Article

Inequalities on General L_{p}-Mixed Chord Integral Difference

Hongying Xiao ${ }^{1}$, Weidong Wang ${ }^{2, *}$ and Zhaofeng Li ${ }^{2, *}$

1 Faculty of Science, Yibin University, Yibin 644000, China; xiaohongying715@163.com
2 Department of Mathematics, China Three Gorges University, Yichang 443002, China

* Correspondence: Wangwd722@163.com (W.W.); kelly0128@163.com (Z.L.)

Citation: Xiao, H.; Wang, W.; Li, Z. Inequalities on General L_{p}-Mixed Chord Integral Difference. Axioms 2021, 10, 220. https://doi.org/ 10.3390/axioms10030220

Academic Editor: Delfim F. M. Torres

Received: 5 July 2021
Accepted: 26 August 2021
Published: 10 September 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Abstract

In this article, we introduce the concept of general L_{p}-mixed chord integral difference of star bodies. Further, we establish the Brunn-Minkowski type, Aleksandrov-Fenchel type and cyclic inequalities for the L_{p}-mixed chord integral difference.

Keywords: general L_{p}-mixed chord integral difference; volume difference; L_{p}-radial Minkowski combination; L_{p}-radial Blaschke Minkowski homomorphism

MSC: 52A20; 52A39; 52A40

1. Introduction

The setting for this paper is n-dimensional Euclidean spaces $\mathbb{R}^{n}(n \geq 1)$. Let K and L be two convex bodies (compact, convex subsets with nonempty interiors) in \mathbb{R}^{n}. V denotes the volume. If K is a compact star-shaped (about the origin) set in \mathbb{R}^{n}, then its radial function, $\rho_{K}=\rho(K, \cdot): \mathbb{R}^{n} \backslash\{0\} \rightarrow[0, \infty)$, is defined by (see [1]):

$$
\rho(K, u)=\max \{\lambda \geq 0, \lambda u \in K\}, u \in \mathcal{S}^{n-1} .
$$

If ρ_{K} is positive and continuous, K is called a star body (about the origin), and S^{n} denotes the set of star bodies in \mathbb{R}^{n}. S_{0}^{n} is the subset of S^{n} containing the origin in their interiors. The unit sphere in \mathbb{R}^{n} is denoted by \mathcal{S}^{n-1}, and B denotes the standard unit ball in \mathbb{R}^{n}.

The classical Brunn-Minkowski inequality is (see [2])

$$
V(K+L)^{\frac{1}{n}} \geq V(K)^{\frac{1}{n}}+V(L)^{\frac{1}{n}}
$$

where + denotes vector or the Minkowski sum of two sets, i.e., $A+B=\{a+b: a \in A, b \in B\}$.
In 2004, Leng (see [3]) presented a new generalization of the Brunn-Minkowski inequality for the volume difference of convex bodies.

Theorem 1. Suppose that K, L and D are compact domains, and $D \subset K, D^{\prime} \subset L, D^{\prime}$ is a homothetic copy of D. Then

$$
\left[V(K+L)-V\left(D+D^{\prime}\right)\right]^{\frac{1}{n}} \geq[V(K)-V(D)]^{\frac{1}{n}}+\left[V(L)-V\left(D^{\prime}\right)\right]^{\frac{1}{n}} .
$$

The equality holds if and only if K and L are homothetic and $(V(K), V(D))=\mu\left(V(L), V\left(D^{\prime}\right)\right)$, where μ is a constant.

Leng's result is a major extension of the classical Brunn-Minkowski inequality and attracts more and more attention (see [4-6]).

In 1977, Lutwak introduced the notion of a mixed width-integral of convex bodies (see [7]), and the dual notion, mixed chord-integrals of star bodies was defined by Lu (see [8]). Later, as a part of the asymmetric L_{p} Brunn-Minkowski theory, which has its
origins in the work of Ludwig, Haberl and Schuster (see [9-13]), Feng and Wang generalized the mixed chord-integrals to general mixed chord-integrals of star bodies (see [14]). For $K_{1}, \cdots, K_{n} \in S_{0}^{n}$ and $\tau \in(-1,1)$, the general mixed chord-integral $C^{(\tau)}\left(K_{1}, \cdots, K_{n}\right)$ is defined by

$$
C^{(\tau)}\left(K_{1}, \cdots, K_{n}\right)=\frac{1}{n} \int_{\mathcal{S}^{n-1}} c^{(\tau)}\left(K_{1}, u\right) \cdots c^{(\tau)}\left(K_{n}, u\right) d u
$$

here, $c^{(\tau)}(K, \cdot)=f_{1}(\tau) \rho(K, \cdot)+f_{2}(\tau) \rho(-K, \cdot)$, and the functions $f_{1}(\tau)$ and $f_{2}(\tau)$ are defined as follows

$$
f_{1}(\tau)=\frac{(1+\tau)^{2}}{2\left(1+\tau^{2}\right)}, \quad f_{2}(\tau)=\frac{(1-\tau)^{2}}{2\left(1+\tau^{2}\right)}
$$

In 2016, Li and Wang extended the general mixed chord-integral to the general $L_{p^{-}}$ mixed chord integral of star bodies (see [15]): For $K_{1}, \cdots, K_{n} \in S_{0}^{n}, p>0$ and $\tau \in(-1,1)$, the general L_{p}-mixed chord integral $C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n}\right)$ of K_{1}, \cdots, K_{n} is defined by

$$
\begin{equation*}
C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n}\right)=\frac{1}{n} \int_{\mathcal{S}^{n-1}} c_{p}^{(\tau)}\left(K_{1}, u\right) \cdots c_{p}^{(\tau)}\left(K_{n}, u\right) d u \tag{1a}
\end{equation*}
$$

Here, $c_{p}^{(\tau)}(K, \cdot)$ is defined by

$$
c_{p}^{(\tau)}(K, u)=\left(f_{1}(\tau) \rho^{p}(K, u)+f_{2}(\tau) \rho^{p}(-K, u)\right)^{\frac{1}{p}}
$$

for any $u \in \mathcal{S}^{n-1}$, and $f_{1}(\tau)$ and $f_{2}(\tau)$ are chosen as (see [16])

$$
f_{1}(\tau)=\frac{(1+\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}}, \quad f_{2}(\tau)=\frac{(1-\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}}
$$

Obviously, $f_{1}(\tau)$ and $f_{2}(\tau)$ satisfy

$$
\begin{gathered}
f_{1}(\tau)+f_{2}(\tau)=1 \\
f_{1}(-\tau)=f_{2}(\tau), f_{2}(-\tau)=f_{1}(\tau)
\end{gathered}
$$

$C_{p, i}^{(\tau)}(K, L)$ denotes that K appears $n-i$ times, and L appears i times, which is

$$
C_{p, i}^{(\tau)}(K, L)=\frac{1}{n} \int_{\mathcal{S}^{n-1}} c_{p}^{(\tau)}(K, u)^{n-i} c_{p}^{(\tau)}(L, u)^{i} d u
$$

If constants $\lambda_{1}, \cdots, \lambda_{n}>0$ exist such that $\lambda_{1} c_{p}^{(\tau)}\left(K_{1}, u\right)=\cdots=\lambda_{n} c_{p}^{(\tau)}\left(K_{n}, u\right)$ for all $u \in \mathcal{S}^{n-1}$, star bodies K_{1}, \cdots, K_{n} are said to have a similar general L_{p}-chord. For this general L_{p}-chord integral, Li and Wang gave the following inequalities (see [15]).

Theorem 2. If $K, L \in S_{o}^{n}$ and $\tau \in(-1,1), p>0$, then for $i \leq n-p$,

$$
\begin{equation*}
C_{p, i}^{(\tau)}\left(K \tilde{\Psi}_{p} L\right)^{\frac{p}{n-i}} \leq C_{p, i}^{(\tau)}(K)^{\frac{p}{n-i}}+C_{p, i}^{(\tau)}(L)^{\frac{p}{n-i}} \tag{1b}
\end{equation*}
$$

for $n-p<i<n$ or $i>n$,

$$
\begin{equation*}
C_{p, i}^{(\tau)}\left(K \tilde{+}_{p} L\right)^{\frac{p}{n-i}} \geq C_{p, i}^{(\tau)}(K)^{\frac{p}{n-i}}+C_{p, i}^{(\tau)}(L)^{\frac{p}{n-i}} \tag{1c}
\end{equation*}
$$

with equality in each inequality if and only if K and L have a similar general L_{p}-chord. Here and in the following Theorems, $K \tilde{f_{p}} L^{2}$ denotes the L_{p}-radial Minkowski combination of K and L.

Theorem 3. If $K_{1}, \cdots, K_{n} \in S_{o}^{n}$ and $\tau \in(-1,1), p>0$, then for $1<m \leq n$,

$$
\begin{equation*}
C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n}\right)^{m} \leq \prod_{i=1}^{m} C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n-m}, K_{n-i+1}, K_{n-i+1}, \cdots, K_{n-i+1}\right), \tag{1d}
\end{equation*}
$$

with equality if and only if K_{n-m+1}, \cdots, K_{n} all have a similar general L_{p}-chord.
Theorem 4. If $K, L \in S_{o}^{n}$ and $\tau \in(-1,1), p>0$, then for $i<j<k$,

$$
\begin{equation*}
C_{p, j}^{(\tau)}(K, L)^{k-i} \leq C_{p, i}^{(\tau)}(K, L)^{k-j} C_{p, k}^{(\tau)}(K, L)^{j-i} \tag{1e}
\end{equation*}
$$

with equality if and only if K and L have a similar general L_{p}-chord.

2. Main Results

Inspired by Leng's idea, this article deals with the general L_{p}-chord integral of star bodies and gives some inequalities for the general L_{p}-chord integral difference.

Theorem 5. Let $K, L, M, M^{\prime} \in S_{o}^{n}$ and $\tau \in(-1,1), \quad p>0$. If K and L have similar general L_{p}-chord and $M \subseteq K, M^{\prime} \subseteq L$, then for $i \leq n-p$,

$$
\begin{gather*}
{\left[C_{p, i}^{(\tau)}\left(K \tilde{f}_{p} L\right)-C_{p, i}^{(\tau)}\left(M \tilde{f}_{p} M^{\prime}\right)\right]^{\frac{p}{n-i}} \geq\left[C_{p, i}^{(\tau)}(K)-C_{p, i}^{(\tau)}(M)\right]^{\frac{p}{n-i}}+\left[C_{p, i}^{(\tau)}(L)-C_{p, i}^{(\tau)}\left(M^{\prime}\right)\right]^{\frac{p}{n-i}}} \tag{1f}\\
\text { and for } n-p<i<n \text { or } i>n
\end{gather*}
$$

$$
\begin{equation*}
\left[C_{p, i}^{(\tau)}\left(K \tilde{+}_{p} L\right)-C_{p, i}^{(\tau)}\left(M \tilde{\mp}_{p} M^{\prime}\right)\right]^{\frac{p}{n-i}} \leq\left[C_{p, i}^{(\tau)}(K)-C_{p, i}^{(\tau)}(M)\right]^{\frac{p}{n-i}}+\left[C_{p, i}^{(\tau)}(L)-C_{p, i}^{(\tau)}\left(M^{\prime}\right)\right]^{\frac{p}{n-i}} \tag{1~g}
\end{equation*}
$$

with equality in each inequality if and only if M and M^{\prime} have a similar general L_{p}-chord.
Theorem 6. Let K_{1}, \cdots, K_{n} and $M_{1}, \cdots, M_{n} \in S_{o}^{n}$, and $\tau \in(-1,1), \quad p>0$. If $M_{i} \subseteq K_{i}$, $i=1,2, \cdots, n, K_{1}, \cdots K_{n}$ have similar general L_{p}-chord, then for $1<m \leq n$,

$$
\left[C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n}\right)-C_{p}^{(\tau)}\left(M_{1}, \cdots, M_{n}\right)\right]^{m} \geq
$$

$$
\begin{equation*}
\prod_{i=1}^{m}\left[C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n-m}, K_{n-i+1}, K_{n-i+1}, \cdots, K_{n-i+1}\right)-C_{p}^{(\tau)}\left(M_{1}, \cdots, M_{n-m}, K_{n-i+1}, M_{n-i+1}, \cdots, M_{n-i+1}\right)\right] \tag{1h}
\end{equation*}
$$

with equality if and only if M_{1}, \cdots, M_{n} all have a similar general L_{p}-chord.
Theorem 7. Let $K, L, M, M^{\prime} \in S_{o}^{n}$ and $\tau \in(-1,1), \quad p>0$. If K and L have similar general L_{p}-chord, then for $i<j<k$,

$$
\begin{equation*}
\left[C_{p, j}^{(\tau)}(K, L)-C_{p, j}^{(\tau)}\left(M, M^{\prime}\right)\right]^{k-i} \geq\left[C_{p, i}^{(\tau)}(K, L)-C_{p, i}^{(\tau)}\left(M, M^{\prime}\right)\right]^{k-j}\left[C_{p, k}^{(\tau)}(K, L)-C_{p, k}^{(\tau)}\left(M, M^{\prime}\right)\right]^{j-i} \tag{1i}
\end{equation*}
$$

with equality if and only if K and L have a similar general L_{p}-chord.

3. Preliminaries

For $K, L \in S^{n}$, the radial Blaschke linear combination $K \check{+} L$ and the radial Minkowski linear combination are defined by Lutwak (see [17]), respectively:

$$
\begin{equation*}
\rho(K \check{+} L, u)^{n-1}=\rho(K, u)^{n-1}+\rho(L, u)^{n-1} \tag{2a}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho(K \tilde{+} L, u)=\rho(K, u)+\rho(L, u) \tag{2b}
\end{equation*}
$$

In 2007, Schuster introduced the notion of radial Blaschke-Minkowski homomorphism (see [18-22]) as follows.

Definition 1. A map $\Psi: S^{n} \rightarrow S^{n}$ is called a radial Blaschke-Minkowski homomorphism if it satisfies the following conditions:
(1) Ψ is coninuous;
(2) Ψ is radial Blaschke Minkowski additive, i.e., $\Psi(K \check{+} L)=\Psi K \tilde{+} \Psi L$ for all $K, L \in S^{n}$;
(3) Ψ intertwines rotations, i.e., $\Psi(\phi K)=\phi \Psi K$, for all $\phi \in S O(n)$ and $K \in S^{n}$.

Here, $\Psi K \tilde{+} \Psi L$ denotes the radial sum of ΨK and ΨL, and $K \check{+} L$ is the radial Blaschke sum of the star bodies K and L.

In 2011, Wang et al. (see [23]) extended the notion of radial Blaschke-Minkowski homomorphism to L_{p}-radial Minkowski homomorphism as follows.

Definition 2. A map $\Psi_{p}: S^{n} \rightarrow S^{n}$ is called an L_{p}-radial Minkowski homomorphism if it satisfies the following conditions:
(1) Ψ_{p} is coninuous;
(2) Ψ_{p} is radial Minkowski additive, i.e., $\Psi_{p}\left(K \tilde{+}_{n-p} L\right)=\Psi_{p} K \tilde{+}_{p} \Psi_{p} L$ for all $K, L \in S^{n}$;
(3) Ψ_{p} intertwines rotations, i.e., $\Psi_{p}(\phi K)=\phi \Psi_{p} K$, for all $\phi_{p} \in S O(n)$ and $K \in S^{n}$.

Here, $\Psi_{p} K \tilde{+}_{n-p} \Psi_{p} L$ denotes the L_{n-p} radial sum of $\Psi_{p} K$ and $\Psi_{p} L$, i.e., (see $[9,24]$)

$$
\begin{equation*}
\rho\left(\Psi_{p} K \tilde{+}_{n-p} \Psi_{p} L, u\right)^{n-p}=\rho\left(\Psi_{p} K, u\right)^{n-p}+\rho\left(\Psi_{p} L, u\right)^{n-p} . \tag{2c}
\end{equation*}
$$

For $0<p<n$, the L_{p}-radial Blaschke linear combination $K \check{f}_{p} L$ was defined by Wang (see [25]):

$$
\begin{equation*}
\rho\left(K \check{千}_{p} L, u\right)^{n-p}=\rho(K, u)^{n-p}+\rho(L, u)^{n-p} . \tag{2d}
\end{equation*}
$$

From Equations (2c) and (2d), we easily obtain

$$
\begin{equation*}
K \tilde{+}_{n-p} L=K \check{f}_{p} L . \tag{2e}
\end{equation*}
$$

Here, we recall a special L_{p}-radial Minkowski homomorphism. In 2007, Yu, Wu and Leng (see [26]) introduced the quasi- L_{p} intersection body $I_{p} K$ of a star body. Let K be a star body in \mathbb{R}^{n}, then the quasi- L_{p} intersection body $I_{p} K$ of K is defined by:

$$
\rho\left(I_{p} K, u\right)^{p}=\int_{\mathcal{S}^{n-1} \cap u^{\perp}} \rho(K, u)^{n-p} d u .
$$

Further, Wang (see [23]) proved that the operator $I_{p}: S^{n} \rightarrow S^{n}$ has the following properties: (1) I_{p} is continuous with respect to radial metric; (2) $I_{p}\left(K \tilde{f_{n-p}} L\right)=I_{p} K \tilde{f}{ }_{p} I_{p} L$ for all $K, L \in S^{n}$; (3) I_{p} intertwines rotations, i.e., $\Psi_{p}(\phi K)=\phi \Psi_{p} K$, for all $\phi_{p} \in S O(n)$ and $K \in S^{n}$, which means that the operator I_{p} is a special L_{p}-radial Minkowski homomorphism.

Now, we list three Lemmas useful in the proof of Theorems 5-7.
In 1997, Losonczi and Páles (see [27]) extended Bellman's inequality as follows:
Lemma 1. Let $a=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ and $b=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}(n \geq 1)$ be two sequences of positive real numbers and $p>1$ such that $a_{1}^{p}-\sum_{i=2}^{n} a_{i}^{p}>0$ and $b_{1}^{p}-\sum_{i=2}^{n} b_{i}^{p}>0$. Then

$$
\begin{equation*}
\left(a_{1}^{p}-\Sigma_{i=2}^{n} a_{i}^{p}\right)^{\frac{1}{p}}+\left(b_{1}^{p}-\Sigma_{i=2}^{n} b_{i}^{p}\right)^{\frac{1}{p}} \leq\left(\left(a_{1}+b_{1}\right)^{p}-\Sigma_{i=2}^{n}\left(a_{i}+b_{i}\right)^{p}\right)^{\frac{1}{p}} \tag{2f}
\end{equation*}
$$

If $p<0$ or $0<p<1$, then

$$
\left.\left(\left(a_{1}^{p}-\sum_{i=2}^{n} a_{i}^{p}\right)^{\frac{1}{p}}+\left(b_{1}^{p}-\Sigma_{i=2}^{n} b_{i}^{p}\right)^{\frac{1}{p}}\right)\right)^{p} \geq\left(a_{1}+b_{1}\right)^{p}-\Sigma_{i=2}^{n}\left(a_{i}+b_{i}\right)^{p}
$$

with equality if and only if $a=v b$, where v is a constant.

Lemma 2 ([28], p.26). If $x_{i}>0, y_{i}>0, i=1,2, \cdots, n$, then

$$
\begin{equation*}
\left(\prod_{i=1}^{n}\left(x_{i}+y_{i}\right)\right)^{\frac{1}{n}} \geq\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}+\left(\prod_{i=1}^{n} y_{i}\right)^{\frac{1}{n}} \tag{2g}
\end{equation*}
$$

with equality if and only if $\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}=\cdots=\frac{x_{n}}{y_{n}}$.
Lemma 3 ([5]). Suppose that $f_{i}, g_{i}(i=1,2)$ are non-negative continuous functions on \mathcal{S}^{n-1} such that

$$
\begin{aligned}
\int_{\mathcal{S}^{n-1}} f_{1}^{s}(u) d u & \geq \int_{\mathcal{S}^{n-1}} f_{2}^{s}(u) d u \\
\int_{\mathcal{S}^{n-1}} g_{1}^{t}(u) d u & \geq \int_{\mathcal{S}^{n-1}} g_{2}^{t}(u) d u
\end{aligned}
$$

for $s>1, \frac{1}{s}+\frac{1}{t}=1$, and

$$
f_{1}^{s}(u)=\lambda g_{1}^{t}(u), \forall u \in \mathcal{S}^{n-1}
$$

where λ is a constant. Then

$$
\begin{equation*}
\left(\int_{\mathcal{S}^{n-1}}\left(f_{1}^{s}-f_{2}^{s}\right) d u\right)^{\frac{1}{s}}\left(\int_{\mathcal{S}^{n-1}}\left(g_{1}^{t}-g_{2}^{t}\right) d u\right)^{\frac{1}{t}} \leq \int_{\mathcal{S}^{n-1}}\left(f_{1} g_{1}-f_{2} g_{2}\right) d u \tag{2h}
\end{equation*}
$$

with equality if and only if $f_{2}^{s}(u)=\lambda g_{2}^{t}(u)$ for any $u \in \mathcal{S}^{n-1}$.

4. Proofs of Main Results

In this section, we prove Theorems 5-7.
Proof of Theorem 5. We only prove Equation (1f). The proof of Equation (1g) is similar to Equation (1f). Let $i \leq n-p$. Since K and L have similar general L_{p}-chord, by Equation (1b),

$$
\begin{equation*}
C_{p, i}^{(\tau)}\left(K \tilde{+}_{p} L\right)^{\frac{p}{n-i}}=C_{p, i}^{(\tau)}(K)^{\frac{p}{n-i}}+C_{p, i}^{(\tau)}(L)^{\frac{p}{n-i}} \tag{3a}
\end{equation*}
$$

for M and M^{\prime},

$$
\begin{equation*}
C_{p, i}^{(\tau)}\left(M \tilde{\Psi}_{p} M^{\prime}\right)^{\frac{p}{n-i}} \leq C_{p, i}^{(\tau)}(M)^{\frac{p}{n-i}}+C_{p, i}^{(\tau)}\left(M^{\prime}\right)^{\frac{p}{n-i}} . \tag{3b}
\end{equation*}
$$

Let $a_{1}=C_{p, i}^{(\tau)}(K)^{\frac{p}{n-i}}, a_{2}=C_{p, i}^{(\tau)}(M)^{\frac{p}{n-i}}$ and $b_{1}=C_{p, i}^{(\tau)}(L)^{\frac{p}{n-i}}, b_{2}=C_{p, i}^{(\tau)}\left(M^{\prime}\right)^{\frac{p}{n-i}}$, then from Equations (3a) and (3b) and Lemma 1, we have

$$
\begin{aligned}
& \left(C_{p, i}^{(\tau)}\left(K \tilde{+}_{p} L\right)-C_{p, i}^{(\tau)}\left(M \tilde{+}_{p} M^{\prime}\right)\right)^{\frac{p}{n-i}} \\
& \geq\left(\left(C_{p, i}^{(\tau)}(K)^{\frac{p}{n-i}}+C_{p, i}^{(\tau)}(L)^{\frac{p}{n-i}}\right)^{\frac{n-i}{p}}+\left(C_{p, i}^{(\tau)}(M)^{\frac{p}{n-i}}+C_{p, i}^{(\tau)}\left(M^{\prime}\right)^{\frac{p}{n-i}}\right)^{\frac{n-i}{p}}\right)^{\frac{p}{n-i}} \\
& \geq\left(C_{p, i}^{(\tau)}(K)-C_{p, i}^{(\tau)}(M)\right)^{\frac{p}{n-i}}+\left(C_{p, i}^{(\tau)}(L)-C_{p, i}^{(\tau)}\left(M^{\prime}\right)\right)^{\frac{p}{n-i}}
\end{aligned}
$$

This gives the desired inequality of Equation (1f) and according to the equality condition of Lemma 1, we obtain that equality holds if and only if M and M^{\prime} have a similar general L_{p}-chord.

Notice that from the notion of L_{p}-radial Minkowski homomorphism and Equation (2e), we have the following direct Corollary 1.

Corollary 1. Let $K, L, M, M^{\prime} \in S_{o}^{n}$ and $\tau \in(-1,1), \quad p>0 . \Psi_{p}$ is a radial Blaschke-Minkowski homomorphism. K and L have a similar general L_{p}-chord and $M \subseteq K, M^{\prime} \subseteq L$, then for $i \leq n-p$,

$$
\left[C_{p, i}^{(\tau)}\left(\Psi_{p}\left(K \check{干}_{p} L\right)\right)-C_{p, i}^{(\tau)}\left(\Psi_{p}\left(M \check{\Psi}_{p} M^{\prime}\right)\right)\right]^{\frac{p}{n-i}} \geq\left[C_{p, i}^{(\tau)}\left(\Psi_{p} K\right)-C_{p, i}^{(\tau)}\left(\Psi_{p} M\right)\right]^{\frac{p}{n-i}}+\left[C_{p, i}^{(\tau)}\left(\Psi_{p} L\right)-C_{p, i}^{(\tau)}\left(\Psi_{p} M^{\prime}\right)\right]^{\frac{p}{n-i}}
$$

and for $n-p<i<n$ or $i>n$,

$$
\left[C_{p, i}^{(\tau)}\left(\Psi_{p}\left(K \check{+}_{p} L\right)\right)-C_{p, i}^{(\tau)}\left(\Psi_{p}\left(M \check{+}_{p} M^{\prime}\right)\right)\right]^{\frac{p}{n-i}} \leq\left[C_{p, i}^{(\tau)}\left(\Psi_{p} K\right)-C_{p, i}^{(\tau)}\left(\Psi_{p} M\right)\right]^{\frac{p}{n-i}}+\left[C_{p, i}^{(\tau)}\left(\Psi_{p} L\right)-C_{p, i}^{(\tau)}\left(\Psi_{p} M^{\prime}\right)\right]^{\frac{p}{n-i}},
$$

with equality in each inequality if and only if M and M^{\prime} have a similar general L_{p}-chord.
Further, since the L_{p} intersection map is a special L_{p}-radial Minkowski homomorphism, we have the following corollary

Corollary 2. Let $K, L, M, M^{\prime} \in S_{o}^{n}$ and $\tau \in(-1,1), p>0$. If K and L have a similar general L_{p}-chord and $M \subseteq K, M^{\prime} \subseteq L$, then for $i \leq n-p$,

$$
\begin{aligned}
& {\left[C_{p, i}^{(\tau)}\left(I_{p}\left(K \check{+}_{p} L\right)\right)-C_{p, i}^{(\tau)}\left(I_{p}\left(M \check{+}{ }_{p} M^{\prime}\right)\right)\right]^{\frac{p}{n-i}} \geq\left[C_{p, i}^{(\tau)}\left(I_{p} K\right)-C_{p, i}^{(\tau)}\left(I_{p} M\right)\right]^{\frac{p}{n-i}}+\mu\left[C_{p, i}^{(\tau)}\left(I_{p} L\right)-C_{p, i}^{(\tau)}\left(I_{p} M^{\prime}\right)\right]^{\frac{p}{n-i}}} \\
& \quad \text { and forn}-p<i<n \text { or } i>n, \\
& {\left[C_{p, i}^{(\tau)}\left(I_{p}\left(K \check{+}{ }_{p} L\right)\right)-C_{p, i}^{(\tau)}\left(I_{p}\left(M \check{+}{ }_{p} M^{\prime}\right)\right)\right]^{\frac{p}{n-i}} \leq\left[C_{p, i}^{(\tau)}\left(I_{p} K\right)-C_{p, i}^{(\tau)}\left(I_{p} M\right)\right]^{\frac{p}{n-i}}+\left[C_{p, i}^{(\tau)}\left(I_{p} L\right)-C_{p, i}^{(\tau)}\left(I_{p} M^{\prime}\right)\right]^{\frac{p}{n-i}}}
\end{aligned}
$$

with equality in each inequality if and only if M and M^{\prime} have a similar general L_{p}-chord.
Proof of Theorem 6. Since K_{1}, \cdots, K_{n} have a similar general L_{p}-chord, from (1d) we have for $1<m \leq n$,

$$
\begin{equation*}
C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n}\right)^{m}=\prod_{i=1}^{m} C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n-m}, K_{n-i+1}, K_{n-i+1}, \cdots, K_{n-i+1}\right) \tag{3c}
\end{equation*}
$$

For M_{1}, \cdots, M_{n},

$$
\begin{equation*}
C_{p}^{(\tau)}\left(M_{1}, \cdots, M_{n}\right)^{m} \leq \prod_{i=1}^{m} C_{p}^{(\tau)}\left(M_{1}, \cdots, M_{n-m}, M_{n-i+1}, M_{n-i+1}, \cdots, M_{n-i+1}\right) \tag{3d}
\end{equation*}
$$

The condition $M_{i} \subseteq K_{i}, i=1,2, \cdots, n$ means that $C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n}\right)^{m} \geq C_{p}^{(\tau)}\left(M_{1}, \cdots, M_{n}\right)^{m}$. From Equations (3c) and (3d) and Lemma 2, we obtain

$$
\begin{aligned}
& C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n}\right)-C_{p}^{(\tau)}\left(M_{1}, \cdots, M_{n}\right) \\
& \geq\left(\prod_{i=1}^{m} C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n-m}, K_{n-i+1}, K_{n-i+1}, \cdots, K_{n-i+1}\right)\right)^{\frac{1}{m}} \\
& \quad-\left(\prod_{i=1}^{m} C_{p}^{(\tau)}\left(M_{1}, \cdots, M_{n-m}, M_{n-i+1}, M_{n-i+1}, \cdots, M_{n-i+1}\right)\right)^{\frac{1}{m}}
\end{aligned}
$$

Let $x_{i}+y_{i}=C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n-m}, K_{n-i+1}, K_{n-i+1}, \cdots, K_{n-i+1}\right) \quad$ and $y_{i}=C_{p}^{(\tau)}\left(M_{1}, \cdots, M_{n-m}, M_{n-i+1}, M_{n-i+1}, \cdots, M_{n-i+1}\right)$ in Lemma 2. Then by Equation (2g)

$$
\begin{aligned}
& C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n}\right)-C_{p}^{(\tau)}\left(M_{1}, \cdots, M_{n}\right) \\
& \geq\left(\prod_{i=1}^{m}\left[C_{p}^{(\tau)}\left(K_{1}, \cdots, K_{n-m}, K_{n-i+1}, \cdots, K_{n-i+1}\right)-C_{p}^{(\tau)}\left(M_{1}, \cdots, M_{n-m}, M_{n-i+1}, \cdots, M_{n-i+1}\right)\right]\right)^{\frac{1}{m}}
\end{aligned}
$$

which implies that Equation (1h) is proved. According to the equality condition of Lemma 2, we know that equality holds in Equation (1h) if and only if $M_{1}, \cdots M_{n}$ all have a similar general L_{p}-chord.
Proof of Theorem 7. For $i<j<k$, let $s=\frac{k-i}{k-j}, t=\frac{k-i}{j-i}$. Then, $s>1$ and $\frac{1}{s}+\frac{1}{t}=1$. Let

$$
f_{1}^{S}=c_{p}^{(\tau)}(K, u)^{n-i} c_{p}^{(\tau)}(L, u)^{i}, f_{2}^{S}=c_{p}^{(\tau)}(M, u)^{n-i} c_{p}^{(\tau)}\left(M^{\prime}, u\right)^{i}
$$

and

$$
g_{1}^{t}=c_{p}^{(\tau)}(K, u)^{n-k} c_{p}^{(\tau)}(L, u)^{k}, g_{2}^{t}=c_{p}^{(\tau)}(M, u)^{n-k} c_{p}^{(\tau)}\left(M^{\prime}, u\right)^{k}
$$

After a simple calculation, we obtain

$$
\begin{aligned}
\int_{\mathcal{S}^{n-1}}\left(f_{1} g_{1}-f_{2} g_{2}\right) d u & =\int_{\mathcal{S}^{n-1}}\left(c_{p}^{(\tau)}(K, u)^{n-j} c_{p}^{(\tau)}(L, u)^{j}-c_{p}^{(\tau)}(M, u)^{n-j} c_{p}^{(\tau)}\left(M^{\prime}, u\right)^{j}\right) d u \\
& =C_{p, j}^{(\tau)}(K, L)-C_{p, j}^{(\tau)}\left(M, M^{\prime}\right)
\end{aligned}
$$

The left-hand side of Equation (2h) leads to $\left[C_{p, i}^{(\tau)}(K, L)-C_{p, i}^{(\tau)}\left(M, M^{\prime}\right)\right]^{\frac{1}{s}}\left[C_{p, k}^{(\tau)}(K, L)-\right.$ $\left.C_{p, k}^{(\tau)}\left(M, M^{\prime}\right)\right]^{\frac{1}{t}}$.

By Lemma 3, Equation (1i) immediately holds.
The equality condition of Equation (2h) means that $\frac{f_{1}^{s}}{g_{1}^{t}}=\left(\frac{c_{p}^{(\tau)}(K, u)}{c_{p}^{(\tau)}(L, u)}\right)^{k-i}$ is a constant, that is, K and L have a similar general L_{p}-chord. This completes the proof.

5. Conclusions

The asymmetric operators belong to a new and rapidly evolving asymmetric $L_{p^{-}}$ Brunn-Minkowski theory that has its origins in the work of Ludwig, Haberl and Schuster (see [9,11,12,16,18-20]). The general L_{p}-mixed chord integral difference of star bodies was motivated by the notion of mixed width-integrals of convex bodies. We hope that besides the inequalities mentioned in this article, we can deduce some other inequalities in the future.

Author Contributions: All authors contributed equally and significantly in writing this article. All authors have read and agreed to the published version of the manuscript.
Funding: Supported by the Open Research Fund of Computational physics Key Laboratory of Sichuan province, Yibin University: ybxyjswl-zd-2020-004.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gardner, R.J. Geometric Tomography, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006. Gardner, R.J. The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 2002, 39, 355-405. [CrossRef] Leng, G.S. The Brunn-Minkowski inequality for volume difference. Adv. Appl. Math. 2004, 32, 615-624. [CrossRef]
Feng, Y.B.; Wang, W.D.; Yuan, J. Inequalities of quermassintegrals about mixed Blaschke Minkowski homomorphisms. Tamkang J. Math. 2015, 46, 217-227. [CrossRef]
Lv, S.J. Dual Brunn-Minkowski inequality for volume differences. Geom. Dedicata. 2010, 145, 169-180. [CrossRef]
Zhao, C.J. On Blaschke-Minkowski Homomorphisms and Radial Blaschke-Minkowski Homomorphisms. J. Geom. Anal. 2016, 26, 1523-1538. [CrossRef]
2. Lutwak, E. Mixed width-integrals of convex bodies. Israel J. Math. 1977, 28 , 249-253. [CrossRef]
3. Lu, F.H. Mixed chord-integrals of star bodies. J. Korean Math. Soc. 2010, 47, 277-288.
4. Haberl, C. L_{p} intersection bodies. Adv. Math. 2008, 4, 2599-2624. [CrossRef]
5. Haberl, C. Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc. 2012, 4, 1565-1597. [CrossRef]
6. Haberl, C.; Ludwig, M. A characterization of L_{p} intersection bodies. Int. Math. Res. Not. 2006, 2006, 10548. [CrossRef]
7. Haberl, C.; Schuster, F.E. Asymmetric affine L_{p} sobolev inequalities. J. Funct. Anal. 2009, 257, 641-658. [CrossRef]
8. Haberl, C.; Schuster, F.E.; Xiao, J. An asymmetric affine Pólya-Szegö principle. Math. Ann. 2012, 352, 517-542. [CrossRef]
9. Feng, Y.B.; Wang, W.D. General mixed chord-integrals of star bodies. Rocky Mt. J. Math. 2016, 46, 1499-518. [CrossRef]
10. Li, Z.F.; Wang, W.D. General L_{p}-mixed chord integrals of star bodies. J. Inequalities Appl. 2016, 58, 1-12.
11. Haberl, C.; Schuster, F.E. General L_{p} affine isoperimetric inequalities. J. Differ. Geom. 2009, 83, 1-26. [CrossRef]
12. Lutwak, E. Intersection bodies and dual mixed volumes. Adv. Math. 1988, 71, 232-261. [CrossRef]
13. Schuster, F.E. Convolutions and multiplier transformations of convex bodies. Trans. Am. Math. Soc. 2007, 359, 5567-5591. [CrossRef]
14. Schuster, F.E. Volume inequalities and additive maps of convex bodies. Mathematika 2007, 52, 211-234. [CrossRef]
15. Schuster, F.E. Valuations and Busemann-Petty type problems. Adv. Math. 2008, 219, 344-368. [CrossRef]
16. Schuster, F.E. Crofton measures and Minkowski valuations. Duke Math. J. 2010, 154, 1-30. [CrossRef]
17. Schuster, F.E.; Wannerer, T. GL(n) contravariant Minkowski valuations. Trans. Am. Math. Soc. 2012, 364, 815-826. [CrossRef]
18. Wang, W.; Liu, L.J.; He, B.W. L_{p} radial Minkowski homomorphisms. Taiwan. J. Math. 2011, 15, 1183-1199. [CrossRef]
19. Grinberg, E.; Zhang, G.Y. Convolutions transforms and convex bodies. Proc. Lond. Math. Soc. 1999, 78, 77-115. [CrossRef]
20. Wang, J.Y.; Wang, W.D. General L_{p} dual Blaschke bodies and the applications. J. Inequalities Appl. 2015, 2015, 233. [CrossRef]
21. Yu, W.Y.; Wu, D.H.; Leng, G.S. Quasi- L_{p} intersection bodies. Acta Math. Sin. 2007, 23, 1973-1948. [CrossRef]
22. Losonczi, L.; Páles, Z.S. Inequalities for indefinite forms. J. Math. Anal. 1997, 205, 148-156. [CrossRef]
23. Beckenbach, E.F.; Bellman, R. Inequalities, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1965.
