

3a5(
a2

3 + a2
)
a

3
2
2

i,

d1,1,0 =
2a2

3a4

a2
3 + a2

,

d1,0,1 =
a3(2a2a3a4 + a5)

a2
(
a2

3 + a2
) − a5√

a2
(
a2

3 + a2
) i,

d0,0,2 =
a3

3a4 − a5

a3
(
a2

3 + a2
) .

Let us consider the general system

du
dt

=iωu +
∞

∑
p1+p2+q=2

a(1)p1,p2,qup1 vp2 wq = U(u, v, w),

dv
dt

=− iωv +
∞

∑
p1+p2+q=2

a(2)p1,p2,qup1 vp2 wq = V(u, v, w),

dw
dt

=− δw +
∞

∑
p1+p2+q=2

bp1,p2,qup1 vp2 wq = W(u, v, w),

(10)
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where
a(1)p1,p2,q = a(2)p2,p1,q, bp1,p2,q = bp2,p1,q, ω > 0, δ > 0.

According to [78], for system (10), one can derive successively the terms of the follow-
ing formal series:

F(u, v, w) = uv +
∞

∑
s=3

s

∑
k=0

s−k

∑
j=0

Ms,k,jus−k−jvkwj,

such that
dF
dt

∣∣∣
(10)

=
∂F
∂u

U +
∂F
∂v

V +
∂F
∂w

W =
∞

∑
n=1

Wn(uv)n+1, (11)

where Ms,k,j can be uniquely determined by setting M2m,m,0 = 0 for m ≥ 2.

Definition 1. ([79]) The coefficients Wn of the formal series (11) are called the n-th order focus
quantities of system (10).

Consider a family of quadratic systems in the form of (10), i.e.,

du
dt

=α1u + α2u2 + α3uv + α4v2 + α5uw + α6vw + α7w2,

dv
dt

=− α1v + β2u2 + β3uv + β4v2 + β5uw + β6vw + β7w2,

dw
dt

=δ1w + δ2u2 + δ3uv + δ4v2 + δ5uw + δ6vw + δ7w2,

(12)

where α1 = ωi with ω > 0, δ1 < 0.

Lemma 1. ([79]) For system (12), the first order focus quantity of the origin is

W1 =
W1,1

−4 α1
3δ1 + α1δ1

3 , (13)

where

W1,1 = −4 δ3(α5 + β6)α1
3 − 2 δ1(2 α2α3 − δ2α6 − 2 β3β4 + δ4β5)α1

2

+δ1
2(α5δ3 + δ2α6 + δ4β5 + β6δ3)α1 + δ1

3(α2α3 − β3β4).

Theorem 1. For system (4) with a1 = a2a3, the first order focus quantity of the origin is

W1 =
8a3

2a3a2
4 − a2a2

3a4a5 + 14a2
2a4a5 − a3a2

5(
a2

3 + 4a2
)(

a2
3 + a2

)
a2

2
. (14)

Letting
I = 8a3

2a3a2
4 − a2a2

3a4a5 + 14a2
2a4a5 − a3a2

5 (15)

be the numerator of W1 and a2 > 0, a3 > 0, the Hopf bifurcation occurs at a1 = a2a3 is supercritcal
if I < 0, and subcritical if I > 0.

Proof. Recall that for system (4), a1 = a2a3 is the bifurcation value of the Hopf bifurcation.
Note that system (9) is obtained from system (4) (with a1 = a2a3) via the non-degenerate
change of coordinates (8).

An application of the formula (13) to the transformed system (9) yields the first order
focus quantity W1 shown in (14), whose sign determines the criticality of Hopf bifurcation.
In view of a2 > 0, a3 > 0 and the transversality condition (7), the bifurcation is supercritical
if I < 0, and subcritical if I > 0. In the supercritical case, the bifurcation generates a family
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of stable limit cycles for a1 > a2a3, while in the subcritical case, it generates a family of
unstable limit cycles for a1 < a2a3.

Before discussing the transition to chaos, the local stability of the origin under the
conditions (6) needs to be discussed. Applying the Routh–Hurwitz criterion to (5) yields:

• For a1 > a2a3, the origin is unstable. Moreover, it is a saddle-focus of the type (1,2)
with 1D stable and 2D unstable manifolds [21].

• For a1 < a2a3, the origin is asymptotically stable. Moreover, it is a node-focus.

Now let us vary the parameter a1 and discuss the transition to chaos. For the case
W1 < 0, if there exists a period doubling route to chaos with the increase in a1 in some
subset of (a2a3,+∞), self-excited chaotic attractors can be found for certain values of a1.
For the case W1 > 0, if there exists a reverse period doubling route to chaos with the
decrease in a1 in some subset of (0, a2a3), hidden chaotic attractors can be found for certain
values of a1. This idea is straightforward, from which some elegant chaotic flows can
be constructed.

3. The Proposed Systems

In order to find algebraically simple chaotic systems, a family of quadratic jerk systems

dx
dt

=y,

dy
dt

=z,

dz
dt

=− a x− y− 1.1 z− α z2 + xy,

(16)

is considered, where a, α ∈ R. It is a special case of system (4) with a2 = a5 = 1, a3 = 1.1,
a1 = a and a4 = −α.

The system does not admit the common symmetries: symmetric with respect to the
origin, symmetric with respect to the coordinate planes, and many other symmetries. In
fact, the system is slightly modified from the following system

dx
dt

=y,

dy
dt

=z,

dz
dt

=− a x− y− 1.1 z− α z2,

(17)

which is invariant under the transformation (x, y, z, α)→ (−x,−y,−z,−α). However, for
system (16), the presence of the cross term xy in the third equation breaks the symmetry.

The divergence of flow of the system (16) is calculated as

∇V = −1.1− 2αz,

If ∇V < 0, i.e., 1.1 + 2αz > 0 (on average) in some region, the phase space volume
contracts and the system is dissipative. In particular, if ∇V ≡ −1.1, i.e., α = 0, system (16)
is dissipative; moreover, the exponential contraction rate is calculated as follows

dV
dt

= −1.1 V ⇒ V = V(0)e−1.1t, (18)

thus each volume containing the system trajectory shrinks to zero as t→ ∞ at an exponen-
tial rate of −1.1t.

In this paper, for fixed α, the parameter a is selected as the bifurcation parameter. By
performing bifurcation analysis, the dynamical evolution of system (16) from simple to
complex structures will be investigated.
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4. Nonchaotic Parameter Region

In some cases, system (16) can not have chaotic solutions.

Theorem 2. For α = 0, a ≤ 0, system (16) does not have bounded chaotic solutions.

Proof. In this case, system (16) is equivalent to the following third order equation

...
x = −a x− ẋ− 1.1 ẍ + xẋ, (19)

where a ≤ 0 and ẋ = y, ẍ = z.
Multiplying both sides of Equation (19) by x yields

x
...
x = −a x2 − xẋ− 1.1 xẍ + x2 ẋ.

Integrating the equation with respect to t gives

xẍ− 1
2

ẋ2 +
1
2

x2 + 1.1 xẋ− 1
3

x3 = C +
∫ t

0
(−a x2 + 1.1 ẋ2)dt. (20)

Substituting ẋ = y, ẍ = z into (20) produces

xz− 1
2

y2 +
1
2

x2 + 1.1 xy− 1
3

x3 = C +
∫ t

0
(−a x2 + 1.1 y2)dt. (21)

Since a ≤ 0, Equation (21) has a monotone left-hand side. Let P(x, y, z) be the left-
hand side of Equation (21). The polynomial P(x, y, z), as a function of time, has a limit
L ∈ R as t tends to infinity. If L is finite, then any attractor of system (16) lies on the
two-dimensional surface P(x, y, z) = K, where K is a constant, and thus is not chaotic due
to the Poincaré–Bendixson theorem. If L = ±∞, then at least one of the variables is not
bounded and cannot be chaotic. This completes the proof.

Remark 1. For α = a = 0, system (16) admits a polynomial first integral

F(x, y, z) = −1
2

x2 + x + 1.1 y + z.

Thus, the phase space is foliated by a family of invariant algebraic surfaces F(x, y, z) = C.
Hence, the system is not chaotic.

5. Hopf Bifurcation Analysis

The characteristic polynomial of the jacobian matrix of system (16) at the origin is

g(λ) = λ3 + 1.1λ2 + λ + a, (22)

whose discriminant with respect to λ is

∆ = −27a2 +
3619
250

a− 279
100

.

It should be noted that ∆ is negative for all a ∈ R.
For now, the parameter a is assumed to be positive. Thus, the polynomial (22) has

a pair of complex conjugate roots λ1,2 = λ1,2(a) and one negative root λ3 = λ3(a). Let
k = Re λ1,2. The variation of k with respect to a is presented in Figure 1. In the range
0 < a < 1.1, it follows that k < 0; and in the range a > 1.1, it follows that k > 0. Indeed,
there is a simple root at a = 1.1. There are three possibilities for the origin: for a > 1.1, the
origin is a saddle-focus of the type (1,2) with 1D stable and 2D unstable manifolds; when
a = 1.1, the origin is a non-hyperbolic equilibrium; for 0 < a < 1.1, the origin is a stable
node-focus.
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Figure 1. The curve k = k(a) with a ∈ (0, ∞).

Theorem 3. For system (16), a Hopf bifurcation occurs at the critical value a = 1.1 for the origin. For
α ∈ (−0.0814411693, 1.534850260), the bifurcation is supercritical; for α ∈ (−∞,−0.0814411693)∪
(1.534850260,+∞), the bifurcation is subcritical.

Proof. The first assertion follows directly from the existence of a Hopf bifurcation in the
general system (4), because system (16) is a special system of (4). For more information,
see Section 2.

By setting a1 = a = 1.1 and a2 = a5 = 1, a3 = 1.1, a4 = −α in (14), the first order focus
quantity of system (16) is obtained as

W1 =
88000

115141
α2 − 127900

115141
α− 11000

115141
.

For α ∈ (−0.0814411693, 1.534850260), i.e., W1 < 0, the Hopf bifurcation is supercriti-
cal, giving rise to a family of stable limit cycles for a > 1.1.

For α ∈ (−∞,−0.0814411693) ∪ (1.534850260,+∞), i.e., W1 > 0, the Hopf bifurcation
is subcritical, giving rise to a family of unstable limit cycles for a < 1.1.

Remark 2. The limit cycles arising from the supercritical Hopf bifurcation can help to find a
self-excited chaotic attractor; for more details, see Section 6.

Remark 3. According to the conjecture in [21], subcritical Hopf bifurcations may lead to the birth
of hidden attractors. In the current paper, see Section 7.

Remark 4. Assume that a < 0. Then the polynomial (22) has two complex conjugate roots
λ1,2 = λ1,2(a) and one positive root λ3 = λ3(a).

Since

λ1 + λ2 = 2 Re λ1,2,

λ1 + λ2 + λ3 = −1.1, λ3 > 0,

it follows that Re λ1,2 < 0. Thus, the origin is a hyperbolic saddle-focus of the type (2,1) with 2D
stable and 1D unstable manifolds [21].

6. Route to a Self-Excited Chaotic Attractor

For system (16) with α = 0.3 and a = 1.1, the first order focus quantity W1 is negative.
Thus a supercritical Hopf bifurcation occurs at a = 1.1, giving rise to a family of stable
limit cycles for a > 1.1.
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With α = 0.3 and initial condition (0.1, 0.1, 0.1), the parameter a is varied in the region
of [0.9,2.3]. The bifurcation diagram of system (16) depicting the local maxima of x(t) is
presented in Figure 2a. When the parameter a varies from 0.9 to 2.3, the system displays
no oscillation up to a = 1.1 where the Hopf bifurcation triggers a period-1 limit cycle.
With further increase in parameter a, the component x(t) shows a period-doubling route
to chaotic oscillations interspersed with periodic windows. The corresponding Lyapunov
exponents versus a are shown in Figure 2b.

0.9 1.2 1.5 1.8 2.1 2.3
-0.5

0.0

0.5

1.0

1.5

2.0

a

x

(a)

0.9 1.2 1.5 1.8 2.1 2.3

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

a

LE

L1

L2

L3

(b)

Figure 2. (a) Bifurcation diagram, and (b) Lyapunov exponents spectrum versus a of system (16).

For a = 2, α = 0.3, system (16) becomes

dx
dt

=y,

dy
dt

=z,

dz
dt

=− 2 x− y− 1.1 z− 0.3 z2 + xy.

(23)

A chaotic attractor of system (23) is shown in Figure 3.

Figure 3. Self-excited chaotic attractor (in blue) of system (16) with a = 2, α = 0.3 for the initial
condition (0.1, 0.1, 0.1).
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By Section 5, the unique equilibrium located at the origin is unstable, so that the
attractor is self-excited. The Lyapunov exponents of the attractor are (L1, L2, L3) =
(0.06427, 0.0002449,−1.1645), thus the Kaplan–Yorke dimension is DKY = 2.0554. This
confirms that system (23) is dissipative with a self-excited chaotic attractor. Figure 4 shows
the cross sections of the basin of attraction of the attractor in the three coordinate planes.
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where the upper pannel plots the phase portraits of the hidden attractors projected in the x− y
plane, the lower pannel shows the local basins of attraction and the crossing trjectories of the
hidden attractors. (a) and (e) hidden period-1 limit cycle for a = 0.985; (b) and (f) hidden period-2
limit cycle for a = 0.994; (c) and (g) hidden period-4 limit cycle for a = 0.9955; (d) and (h) hidden
chaotic attractor for a = 0.997.
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limit cycle for a = 0.994; (c) and (g) hidden period-4 limit cycle for a = 0.9955; (d) and (h) hidden
chaotic attractor for a = 0.997.

Figure 4. Cross sections of the basin of attraction of the chaotic attractor in the planes: z(0) = 0 (left);
y(0) = 0 (center); x(0) = 0 (right). Initial conditions in the white regions lead to unbounded orbits,
and those in the red regions lead to the chaotic attractor.

7. Route to a Hidden Chaotic Attractor

Consider the general system

dx
dt

=y,

dy
dt

=z,

dz
dt

=− a x− y− 1.1 z− α z2 + x(y + β z),

(24)

where a > 0, α, β ∈ R. It has a unique equilibrium at the origin. Note that if β = 0,
system (24) is reduced to system (16).

Since the characteristic polynomial of system (24) is also (22), there are three possibili-
ties for the origin: for a > 1.1, the origin is a saddle-focus of the type (1,2) with 1D stable
and 2D unstable manifolds; for a = 1.1, the origin is a non-hyperbolic equilibrium; for
0 < a < 1.1, the origin is a stable node-focus. Furthermore, a Hopf bifurcation occurs at
the critical value a = 1.1 for the origin. Letting a = 1.1, it is routine [79] to compute the
first order focus quantity W1 of system (24) at the origin. The result is

W1 =
88000α2

115141
+

(531000β− 1406900)α
1266551

− 437000β2

1266551
− 120000β

115141
− 11000

115141
.

For α = 2.9, β = 1; α = 2.7, β = 0.25; α = 2.59, β = 0, system (24) becomes

dx
dt

=y,

dy
dt

=z,

dz
dt

=− a x− y− 1.1 z− 2.9 z2 + x(y + z),

(25)



dx
dt

=y,

dy
dt

=z,

dz
dt

=− a x− y− 1.1 z− 2.7 z2 + x(y + 0.25 z),

(26)
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and 

dx
dt

=y,

dy
dt

=z,

dz
dt

=− a x− y− 1.1 z− 2.59 z2 + xy,

(27)

respectively. For these three systems, according to the signs of W1, the Hopf bifurcations
occur at a = 1.1 are all subcritical.

Taking a as the parameter, the bifurcation diagrams and Lyapunov exponents are
plotted for the above three systems, see Figures 5–7, respectively. The selected initial
conditions are the same: x(0) = z(0) = 0, y(0) = −1.5.
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(b)
Figure 5. (a) Bifurcation diagram, and (b) Lyapunov exponents spectrum versus a of system (25).
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Figure 6. (a) Bifurcation diagram, and (b) Lyapunov exponents spectrum versus a of system (26).

Based on Figures 5–7, the following observations can be made:
1. With the increase in parameter a, these systems share the same hidden mechanism:

stable equilibrium→ hidden period-1 limit cycles→ period doubling cascades→ hidden
chaos.

2. There are several jump discontinuities for some curves in the bifurcation diagrams.
3. For a = 1, these systems exhibit hidden chaotic attractors as the unique equilibrium

is stable.
4. By selecting a = 1 in systems (25)–(27), system (27) is the most elegant in the sense

that: it has three coefficients in the form of ±1 and only two nonlinearities; it is not on the
list of [42].
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Figure 7. (a) Bifurcation diagram, and (b) Lyapunov exponents spectrum versus a of system (27).

8. Hidden Chaotic Attractor

Based on the bifurcation analysis, it is of interest to study the following system

dx
dt

=y,

dy
dt

=z,

dz
dt

=− x− y− 1.1 z− 2.59 z2 + xy.

(28)

As shown in the Figure 8, the system generates a hidden chaotic attractor and a point
attractor (located at the origin). The cross sections of the basins of attraction of the attractors
in the three coordinate planes are shown in Figure 9. The initial condition for these figures
is (x(0), y(0), z(0)) = (0,−1.5, 0).
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0.0

0.5

x

y
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x
- 1.0 - 0.5 0.0 0.5

- 1.0

- 0.5

0.0

0.5

1.0

Figure 8. A 3D view of the hidden chaotic attractor (in blue) and point attractor (in red) of system (28)
and its various projections. Initial condition that realizes the hidden hidden chaotic attractor:
(x(0), y(0), z(0)) = (0,−1.5, 0).



Axioms 2021, 10, 227 13 of 17

- 1.5 - 1.0 - 0.5 0.0 0.5 1.0
- 2.0

- 1.5

- 1.0

- 0.5

0.0

0.5

1.0

x(0)

y
(0

)

- 2.5 - 2.0 - 1.5 - 1.0 - 0.5 0.0 0.5 1.0
- 1.5

- 1.0

- 0.5

0.0

0.5

1.0

1.5

x(0)

z
(0

)

- 1.5 - 1.0 - 0.5 0.0 0.5
- 1.0

- 0.5

0.0

0.5

1.0

y(0)

z
(0

)

Figure 9. Cross sections of the basins of attraction of the two coexisting attractors in the coordinate
planes: z(0) = 0 (left); y(0) = 0 (center); x(0) = 0 (right). Initial conditions in the white regions lead
to unbounded orbits, those in the red regions lead to the hidden chaotic attractor, and those in the
purple regions lead to the stable equilibrium located at the origin.

The Lyapunov exponents of the attractor are (L1, L2, L3) = (0.07977, 0,−1.1795), thus
the Kaplan–Yorke dimension is DKY = 2.0677. This confirms that system (28) is dissipative
with a hidden chaotic attractor.

9. Circuit Realization

Using electronic circuits to simulate chaotic systems is an effective way to investigate
their dynamics. The realization of chaotic electronic circuits based on theoretical models
is an important topic relating to practical applications. Such circuits are a crucial part of
various chaos-based applications, including image encryption schemes and path-planning
generators for autonomous mobile robots [80–82].

An electronic circuit for system (28) is shown in Figure 10. It consists of three opera-
tional amplifiers (op-amps) U1 to U3 for three integration channels, two op-amps U4 and
U5 for the inverting amplifiers, and two analog multipliers U6 and U7 (using AD633 with
an implied voltage factor of 1) for the two quadratic nonlinearities. All the op-amps are
TL082 ICs powered at ±15 V.

By applying Kirchhoff’s circuit laws, the corresponding circuital equations of the
circuit can be written as follows:

dX
dt

=
1

RC1

(
R
R1

Y
)

dY
dt

=
1

RC2

(
R
R2

Z
)

dZ
dt

=
1

RC3

(
− R

R3
X− R

R4
Y− R

R5
Z− R

R6
Z2 +

R
R7

XY
)

,

(29)

where the phase space variables X, Y, and Z represent the output voltages of U4, U5 and
U3. Setting R/R1 = R/R2 = R/R4 = R/R7 =1, R/R3 = 1, R/R5 = 1.1, R/R6 = 2.59 and C1
= C2 = C3, it is easy to see that system (29) is orbitally equivalent to system (28)

Let C1 = C2 = C3 = 100nF, R = R1 = R2 = R3 = R4 = R7 = 100 kΩ, R5 = 90.91 kΩ,
R6 = 38.61 kΩ and R8 = R9 = R10 = R11 = 10 kΩ. By using OrCAD-PSpice, the various
2D projections of the hidden chaotic attractor of system (29) are shown in Figure 11. The
obtained results are consistent with the numerical results in Figure 8.
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Figure 10. Circuital implementation of the hidden chaotic system (28) with a stable equilibrium at
the origin.
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Figure 11. Hidden chaotic attractor of system (29): (a) X-Y projection of the attractor, (b) X-Z
projection of the attractor, and (c) Y-Z projection.
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10. Conclusions

This work is mainly about a two-parameter family of 3D quadratic jerk systems with
complex dynamics. In Section 2, the analysis of a Hopf bifurcation is carried out for
a general five-parameter family of 3D quadratic jerk systems, which includes the two-
parameter family and the hidden chaotic system SE1 of [42]. The remaining sections are
devoted to the two-parameter family. The nonchaotic parameter region is found to reduce
the complexity of finding chaotic attractors. Depending on the combination of the two
parameters, the jerk system can exhibit self-excited chaotic attractors with an unstable
equilibrium, or hidden chaotic attractors with a stable equilibrium. Some numerical
methods are used for finding these attractors, such as phase portraits, Lyapunov exponents,
bifurcation diagrams, and cross sections. The transition from regular attractors to chaotic
attractors is via period-doubling cascades of limit cycles. For the self-excited case, the
initial limit cycles are generated by the supercritical Hopf bifurcation. For the hidden case
(associated with the subcritical Hopf bifurcation), the initial limit cycles are hidden and are
not generated by the subcritical Hopf bifurcation. Finally, an electric circuit is designed
to validate the existence of a hidden chaotic attractor. The hidden chaotic system (28) is
algebraically elegant, which expands the list of hidden chaotic jerk systems.
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