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1. Introduction

The setting for this paper is n-dimensional Euclidean spaces Rn (n ≥ 1). Let K and L
be two convex bodies (compact, convex subsets with nonempty interiors) in Rn. V denotes
the volume. If K is a compact star-shaped (about the origin) set in Rn, then its radial
function, ρK = ρ(K, ·) : Rn\{0} → [0, ∞), is defined by (see [1]):

ρ(K, u) = max{λ ≥ 0, λu ∈ K}, u ∈ Sn−1.

If ρK is positive and continuous, K is called a star body (about the origin), and Sn

denotes the set of star bodies in Rn. Sn
0 is the subset of Sn containing the origin in their

interiors. The unit sphere in Rn is denoted by Sn−1, and B denotes the standard unit ball
in Rn.

The classical Brunn–Minkowski inequality is (see [2])

V(K + L)
1
n ≥ V(K)

1
n + V(L)

1
n ,

where + denotes vector or the Minkowski sum of two sets, i.e., A+ B = {a+ b : a ∈ A, b ∈ B}.
In 2004, Leng (see [3]) presented a new generalization of the Brunn–Minkowski

inequality for the volume difference of convex bodies.

Theorem 1. Suppose that K, L and D are compact domains, and D ⊂ K, D′ ⊂ L, D′ is a
homothetic copy of D. Then

[V(K + L)−V(D + D′)]
1
n ≥ [V(K)−V(D)]

1
n + [V(L)−V(D′)]

1
n .

The equality holds if and only if K and L are homothetic and (V(K), V(D)) = µ(V(L), V(D′)),
where µ is a constant.

Leng’s result is a major extension of the classical Brunn–Minkowski inequality and
attracts more and more attention (see [4–6]).

In 1977, Lutwak introduced the notion of a mixed width-integral of convex bodies
(see [7]), and the dual notion, mixed chord-integrals of star bodies was defined by Lu
(see [8]). Later, as a part of the asymmetric Lp Brunn–Minkowski theory, which has its
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origins in the work of Ludwig, Haberl and Schuster (see [9–13]), Feng and Wang general-
ized the mixed chord-integrals to general mixed chord-integrals of star bodies (see [14]).
For K1, · · · , Kn ∈ Sn

0 and τ ∈ (−1, 1), the general mixed chord-integral C(τ)(K1, · · · , Kn) is
defined by

C(τ)(K1, · · · , Kn) =
1
n

∫
Sn−1

c(τ)(K1, u) · · · c(τ)(Kn, u)du,

here, c(τ)(K, ·) = f1(τ)ρ(K, ·) + f2(τ)ρ(−K, ·), and the functions f1(τ) and f2(τ) are de-
fined as follows

f1(τ) =
(1 + τ)2

2(1 + τ2)
, f2(τ) =

(1− τ)2

2(1 + τ2)
.

In 2016, Li and Wang extended the general mixed chord-integral to the general Lp-
mixed chord integral of star bodies (see [15]): For K1, · · · , Kn ∈ Sn

0 , p > 0 and τ ∈ (−1, 1),

the general Lp-mixed chord integral C(τ)
p (K1, · · · , Kn) of K1, · · · , Kn is defined by

C(τ)
p (K1, · · · , Kn) =

1
n

∫
Sn−1

c(τ)p (K1, u) · · · c(τ)p (Kn, u)du. (1a)

Here, c(τ)p (K, ·) is defined by

c(τ)p (K, u) =
(

f1(τ)ρ
p(K, u) + f2(τ)ρ

p(−K, u)
) 1

p ,

for any u ∈ Sn−1, and f1(τ) and f2(τ) are chosen as (see [16])

f1(τ) =
(1 + τ)p

(1 + τ)p + (1− τ)p , f2(τ) =
(1− τ)p

(1 + τ)p + (1− τ)p .

Obviously, f1(τ) and f2(τ) satisfy

f1(τ) + f2(τ) = 1,

f1(−τ) = f2(τ), f2(−τ) = f1(τ).

C(τ)
p,i (K, L) denotes that K appears n− i times, and L appears i times, which is

C(τ)
p,i (K, L) =

1
n

∫
Sn−1

c(τ)p (K, u)n−ic(τ)p (L, u)idu.

If constants λ1, · · · , λn > 0 exist such that λ1c(τ)p (K1, u) = · · · = λnc(τ)p (Kn, u) for
all u ∈ Sn−1, star bodies K1, · · · , Kn are said to have a similar general Lp-chord. For this
general Lp-chord integral, Li and Wang gave the following inequalities (see [15]).

Theorem 2. If K, L ∈ Sn
o and τ ∈ (−1, 1), p > 0, then for i ≤ n− p,

C(τ)
p,i (K+̃pL)

p
n−i ≤ C(τ)

p,i (K)
p

n−i + C(τ)
p,i (L)

p
n−i , (1b)

for n− p < i < n or i > n,

C(τ)
p,i (K+̃pL)

p
n−i ≥ C(τ)

p,i (K)
p

n−i + C(τ)
p,i (L)

p
n−i , (1c)

with equality in each inequality if and only if K and L have a similar general Lp-chord. Here and in
the following Theorems, K+̃pL denotes the Lp-radial Minkowski combination of K and L.
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Theorem 3. If K1, · · · , Kn ∈ Sn
o and τ ∈ (−1, 1), p > 0, then for 1 < m ≤ n,

C(τ)
p (K1, · · · , Kn)

m ≤
m

∏
i=1

C(τ)
p (K1, · · · , Kn−m, Kn−i+1, Kn−i+1, · · · , Kn−i+1), (1d)

with equality if and only if Kn−m+1, · · · , Kn all have a similar general Lp-chord.

Theorem 4. If K, L ∈ Sn
o and τ ∈ (−1, 1), p > 0, then for i < j < k,

C(τ)
p,j (K, L)k−i ≤ C(τ)

p,i (K, L)k−jC(τ)
p,k (K, L)j−i, (1e)

with equality if and only if K and L have a similar general Lp-chord.

2. Main Results

Inspired by Leng’s idea, this article deals with the general Lp-chord integral of star
bodies and gives some inequalities for the general Lp-chord integral difference.

Theorem 5. Let K, L, M, M′ ∈ Sn
o and τ ∈ (−1, 1), p > 0. If K and L have similar general

Lp-chord and M ⊆ K, M′ ⊆ L, then for i ≤ n− p,

[C(τ)
p,i (K+̃pL)− C(τ)

p,i (M+̃p M′)]
p

n−i ≥ [C(τ)
p,i (K)− C(τ)

p,i (M)]
p

n−i + [C(τ)
p,i (L)− C(τ)

p,i (M′)]
p

n−i , (1f)

and for n− p < i < n or i > n,

[C(τ)
p,i (K+̃pL)− C(τ)

p,i (M+̃p M′)]
p

n−i ≤ [C(τ)
p,i (K)− C(τ)

p,i (M)]
p

n−i + [C(τ)
p,i (L)− C(τ)

p,i (M′)]
p

n−i , (1g)

with equality in each inequality if and only if M and M′ have a similar general Lp-chord.

Theorem 6. Let K1, · · · , Kn and M1, · · · , Mn ∈ Sn
o , and τ ∈ (−1, 1), p > 0. If Mi ⊆ Ki,

i = 1, 2, · · · , n, K1, · · ·Kn have similar general Lp-chord, then for 1 < m ≤ n,

[C(τ)
p (K1, · · · , Kn)− C(τ)

p (M1, · · · , Mn)]
m ≥

m

∏
i=1

[C(τ)
p (K1, · · · , Kn−m, Kn−i+1, Kn−i+1, · · · , Kn−i+1)− C(τ)

p (M1, · · · , Mn−m, Kn−i+1, Mn−i+1, · · · , Mn−i+1)], (1h)

with equality if and only if M1, · · · , Mn all have a similar general Lp-chord.

Theorem 7. Let K, L, M, M′ ∈ Sn
o and τ ∈ (−1, 1), p > 0. If K and L have similar general

Lp-chord, then for i < j < k,

[C(τ)
p,j (K, L)− C(τ)

p,j (M, M′)]k−i ≥ [C(τ)
p,i (K, L)− C(τ)

p,i (M, M′)]k−j[C(τ)
p,k (K, L)− C(τ)

p,k (M, M′)]j−i, (1i)

with equality if and only if K and L have a similar general Lp-chord.

3. Preliminaries

For K, L ∈ Sn, the radial Blaschke linear combination K+̌L and the radial Minkowski
linear combination are defined by Lutwak (see [17]), respectively:

ρ(K+̌L, u)n−1 = ρ(K, u)n−1 + ρ(L, u)n−1, (2a)

and
ρ(K+̃L, u) = ρ(K, u) + ρ(L, u). (2b)

In 2007, Schuster introduced the notion of radial Blaschke–Minkowski homomorphism
(see [18–22]) as follows.
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Definition 1. A map Ψ : Sn → Sn is called a radial Blaschke–Minkowski homomorphism if it
satisfies the following conditions:

(1) Ψ is coninuous;
(2) Ψ is radial Blaschke Minkowski additive, i.e., Ψ(K+̌L) = ΨK+̃ΨL for all K, L ∈ Sn;
(3) Ψ intertwines rotations, i.e., Ψ(φK) = φΨK, for all φ ∈ SO(n) and K ∈ Sn.

Here, ΨK+̃ΨL denotes the radial sum of ΨK and ΨL, and K+̌L is the radial Blaschke
sum of the star bodies K and L.

In 2011, Wang et al. (see [23]) extended the notion of radial Blaschke–Minkowski
homomorphism to Lp-radial Minkowski homomorphism as follows.

Definition 2. A map Ψp : Sn → Sn is called an Lp-radial Minkowski homomorphism if it satisfies
the following conditions:

(1) Ψp is coninuous;
(2) Ψp is radial Minkowski additive, i.e., Ψp(K+̃n−pL) = ΨpK+̃pΨpL for all K, L ∈ Sn;
(3) Ψp intertwines rotations, i.e., Ψp(φK) = φΨpK, for all φp ∈ SO(n) and K ∈ Sn.

Here, ΨpK+̃n−pΨpL denotes the Ln−p radial sum of ΨpK and ΨpL, i.e., (see [9,24])

ρ(ΨpK+̃n−pΨpL, u)n−p = ρ(ΨpK, u)n−p + ρ(ΨpL, u)n−p. (2c)

For 0 < p < n, the Lp-radial Blaschke linear combination K+̌pL was defined by Wang
(see [25]):

ρ(K+̌pL, u)n−p = ρ(K, u)n−p + ρ(L, u)n−p. (2d)

From Equations (2c) and (2d), we easily obtain

K+̃n−pL = K+̌pL. (2e)

Here, we recall a special Lp-radial Minkowski homomorphism. In 2007, Yu, Wu and
Leng (see [26]) introduced the quasi-Lp intersection body IpK of a star body. Let K be a star
body in Rn, then the quasi-Lp intersection body IpK of K is defined by:

ρ(IpK, u)p =
∫
Sn−1 ⋂ u⊥

ρ(K, u)n−pdu.

Further, Wang (see [23]) proved that the operator Ip : Sn → Sn has the following
properties: (1) Ip is continuous with respect to radial metric; (2) Ip(K+̃n−pL) = IpK+̃p IpL
for all K, L ∈ Sn; (3) Ip intertwines rotations, i.e., Ψp(φK) = φΨpK, for all φp ∈ SO(n) and
K ∈ Sn, which means that the operator Ip is a special Lp-radial Minkowski homomorphism.

Now, we list three Lemmas useful in the proof of Theorems 5–7.
In 1997, Losonczi and Páles (see [27]) extended Bellman’s inequality as follows:

Lemma 1. Let a = {a1, a2, · · · , an} and b = {b1, b2, · · · , bn} (n ≥ 1) be two sequences of positive
real numbers and p > 1 such that ap

1 − Σn
i=2ap

i > 0 and bp
1 − Σn

i=2bp
i > 0. Then

(
ap

1 − Σn
i=2ap

i

) 1
p
+
(

bp
1 − Σn

i=2bp
i

) 1
p ≤

(
(a1 + b1)

p − Σn
i=2(ai + bi)

p
) 1

p
, (2f)

If p < 0 or 0 < p < 1, then

(
(ap

1 − Σn
i=2ap

i )
1
p + (bp

1 − Σn
i=2bp

i )
1
p )
)p ≥ (a1 + b1)

p − Σn
i=2(ai + bi)

p,

with equality if and only if a = vb, where v is a constant.
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Lemma 2 ([28], p.26). If xi > 0, yi > 0, i = 1, 2, · · · , n, then

( n

∏
i=1

(xi + yi)
) 1

n ≥ (
n

∏
i=1

xi)
1
n + (

n

∏
i=1

yi)
1
n , (2g)

with equality if and only if x1
y1

= x2
y2

= · · · = xn
yn

.

Lemma 3 ([5]). Suppose that fi, gi (i = 1, 2) are non-negative continuous functions on Sn−1

such that ∫
Sn−1

f s
1(u)du ≥

∫
Sn−1

f s
2(u)du,∫

Sn−1
gt

1(u)du ≥
∫
Sn−1

gt
2(u)du,

for s > 1, 1
s +

1
t = 1, and

f s
1(u) = λgt

1(u), ∀u ∈ Sn−1,

where λ is a constant. Then( ∫
Sn−1

(
f s
1 − f s

2
)
du
) 1

s
( ∫
Sn−1

(
gt

1 − gt
2
)
du
) 1

t ≤
∫
Sn−1

(
f1g1 − f2g2

)
du, (2h)

with equality if and only if f s
2(u) = λgt

2(u) for any u ∈ Sn−1.

4. Proofs of Main Results

In this section, we prove Theorems 5–7.

Proof of Theorem 5. We only prove Equation (1f). The proof of Equation (1g) is similar to
Equation (1f). Let i ≤ n− p. Since K and L have similar general Lp-chord, by Equation (1b),

C(τ)
p,i (K+̃pL)

p
n−i = C(τ)

p,i (K)
p

n−i + C(τ)
p,i (L)

p
n−i , (3a)

for M and M′,
C(τ)

p,i (M+̃p M′)
p

n−i ≤ C(τ)
p,i (M)

p
n−i + C(τ)

p,i (M′)
p

n−i . (3b)

Let a1 = C(τ)
p,i (K)

p
n−i , a2 = C(τ)

p,i (M)
p

n−i and b1 = C(τ)
p,i (L)

p
n−i , b2 = C(τ)

p,i (M′)
p

n−i ,
then from Equations (3a) and (3b) and Lemma 1, we have

(
C(τ)

p,i (K+̃pL)− C(τ)
p,i (M+̃p M′)

) p
n−i

≥
((

C(τ)
p,i (K)

p
n−i + C(τ)

p,i (L)
p

n−i
) n−i

p +
(
C(τ)

p,i (M)
p

n−i + C(τ)
p,i (M′)

p
n−i
) n−i

p
) p

n−i

≥
(

C(τ)
p,i (K)− C(τ)

p,i (M)
) p

n−i
+
(

C(τ)
p,i (L)− C(τ)

p,i (M′)
) p

n−i

This gives the desired inequality of Equation (1f) and according to the equality condition
of Lemma 1, we obtain that equality holds if and only if M and M′ have a similar general
Lp-chord.

Notice that from the notion of Lp-radial Minkowski homomorphism and Equation (2e),
we have the following direct Corollary 1.

Corollary 1. Let K, L, M, M′ ∈ Sn
o and τ ∈ (−1, 1), p > 0. Ψp is a radial Blaschke–Minkowski

homomorphism. K and L have a similar general Lp-chord and M ⊆ K, M′ ⊆ L, then for i ≤ n− p,

[C(τ)
p,i (Ψp(K+̌pL))− C(τ)

p,i (Ψp(M+̌p M′))]
p

n−i ≥ [C(τ)
p,i (ΨpK)− C(τ)

p,i (Ψp M)]
p

n−i + [C(τ)
p,i (ΨpL)− C(τ)

p,i (Ψp M′)]
p

n−i ,
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and for n− p < i < n or i > n,

[C(τ)
p,i (Ψp(K+̌pL))− C(τ)

p,i (Ψp(M+̌p M′))]
p

n−i ≤ [C(τ)
p,i (ΨpK)− C(τ)

p,i (Ψp M)]
p

n−i + [C(τ)
p,i (ΨpL)− C(τ)

p,i (Ψp M′)]
p

n−i ,

with equality in each inequality if and only if M and M′ have a similar general Lp-chord.

Further, since the Lp intersection map is a special Lp-radial Minkowski homomor-
phism, we have the following corollary

Corollary 2. Let K, L, M, M′ ∈ Sn
o and τ ∈ (−1, 1), p > 0. If K and L have a similar general

Lp-chord and M ⊆ K, M′ ⊆ L, then for i ≤ n− p,

[C(τ)
p,i (Ip(K+̌pL))− C(τ)

p,i (Ip(M+̌p M′))]
p

n−i ≥ [C(τ)
p,i (IpK)− C(τ)

p,i (Ip M)]
p

n−i + µ[C(τ)
p,i (IpL)− C(τ)

p,i (Ip M′)]
p

n−i ,

and for n− p < i < n or i > n,

[C(τ)
p,i (Ip(K+̌pL))− C(τ)

p,i (Ip(M+̌p M′))]
p

n−i ≤ [C(τ)
p,i (IpK)− C(τ)

p,i (Ip M)]
p

n−i + [C(τ)
p,i (IpL)− C(τ)

p,i (Ip M′)]
p

n−i ,

with equality in each inequality if and only if M and M′ have a similar general Lp-chord.

Proof of Theorem 6. Since K1, · · · , Kn have a similar general Lp-chord, from (1d) we have
for 1 < m ≤ n,

C(τ)
p (K1, · · · , Kn)

m =
m

∏
i=1

C(τ)
p (K1, · · · , Kn−m, Kn−i+1, Kn−i+1, · · · , Kn−i+1). (3c)

For M1, · · · , Mn,

C(τ)
p (M1, · · · , Mn)

m ≤
m

∏
i=1

C(τ)
p (M1, · · · , Mn−m, Mn−i+1, Mn−i+1, · · · , Mn−i+1). (3d)

The condition Mi ⊆ Ki, i = 1, 2, · · · , n means that C(τ)
p (K1, · · · , Kn)m ≥ C(τ)

p (M1, · · · , Mn)m.
From Equations (3c) and (3d) and Lemma 2, we obtain

C(τ)
p (K1, · · · , Kn)− C(τ)

p (M1, · · · , Mn)

≥
( m

∏
i=1

C(τ)
p (K1, · · · , Kn−m, Kn−i+1, Kn−i+1, · · · , Kn−i+1)

) 1
m

−
( m

∏
i=1

C(τ)
p (M1, · · · , Mn−m, Mn−i+1, Mn−i+1, · · · , Mn−i+1)

) 1
m

.

Let xi + yi = C(τ)
p (K1, · · · , Kn−m, Kn−i+1, Kn−i+1, · · · , Kn−i+1) and

yi = C(τ)
p (M1, · · · , Mn−m, Mn−i+1, Mn−i+1, · · · , Mn−i+1) in Lemma 2. Then by Equa-

tion (2g)

C(τ)
p (K1, · · · , Kn)− C(τ)

p (M1, · · · , Mn)

≥
( m

∏
i=1

[
C(τ)

p (K1, · · · , Kn−m, Kn−i+1, · · · , Kn−i+1)− C(τ)
p (M1, · · · , Mn−m, Mn−i+1, · · · , Mn−i+1)

]) 1
m

,

which implies that Equation (1h) is proved. According to the equality condition of
Lemma 2, we know that equality holds in Equation (1h) if and only if M1, · · ·Mn all have a
similar general Lp-chord.

Proof of Theorem 7. For i < j < k, let s = k−i
k−j , t = k−i

j−i . Then, s > 1 and 1
s +

1
t = 1. Let

f s
1 = c(τ)p (K, u)n−ic(τ)p (L, u)i, f s

2 = c(τ)p (M, u)n−ic(τ)p (M′, u)i
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and
gt

1 = c(τ)p (K, u)n−kc(τ)p (L, u)k, gt
2 = c(τ)p (M, u)n−kc(τ)p (M′, u)k.

After a simple calculation, we obtain∫
Sn−1

(
f1g1 − f2g2

)
du =

∫
Sn−1

(
c(τ)p (K, u)n−jc(τ)p (L, u)j − c(τ)p (M, u)n−jc(τ)p (M′, u)j)du

= C(τ)
p,j (K, L)− C(τ)

p,j (M, M′).

The left-hand side of Equation (2h) leads to [C(τ)
p,i (K, L) − C(τ)

p,i (M, M′)]
1
s [C(τ)

p,k (K, L) −

C(τ)
p,k (M, M′)]

1
t .

By Lemma 3, Equation (1i) immediately holds.

The equality condition of Equation (2h) means that f s
1

gt
1
=
( c(τ)p (K,u)

c(τ)p (L,u)

)k−i is a constant,

that is, K and L have a similar general Lp-chord. This completes the proof.

5. Conclusions

The asymmetric operators belong to a new and rapidly evolving asymmetric Lp-
Brunn–Minkowski theory that has its origins in the work of Ludwig, Haberl and Schuster
(see [9,11,12,16,18–20]). The general Lp-mixed chord integral difference of star bodies
was motivated by the notion of mixed width-integrals of convex bodies. We hope that
besides the inequalities mentioned in this article, we can deduce some other inequalities in
the future.
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