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Abstract: The main concern in city logistics is the need to optimize the movement of goods in
urban contexts, and to minimize the multiple costs inherent in logistics operations. Inspired by an
application in a medium-sized city in Latin America, this paper develops a bi-objective mixed linear
integer programming (MILP) model to locate different types of urban logistics spaces (ULS) for the
configuration of a two-echelon urban distribution system. The objective functions seek to minimize
the costs associated with distance traveled and relocation, in addition to the costs of violation of time
windows. This model considers heterogeneous transport, speed assignment, and time windows. For
experimental evaluation, two operational scenarios are considered, and Pareto frontiers are obtained
to identify the efficient non-dominated solutions to select the most feasible ones from such a set. A
case study of a distribution company of goods for supermarkets in the city of Barranquilla, Colombia,
is also used to validate the proposed model. These solutions allow decision-makers to define the
configuration of ULS networks for urban product delivery.

Keywords: Urban Logistics Spaces (ULS); two-echelon distribution systems; location; mixed-integer
linear programming; multi-objective; case study

1. Introduction

The location of logistics centers in urban areas and the scarcity of alternative transport
systems are some of the factors contributing to the inefficient flow of cargo transport in
cities. Therefore, the main concern in the general analysis of urban logistics systems is
the need to optimize the movement of goods in cities [1]. These flows include a variety
of organizations involving both movements of goods and people, mainly when dealing
with B2C deliveries [2] or shopping mobility including both personal mobility and freight
transport [3]. This systemic vision of urban logistics is needed for all stakeholders, not
only of freight transport and supply chains [4,5] but also of urban transport [6], which
include public stakeholders, organizers, orchestrators, and control/regulation actors, but
also for the users of the public space, i.e., shippers, receivers (mainly companies but also
individuals or associations), transport companies, and also citizens being impacted by
urban mobility. Moreover, urban logistics deals with a plethora of flows going beyond
the last mile of retailers, and including B2B flows, B2C flows, personal mobility flows
transporting good, and city management flows, among others [7]. In that context, an
efficient use of the resources required for general logistics operations (e.g., number of
vehicles, operation times, labor), and the minimization of costs associated to the operation
of such urban systems seem of paramount importance as they represent between 15% and
20% of the total operational cost [8]. In the literature, authors have traditionally considered
that logistics is a function of costs [9–12].
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In recent years sustainability impacts have been present in the debates of decision-
makers on urban logistics and distribution of urban goods [4,7,13–16]. Sustainability can
be seen in the respect of the three spheres (economic, environmental, and social and their
interactions, viability, bearableness and equity) but also while maintaining, dynamically, the
four As (Awareness, Act and Shift, Anticipation, Avoidance), and this in a time continuous
logic [7]. The main definitions of city/urban logistics deal with the reduction of nuisances
of urban freight transport (i.e., congestion, global warming, pollution, and noise) while
maintaining or developing urban economic activities and ensuring a good quality of life in
cities, which supposes a certain respect of sustainability principles. However, sustainable
urban logistics explicitly considering not only the three spheres but also the 4 As and
the dynamic and evolving nature of urban logistics is gaining importance since the past
decade. Although the economic continuity of an urban logistics solutions is a necessary
condition of its success [15,17–19], other criteria need also to be considered in line with the
particularities of each urban context to make efficient decisions [16,20]. To make the supply
chains stronger, the planning and organization of the logistics spaces must be rethought. In
this sense, to improve the flows, a perfect harmony is required between different aspects in
relation to the logistic spaces (e.g., location, size, and zoning) [21]. In that context, the ideal
location and integration of Urban Logistics Spaces (ULS) are vital for the design of efficient
supply chains, which would contribute to the improvement of the transport of goods. ULS
can be seen as interfaces between the different stakeholders that allow reorganizing urban
goods flows for a better optimization toward meeting sustainability goals [22]. Those ULS
can be of different type and nature, and allow different operations [23]. For that reason,
locating such facilities needs to consider ULS as a network in a system.

However, most literature works are related to optimizing the location of one type
of platforms or facilities in a multi-tier network which does not always consider the
specificities of urban logistics, mainly the presence of different stakeholders with their
decisions and needs, as well as the double systemic nature of urban logistics (a goods
transport system inside a more general one: that of urban mobility or even urban dynamics).

The aim of this paper is to propose a methodological approach to support decision-
making for ULS location. More precisely, a mixed integer problem able to be solved by
linear programming is proposed. The main contribution of the modelling approach is that
it combines a multi-objective, multi-level facility location problem with the inclusion of
three different types of facilities and that of different stakeholders, who have different
objectives. Moreover, and regarding the current research in the field of location models,
this paper extends current works by considering heterogeneous fleet of vehicles, relocation
costs, and time windows. Furthermore, this paper considers the speed of transport in each
arc in the network by calculating speeds for urban areas to avoid the violation of time
windows within logistics operations for multiple goods in each node.

The rest of this paper is organized as follows. Section 2 presents a review of literature
about urban logistic spaces and facility location problems. Section 3 presents the materials
and methods employed in this research, including the description of the problem and the
proposed mathematical model. Section 4 presents the results employing random data and
the application on case study. Section 5 presents the conclusions and future research lines.

2. Related Literature

Urban logistics spaces (ULS) are defined as facilities intended to optimize the deliver-
ies organization in the city, on the plans, on both functional and environmental viewpoints,
by defining transshipment or bulk-break points [24]. They can be seen as interfaces between
the inter-urban and urban transport flows, the private and the public sectors, and between
shippers, transporters, and receivers [22]. More precisely, ULS allow a reconfiguration of
urban freight transport flows for the benefit of all or some of the stakeholders affected by
the economic exchange. Therefore, ULS have a particular interest for both researchers and
practitioners, as shown by a wide contribution in both scientific literature and professional
media. Main works on ULS deal with categorization and characterization (For a recent
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review on the subject, see [25]), design and development [23] or impact evaluation [16]. Cat-
egorization is mainly developed for description and understanding purposes, evaluation
for estimating the impacts of such facilities and design and development to support deci-
sions concerning the conception of deployment of ULS. In that last issue, ULS location has
led a particular attention in literature [26–28], relying on the well-known Facility Location
Problem (FLP, [29]), and its different variants [30,31]. This problem consists in determining
the ideal geographical location to position the facilities [32]. When designing the most
suitable transport networks for urban freight distribution, it is important to define both
the platform location and the elements of the transport system such as the vehicles and
the routing/organizational issues [23]. It is, for any company, a strategic decision of great
importance [29] and has direct implications for the achievement of the objectives, in city
logistics contexts [33,34], because an inadequate location hinders the good performance of
distribution operations [35]. This implies higher logistics costs and possible dissatisfaction
of individuals and companies, leading to inefficiencies of the logistics system and, therefore,
of the logistics performance in cities.

For the location of any type of ULS, several variables, criteria, and objectives must be
considered simultaneously [36]. In particular, the location of logistics centers is a discrete
problem that relates a set of alternatives that must be evaluated against a set of weighted
criteria that are independent of each other [37]. The best alternative for location is the one
that obtains more value considering the diverse criteria, or objectives, according to the
preferences and priorities of the decision-maker [38]. In general, the location of ULS is a rare
decision, but one that has great impact on the performance of the entire supply chain and
that demands special attention from high-level management. In this type of problem, it is
possible to consider the existence of several modes of transport, in addition to considering
transport with own or subcontracted fleet, qualified labor, schedules and number of trips,
transport of multiple type of goods, type of cargo, and reduction of delivery times (lead
time) throughout the distribution operation. All these decisions do impact the costs of the
entire operation and must be considered when planning, e.g., the fixed costs of opening
new facilities and operational distribution costs [39]. In addition to this, the decision to
locate ULS involves other issues and objectives that are not easily quantifiable such as:
fiscal incentives and tax burdens that differentiate the potential nodes and of course the
environmental impact of the operations, which has been considered relevant in the past
decade [40].

The location of logistics facilities significantly affects not only urban goods movement
activities, but the entire urban environment and the logistics organizations of compa-
nies [41], since these facilities represent cargo generators and receivers [42,43]. In this sense,
the facility location problem arises in every organization when they require opening a new
facility or relocating an existing one [44]. So far, several works focused on the location of
the ULS. Some of them from a holistic perspective [45], others focus on studying specific
objectives such as: profit [46,47]. Ambrosino and Sciomachen [48] explore minimizing
locations and shipping costs through a mixed integer linear programming model. Other
papers focus on the location of a single type of logistics space, e.g., [49], while other works
consider the location of distribution centers is part of a collaborative supply chain, e.g., [50]
or in a sustainability objective, i.e., mixing economic, environmental, and social criteria
in a generalized cost function [51]. In addition, the relationship between the location of
logistics facilities and vehicle travel distances for shipments associated with the facilities
has also been analyzed [52].

Some other conventional approaches to location include heuristics [53], MIP mod-
els [54] dynamic programming [55], nonlinear programming [56,57], quadratic program-
ming [58,59], hierarchical analysis process (AHP) [60], and artificial intelligence (AI) tech-
niques [61], such as specialist systems, artificial neural networks (ANNs), metaheuristics
or fuzzy set theory [62]. In the recent works, the trend is to consider a large part of the
logistics distribution network incorporating the other vertices of the logistics triangle
(transport and inventory), to propose increasingly compensatory solutions. In addition,
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new considerations such as service level, reliability, and social responsibility [63] have been
incorporated into models with stochastic elements and network dynamics.

The configuration of an urban distribution system can be modeled as a multi-tier (or
multi-echelon) distribution network [23,64]. The problem consists of locating facilities and
defining the flow of products through the network, leading to the well-known family of
n-echelon Facility Location Problems (N-FLP) [30,65]. This paper models the problems as a
multiple objective mixed-integer linear program (MILP).

Although various approaches and solution methods have been proposed for FLP,
the number of works for FLP is lower [30,66], and there is little work on ULS location
that considers transport with heterogeneous fleets together with the shipment of multiple
goods. Additionally, to the best of our knowledge, there are no papers that consider the
combination of logistical transport costs associated with a ULS typology, as it is proposed
in this paper, although cost structure is crucial to ensure the economic viability of urban
logistics systems since revenue margins are very narrow [67,68]. Inspired by the urban
logistics context explained before, the problem considered in this paper extends the current
literature by including delivery time windows, and location and relocation costs, allowing
the analysis of ULS locations and the consequent urban distribution systems considering
optimization criteria from the specific context. Considered costs are related to the relocation
of facilities, the distance traveled for transportation of goods, and the penalization of time
windows violation. This location problem has not been previously studied in the academic
literature, to the best of our knowledge. Moreover, implicitly, preferences of a functional
type of ULS are considered, as well as stakeholders of each type of space and dimensions
of the infrastructures for the design of logistics networks, as presented in the taxonomy
in [25]. This problem is inspired from a real-life situation found in a medium-sized city in
the north region of Colombia, being the fourth city in the country in terms of economic
importance. In addition, this paper also provides an approximation to the real context of
such problems of urban logistics in practice.

3. Materials and Methods

The proposed methodology is based on the interactive, problem-based vision of
operational research [69,70]. Indeed, aiming to deal with a real distribution problem, the
problem-solving method needs to represent suitably the reality we deal with, and to do
that it is important to develop a framework that is related and compared to the reality
it aims to represent. This leads to the application of the Ackoff’s problem solving cycle,
which can be defined as follows from Ackoff’s [69] considerations (see Figure 1).

Axioms 2021, 10, x FOR PEER REVIEW 4 of 23 
 

and inventory), to propose increasingly compensatory solutions. In addition, new consid-

erations such as service level, reliability, and social responsibility [63] have been incorpo-

rated into models with stochastic elements and network dynamics. 

The configuration of an urban distribution system can be modeled as a multi-tier (or 

multi-echelon) distribution network [23,64]. The problem consists of locating facilities and 

defining the flow of products through the network, leading to the well-known family of 

n-echelon Facility Location Problems (N-FLP) [30,65]. This paper models the problems as 

a multiple objective mixed-integer linear program (MILP).  

Although various approaches and solution methods have been proposed for FLP, the 

number of works for FLP is lower [30,66], and there is little work on ULS location that 

considers transport with heterogeneous fleets together with the shipment of multiple 

goods. Additionally, to the best of our knowledge, there are no papers that consider the 

combination of logistical transport costs associated with a ULS typology, as it is proposed 

in this paper, although cost structure is crucial to ensure the economic viability of urban 

logistics systems since revenue margins are very narrow [67,68]. Inspired by the urban 

logistics context explained before, the problem considered in this paper extends the cur-

rent literature by including delivery time windows, and location and relocation costs, al-

lowing the analysis of ULS locations and the consequent urban distribution systems con-

sidering optimization criteria from the specific context. Considered costs are related to the 

relocation of facilities, the distance traveled for transportation of goods, and the penaliza-

tion of time windows violation. This location problem has not been previously studied in 

the academic literature, to the best of our knowledge. Moreover, implicitly, preferences of 

a functional type of ULS are considered, as well as stakeholders of each type of space and 

dimensions of the infrastructures for the design of logistics networks, as presented in the 

taxonomy in [25]. This problem is inspired from a real-life situation found in a medium-

sized city in the north region of Colombia, being the fourth city in the country in terms of 

economic importance. In addition, this paper also provides an approximation to the real 

context of such problems of urban logistics in practice. 

3. Materials and Methods 

The proposed methodology is based on the interactive, problem-based vision of op-

erational research [69,70]. Indeed, aiming to deal with a real distribution problem, the 

problem-solving method needs to represent suitably the reality we deal with, and to do 

that it is important to develop a framework that is related and compared to the reality it 

aims to represent. This leads to the application of the Ackoff’s problem solving cycle, 

which can be defined as follows from Ackoff’s [69] considerations (see Figure 1). 

 

Figure 1. The problem solving cycle of Ackoff extended and adapted (authors’elaboration from 

Gonzalez-Feliu’s [70], considerations). 

Figure 1. The problem solving cycle of Ackoff extended and adapted (authors’elaboration from
Gonzalez-Feliu’s [70], considerations).

More precisely, this work aims to model a reality, so for this purpose, it is impor-
tant to start from a field representing this reality, observe it, and then conceive first the
representation of the decision problem, then the model to be solved. The choice of the
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field has been made on two main criteria: the first is the suitability of the selected city to
have transport systems able to use a network of ULS, the second that of data availability.
Then, the city of Barranquilla has been chosen since it is a medium-sized city in the north
region of Colombia, being the fourth city in the country in terms of economic importance,
presents a city distribution structure that includes various types of ULS, and a multiple-
stage data collection procedure was conducted to retrieve information to interactively build
the model.

The main purpose of this research being to propose an optimization model and
solve it, representing a reality and being replicable to other contexts, an iterative data
collection method has been deployed for describing the problem and validating both the
model and the solution. To do that, a set of 9 stakeholders (8 companies and 1 public
stakeholder) have been interviewed, and several field observations have been carried
out. Each stakeholder has been interviewed three times, at different moments, first to
define the ULS in Barranquilla and choose the ULS types, second to define and model the
transport systems, and third to validate the hypotheses and assumptions of the model.
That data collection allowed to define the decision problem (presented in Section 3.1)
then the MIP model was developed and solved with linear programming (presented in
Sections 3.2 and 4).

3.1. Problem Description

According to published literature, in Colombia, Logistics Centers are understood as
equipment strategically located in highly productive regions to concentrate and provide
complementary services to the territory’s main activities and work according to the physical
integration of the territory, for the strengthening of its production activities and for the
consolidation of political-administrative ties that promote territorial competitiveness [71].
In Colombia, the development of the logistics sector has been one of the country’s biggest
bets in recent years, in a logical attempt to take advantage of the availability of land and
the excellent strategic location of the country’s maritime ports, especially in the northern
Caribbean coast (see circle in Figure 2).
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This paper considers the case of the city of Barranquilla, which is administratively
defined as a special, industrial, and port city located in the northern coast of Colombia. In
recent years, Barranquilla and its metropolitan area have had a strong vocation of being a
logistics, industrial, and specialized services center, whose fundamental task is to act as
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a link node for the country with the global dynamic economy. Barranquilla’s privileged
strategic position (see Figure 2) would allow logistics spaces to be in this territory, such as
inland intermodal terminals (dry ports) connected directly to one or more sea and river
ports, and other types of spaces, where logistics and intramodality do play a first-order
role. From the aspect of the development of the freeway Circunvalar de la Prosperidad
(see Figure 2) as a structuring road axis for economic activity, together with the creation
of various industrial areas to host manufacturing companies and logistics services, it is
a commitment to the future, with great implications in businesses, technological, and
therefore, economic development of the region, which is desired to be materialized in
the construction of logistics nodes, in the implementation of urban logistics spaces (ULS),
including distribution centers, which allow response to the economic requirements of the
region. It is for this reason that the city of Barranquilla and its metropolitan area must
be on the frontline and bet on the combined use of the road, rail, and aviation, taking
advantage of the role of the ports that future logistics platforms make possible, since the
city will host equipment and services of regional and national rank, including offshore
extraction platforms.

In the example of Barranquilla, the city has different areas of economic activity, ac-
companied by the creation of several industrial areas for the reception of manufacturing
companies, logistics and specialized services. These types of activities are mainly located in
the eastern zone of the district, extending from north to south and the 30th Street, Cordiali-
dad, and Circunvalar Avenue corridors as defined in the Land Management Plan of the city
of Barranquilla [72] (see Figure 3). All these spaces act as logistic nodes that provide solu-
tions to the requirements of the region. However, due to the great growth of the city during
the past decade, the logistics requirements and the number of vehicles are increasing. For
this reason, since 2014, companies are choosing to re-locate their facilities to the periphery
of the city. In the literature, some works (e.g., Tricoire and Parragh [73], Raimbault [74],
Sakai et al. [75]) consider that logistics spaces should be in metropolitan areas, while other
works (i.e., Heitz et al. [45], Monios [76], Heitz and Dablanc [77], Krzysztofik et al. [78])
consider the peripheries of cities as the ideal areas for the location of these facilities to
minimize transportation costs, route distances, among other factors.
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In this research, three (3) types of urban logistics spaces (ULS) are considered: (a)
industrial plants, (b) transshipment centers, and (c) points of sale (as consumption centers),
representing a supply chain with two echelons. The transshipment centers are considered
as Logistics Consolidation Centers (LCC), according to the taxonomy proposed in [25]. In
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the context of this model, it is important to mention the relationship of the flows of goods
according to the three types of spaces mentioned before (see Table 1). The problem to be
addressed consists hence in defining the location of transshipment facilities, as well as the
flow of products along the production-distribution network.

Table 1. Relationship of flows between ULS.

Type of ULS Receive from: Send to:

Plants i Transshipment
Transshipment ULS j Plant Point of sale

Points of sale c Transshipment

3.2. Mathematical Model

In order to solve the problem presented previously, let us consider a weighted undi-
rected graph G = (N, V), where N = I ∪ J ∪ C is the set of nodes that are in turn divided
into the subsets i = {1, 2, 3, . . . , I} corresponding to the plants, j = {1, 2, 3, . . . , J} corre-
sponding to the transshipment ULS, and c = {1, 2, 3, . . . , C} corresponding to the points
of sales; and V = Vij ∪ Vjc corresponds to the arcs Vij and Vjc. The distribution process
is carried out on vehicles belonging to the set k = {1, 2, . . . , K} with capacity Qkp de-
pending on the type of product p. The geographical location of transshipment center j
should be established in order to minimize the costs associated with transport running
at speed r = {1, 2, 3, . . . , R} with suggested speed limits [lr, ur] in urban areas, where lr
and ur are, respectively, the minimum and maximum recommended speed for the arcs
(i, j) and (j, c). Location of transshipment center j must correspond to a strategic zon-
ing H = {1, 2, 3, . . . , h} within a range of coordinates

[
LXjh, UXjh

]
and

[
LYjh, UYjh

]
, as

illustrated in Figure 4.
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Speed for urban zones Vijr and V′jcr is addressed from the approach applied in [79] for
calculating speed in urban areas.

Vijr =

[
lr +

dci + dcj

2R
(ur − lr)

]
(1)

V′jcr =

[
lr +

dcj + dcc

2R
(ur − lr)

]
(2)
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where dci, dcj, and dcc correspond to the distance of each type of node from the city center.
Moreover, R is the city radius. We assume dcj as the distance from the center of the h, due
to the uncertainty of the distance. Considering the coordinates of the locations of each type
of N node in the arcs (i, j) and (j, c), distances will be treated as Manhattan distances. The
rationale of this choice is based on the comparative analysis between Manhattan, Euclidean,
and Network distances carried out in [80]. These authors show different correlations
between the three types of distances. Euclidean distances overestimate the population
compared to Network and Manhattan distances, while Network and Manhattan distances
give similar results.

In addition, time windows for distribution operations are considered for each trans-
shipment

[
aj, bj

]
and for each point of sale [a′c, b′c]. Time window violations are admitted

with a penalty cost of γj and γc. The relationships between the nodes are defined through
the allocation matrices ωij and φjc.

The mathematical model is presented next.
Sets:

I: set of plants
J: set of transshipment urban logistics spaces (ULS)
C: set of points of sale
K: set of trips by type of vehicle
P: set of products
R: set of speed range
H: set of zones

Parameters:

γj: Penalty cost for violation of time windows in j, ∀j,
γc: Penalty cost for violation of time windows in c, ∀c,
LXjh: Lower position in the abscissa of transshipment ULS j in zone h, ∀j, ∀h,
UXjh: Upper position in the abscissa of transshipment ULS j in zone h, ∀j, ∀h,
LYjh: Lower position in the ordinate of transshipment ULS j in zone h, ∀j, ∀h,
UYjh: Upper position in the ordinate of transshipment ULS j in zone h, ∀j, ∀h,
Ai: Location in the abscissa of plants i, ∀i,
Oi: Location in the ordinate of plants i, ∀i,
ACc: Location in the abscissa of points of sales c, ∀c,
OCc: Location in the ordinate of points of sales c, ∀c,
vij: Preference matrix from i to j, ∀i, ∀j,
φjc: Preference matrix from j to c, ∀j, ∀c,
Sk: Cost of preparation of the trip in the vehicle k, ∀k,
Cvk: Variable costs per distance traveled in the vehicles of type k, ∀k,
aj: Earlier arrival at transshipment ULS j, ∀j,
bj: Arrival after the transshipment ULS j, ∀j,
a′j: Earlier arrival at point-of-sale c, ∀c,
b′j: Arrival after the point-of-sale c, ∀c,
nnh: Maximum number of transshipment centers j in each zone h, ∀j, ∀h,
Qpj: Product reception capacity at the transshipment center j, ∀j,
dcp: Demand of product p in the points of sale c, ∀p, ∀c,
Qkp: Capacity of vehicle k according to product type p, ∀k, ∀p,
Csjh: Cost of relocating transshipment j in zone h, ∀j, ∀h,
M: very large number.

Variables:

Xj: Opening position in the abscissa of transshipment ULS j, ∀j,
Yj: Opening position in the ordinate of transshipment ULS j, ∀j,
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dx+ij : Distance if the abscissa of plant i is to the right of the abscissa of the transshipment
ULS j, ∀i, ∀j,
dx−ij : Distance if the abscissa of plant i is to the left of the abscissa of the transshipment
ULS j, ∀i, ∀j,
dy+ij : Distance if the ordinate of plant i is above the ordinate of the transshipment ULS j,
∀i, ∀j,
dy−ij : Distance if the ordinate of plant i is below the ordinate of the transshipment ULS j,
∀i, ∀j,
ddx+jc : Distance if the abscissa of transshipment ULS j is to the right of the abscissa of the
point-of-sale c, ∀j, ∀c,
ddx−jc : Distance if the abscissa of transshipment ULS j is to the left of the abscissa of the
point-of-sale c, ∀j, ∀c,
ddy+jc : Distance if the ordinate of transshipment ULS j is above the ordinate of the point-of-
sale c, ∀j, ∀c,
ddy−jc : Distance if the ordinate of transshipment ULS j is below the ordinate of the point-of-
sale c, ∀j, ∀c,
Zijkp: Quantity of product p to be sent from plant i to transshipments ULS j using vehicle k,
∀i, ∀j, ∀k, ∀p,
Z′jckp: Quantity of product p to be sent from transshipment j to point of sale c using vehicle
k, ∀i, ∀j, ∀k, ∀p,
CVijk: Distribution cost from plant i to the transshipment ULS j on trip k, ∀i, ∀j, ∀k,
CV′jck: Distribution cost from transshipment ULS j to point of sale c on trip k, ∀j, ∀c, ∀k,

TVk: Travel time of vehicle k in the arc (i,j), ∀i, ∀j, ∀k,
TV′k : Travel time of vehicle k in the arc (j,c), ∀j, ∀c, ∀k,
Vvijk: Speed in the arc (i,j) of vehicle k, ∀i, ∀j, ∀k,
Vv′jck: Speed in the arc (j,c) of vehicle k, ∀j, ∀c, ∀k,

Tgj: Arrival time at transshipment ULS j, ∀j,
Tg′c: Arrival time at point-of-sale c, ∀c,
Vbj: Arrival time before j, ∀j,
Vaj: Arrival time after j, ∀j,
Vb′j: Arrival time before c, ∀c,
Va′j: Arrival time after c, ∀c,
ϑjh =1 if transshipment ULS j is in zone h, 0 otherwise, ∀j, ∀h,
δj = 1 if transshipment ULS j is open, 0 otherwise, ∀j,
Wijkr = 1 if vehicle k is assigned to the arc (i,j) with speed r, and 0 otherwise, ∀i, ∀j, ∀k, ∀r,
W ′jckr = 1 if vehicle k is assigned to the arc (j,c) with speed r, 0 otherwise, ∀j, ∀c, ∀k, ∀r,

f f ju = 1 if several transshipment ULS are in each zone, ∀j, ∀u ∈ J,

The objective function is:

minz = α

[
∑

i
∑

j

n−1

∑
k=1

CVijk + ∑
j

∑
c

∑
k≥n

CV′jck + ∑
j

∑
h

Csjhϑjh

]
+ β

[
∑

j
γj
(
Vaj + Vbj

)
+ ∑

c
γc
(
Va′c + Vb′c

)]
(3)

Subject to:
dx+ij − dx−ij + Xj = Aiωij

∀i, ∀j
(4)

dy+ij − dy−ij + Yj = Oiωij

∀i, ∀j
(5)

ddx+jc − ddx−jc + Xj = ACcφjc

∀j, ∀c
(6)
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ddy+jc − ddy−jc + Yj = OCcφjc

∀j, ∀c
(7)

−Mδj + ∑
h

LXjhϑjh ≤ Xj ≤ Mδj ∑
h

UXjhϑjh

∀j
(8)

−Mδj + ∑
h

LYjhϑjh ≤ Yj ≤ Mδj ∑
h

UYjhϑjh

∀j
(9)

∑
j

δj = J − 1 (10)

∑
h

ϑjh = 1

∀j
(11)

Zijkp ≤ ∑
r

WijkrQkp

∀i, ∀j, ∀k < n, ∀p
(12)

Z′jckpu ≤ ∑
r

W ′jckrQkp

∀c, ∀j, ∀k ≥ n, ∀p
(13)

n
∑

k=1
∑
r

Wijkr = ωij

∀i, ∀j
(14)

∑
k≥n

∑
r

W ′jckr = φjc

∀j, ∀c
(15)

CVijk = −M
(

1−∑
r

Wijkr

)
+ Sk + 2Cvk

(
dx+ij + dx−ij + dy+ij + dy−ij

)
∀i, ∀j, ∀k < n

(16)

CV′jck = −M
(

1−∑
r

W ′jckr

)
+ Sk + 2Cvk

(
dx+ij + dx−ij + dy+ij + dy−ij

)
∀j, ∀c, ∀k ≥ n

(17)

∑
i

∑
k≥n

∑
p

Z′jcpk ≤ Qpj

∀j
(18)

∑
j

∑
k≥n

Z′jcpk = dcp

∀c, ∀p
(19)

∑
i

n
∑

k=1
Zijkp = ∑

c
∑

k≥n
Z′jcpk

∀j, ∀p
(20)

TVk ≥ −M
(

1−∑
r

Wijkr

)
+ 2
[

dx+ij +dx−ij +dy+ij +dy−ij
Vijr

]
∀i, ∀j, ∀k < n

(21)

TV′k ≥ −M
(

1−∑
r

W ′jckr

)
+ 2
[

dx+ij +dx−ij +dy+ij +dy−ij
V′jcr

]
∀j, ∀c, ∀k ≥ n

(22)

Vvijk = ∑
r

VijrWijkr

∀i, ∀j, ∀k < n
(23)
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Vv′jck = ∑
r

V′jcrW
′
jckr

∀j, ∀c, ∀k ≥ n
(24)

∑
i

∑
j

∑
r

Wijkr = 0

∀k ≥ n
(25)

∑
j

∑
c

∑
r

Wjckr = 0

∀k < n
(26)

∑
p

Zijkp ≤ M ∑
r

Wijkr

∀i, ∀j, ∀k < n
(27)

∑
p

Z′jckp ≤ M ∑
r

W ′jckr

∀j, ∀c, ∀k ≥ n
(28)

Tgj = −M
(

1−∑
r

Wijkr

)
+

[
dx+ij +dx−ij +dy+ij +dy−ij

Vijr

]
∀i, ∀j, ∀k < n, ∀r

(29)

Tg′c = −M
(

1−∑
r

W ′jckr

)
+

[
dx+ij +dx−ij +dy+ij +dy−ij

V′jcr

]
∀i, ∀j, ∀k ≥ n, ∀r

(30)

Vaj ≥ aj − Tgj
∀j

(31)

Vbj ≥ Tgj − bj
∀j

(32)

Va′c ≥ a′c − Tg′c
∀c

(33)

Vb′c ≥ Tg′c − b′c
∀c

(34)

∑
i

∑
j

∑
r

Wijkr ≤ 1

∀k < n
(35)

∑
j

∑
c

∑
r

W ′jckr ≤ 1

∀k ≥ n
(36)

Xj − Xu ≥ 1−M f f ju
∀j, ∀u; u > j

(37)

Xj − Xu ≥ 1−M
(
1− f f ju

)
∀j, ∀u; u > j

(38)

∑
j

ϑjh ≤ nnh

∀h
(39)

[
ddx+jc , ddx−jc , dcy+jc , dcy−jc , dx+ij , dx−ij , dy+ij , dy−ij , TVk, TV′k , Zijpk, Z′jcpk,

CVijk, CV′jck, Vvijk, Vv′jck, Tgj, Tg′c, Vaj, Vbj, Va′cVb′c

]
≥ 0

∀i, ∀j, ∀k, ∀c, ∀p
(40)

Xj, Yj ∈ R
∀j

(41)
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δj, ϑj , f f ju, Wijkr, W ′jckr ∈ {0, 1}
∀i, ∀j, ∀c, ∀k, ∀r, ∀u

(42)

Equation (3) minimizes the costs associated with the vehicle trips by considering
the distances traveled according to the location of transshipment, and the costs for re-
localization. Equation (4) minimizes the costs for time window violation. Constraints
(4), (5), (6), and (7) represent the rectilinear distances over which the connection lines in
the supply network are modeled. Constrains (8) and (9) ensure that the areas designated
for the opening of transshipments centers are not violated. Constraints (10) serve as an
opening key by limiting the number of intermediate nodes that can be opened. Constraints
(11) ensure that a transshipments center can be opened in exactly one zone. Constraints
(12) and (13) prevent the violation of vehicle capacity. Constraints (14) and (15) determine
the shipment conditions. Equations (16) and (17) calculate the travel costs. Constraints
(18) ensures that the quantity of products sent to the ULS specialists does not exceed the
quantity of products in the transshipment centers. Constraint (19) ensure compliance with
the demand for specialist ULS. Constraint (20) prevent stocks. Constraints (21) and (22)
calculate the travel times in each vehicle. Constraints (23) and (24) calculate the speeds
assigned on each arc. Constraints (25) and (26) ensure that the vehicle used for the arc (i,j)
is not used for the arc (j,c). Constraints (27) and (28) determine that if an arc is realized,
a quantity must be distributed. Constraints (29) and (30) calculate the arrival times at
each node. Constraints (31), (32), (33), and (34) calculate the time window violations by
arrival before and after. Constraints (35) and (36) ensure that an arc is made exactly once.
Constraints (37) and (38) ensure that if two or more transshipment centers are in the same
zone, they must be separated. Constraints (39) ensure that a transshipment center can be
re-located in just one zone. Constraints (40), (41), and (42) define the nature of variables.

Constraints (16), (17), (21), (22), (29), and (30) are linear equations transformed from
following non-linear equations (43), (44), (45), (46), (47), and (48):

CVijk = Sk + 2Cvk ∑
r

Wijkr

(
dx+ij + dx−ij + dy+ij + dy−ij

)
∀i, ∀j, ∀k < n

(43)

CV′jck = Sk + 2Cvk ∑
r

W ′jckr

(
dx+ij + dx−ij + dy+ij + dy−ij

)
∀j, ∀c, ∀k ≥ n

(44)

TVk ≥ 2

[
∑
i

∑
j

∑
r

Wijkr

(
dx+ij +dx−ij +dy+ij +dy−ij

Vijr

)]
∀k < n

(45)

TV′k ≥ 2

[
∑
i

∑
j

∑
r

W ′jckr

(
dx+ij +dx−ij +dy+ij +dy−ij

V′jrc

)]
∀k ≥ n

(46)

Tgj =

[
∑
i

n−1
∑

k=1
∑
r

Wijkr

(
dx+ij +dx−ij +dy+ij +dy−ij

Vijr

)]
∀j

(47)

Tg′c =

[
∑
i

∑
k≥n

∑
r

Wjckr

(
dx+ij +dx−ij +dy+ij +dy−ij

V′jcr

)]
∀c

(48)

4. Results

Two theoretical test scenarios were built to carry out the experiments. The first scenario
presents 20 customers, two plants, four intermediaries, and three possible location zones.
The second scenario has 15 customers, three plants, six intermediaries, and three location



Axioms 2021, 10, 214 13 of 21

zones (see Table 2). Speed variations are applied based on an urban area (two ranks).
Although these sets of instances can be considered as small in terms of the computational
complexity to run the model, computational times are high. Therefore, the model was run
using the Neos Server platform [81]. Results are shown next.

Table 2. Description of benchmark instances.

Item Number in First Scenario Number in Second Scenario

Plants 2 3
Transshipment ULS 4 6

Point of sale 10 15
Location zone for transshipment

ULS 3 3

Products 2 2
Speed range 2 2

Trips/vehicle 20 30

To run the experiments, a set of weighting variations was established and associated
with the objectives of minimizing distribution and re-location costs and time window
violation costs for the construction of the Pareto frontier. We duplicated the tests for the
higher weights of the second objective, due to the trend of the results. The weights, costs,
and gap for each variation are shown in Table 3. For the construction of the Pareto frontiers,
only the results with a gap less than or equal to 4% were considered. This gap corresponds
to the approximation value of the best integer solution found by the solver at the end of the
optimization process for the given computational time limit. The analysis of these Pareto
fronts is presented in the next subsections.

Table 3. Relationship of flows between ULS.

Weights First Scenario Second Scenario

α β Cost Gap Cost Gap

0.90 0.10 8410.67 28.81% 15,174.32 22.04%
0.80 0.20 7143.97 27.52% 15,079.73 26.11%
0.70 0.30 7468.16 24.25% 15,079.73 29.75%
0.60 0.40 8250.76 26.72% 13,653 31.71%
0.50 0.50 7684.8 4% 12,468.81 4%
0.45 0.55 8232.75 4% 12,215.5 4%
0.40 0.60 7750.53 4% 12,253.54 4%
0.35 0.65 8250.76 25.36% 13,802.88 33.58%
0.30 0.70 7783.7 4% 13,598.73 4%
0.25 0.75 7874.24 4% 13,163.2 4%
0.20 0.80 8564.03 4% 12,308.91 4%
0.15 0.85 7755.9 4% 12,578.33 4%
0.10 0.90 8136.26 4% 12,682.07 4%
0.05 0.95 8021.24 4% 13,039.1 4%

4.1. Analysis of the First Scenario

For this first scenario, the Pareto front is presented in Figure 5. The minimum cost
was obtained with the weights α = 0.5 and β = 0.5. The first objective resulted in a cost of
$7684.8, while for the second objective it was $0 because no time windows were violated
in any of the nodes. The opening coordinates of each transshipment centers are (12, −70),
(11, 40), (10, 40), and (−51, −40), respectively (see Figure 6). The arrival times in minutes
at each node are: j1 = 139, j2 = 75, j3 = 123, and j4 = 78. The resulting speeds for the
process of distribution in the arc (j,c) are extended to the maximum of the time window to
minimize the travel speed, resulting in that the vehicles did not significantly exceed the
recommended speed limits (see Table 4).
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Table 4. First scenario: arrival time, trip assignment, and travel speed for arc (j,c).

Variables
Point of Sales

1 2 3 4 5 6 7 8 9 10

a′c 41 82 89 68 53 96 74 79 119 87
Tg′c 71 112 119 98 83 126 104 109 149 117
b′c 71 112 119 98 83 126 104 109 149 117

W ′jckr 13 11 10 16
20 18 15 9 19 17 12

Vv′jck 59 62.33 65.83 68.5
55.67 69.5 65 57.22 57.78 62.33 50.44

4.2. Analysis of the Second Scenario

For this first scenario, the Pareto front is presented in Figure 7. The minimum cost was
obtained with the weights α = 0.45 and β = 0.45. The first objective resulted in a cost of
$12,215.5, while for the second objective it was $0 because no time windows were violated
in any of the nodes. The opening coordinates of each transshipment centers are (28, −70),
(25, 40), (24, 40), (14, −70), (−51, −40), and (−52, −40), respectively (see Figure 8). The
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arrival times in minutes at each node are: j1 = 150, j2 = 140, j3 = 127, j4 = 128, j5 = 147, and
j6 = 117. Just as in the first scenario, the resulting speeds for the process of distribution in
the arc (j,c) are extended to the maximum of the time window to minimize the travel speed
(see Table 5).
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Point of Sales 
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4.3. Analysis of the Case Study 

To apply the model for real case study, we used a database provided by a company 

located in Barranquilla, Colombia, dedicated to the supply of products to different super-

markets. The data set consists of 2 plants, 3 transshipment ULS, 3 zones, 15 points of sale, 

2 speeds range, 3 products, and 29 trips. The vehicles are split up into four categories (9 

vehicles of 35 ton, 3 vehicles of 32 ton, 6 vehicles of 20 ton, 6 vehicles of 8 ton, and 5 vehicles 

of 4 ton). The demand data are set at 8500 packaging units. There are three types of pack-

aging: 60 × 40 × 25 for large products with a total weight of up to 7 kg. For medium-sized 

products, the measures are 40 × 30 × 25 with a total weight of up to 12 kg. Finally, for small 

products, the measures are 60 × 40 × 12.5 with a total weight of up to 10 kg. 

Data regarding the actual demand of customer is kept confidential; hence a random 
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Table 5. Second scenario: arrival time, trip assignment, and travel speed for the arc (j,c).

Variables
Point of Sales

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a′c 82 94 64 116 49 33 37 63 112 85 101 59 59 95 88
Tg′c 112 124 94 146 79 63 67 93 142 115 131 89 59 125 118
b′c 112 124 94 146 79 63 67 93 142 115 131 89 89 125 118

W ′jckr 28 26 18 9
20 29 19 30 27 10 13 24 15 23 11 25

8

Vv′jck 59.44 63 65.83 68.5
55.67 56.78 65 57.22 57.78 68.33 60.67 67.33 53.44 57.89 69.67 59.78

59.78
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4.3. Analysis of the Case Study

To apply the model for real case study, we used a database provided by a company
located in Barranquilla, Colombia, dedicated to the supply of products to different super-
markets. The data set consists of 2 plants, 3 transshipment ULS, 3 zones, 15 points of sale,
2 speeds range, 3 products, and 29 trips. The vehicles are split up into four categories
(9 vehicles of 35 ton, 3 vehicles of 32 ton, 6 vehicles of 20 ton, 6 vehicles of 8 ton, and
5 vehicles of 4 ton). The demand data are set at 8500 packaging units. There are three
types of packaging: 60 × 40 × 25 for large products with a total weight of up to 7 kg. For
medium-sized products, the measures are 40 × 30 × 25 with a total weight of up to 12 kg.
Finally, for small products, the measures are 60 × 40 × 12.5 with a total weight of up to
10 kg.

Data regarding the actual demand of customer is kept confidential; hence a random
allocation was performed for the purpose of this experiment. This randomization was
performed for the quantity of packaging for each customer, in addition to the quantity of
each type of packaging. The load configuration for each type of vehicle was calculated
with the help of Quick Pallet Maker software under the criteria of 99% weight or volume
efficiency.

The preparation costs for each trip correspond to the monthly costs of 4 forklifts,
50 logistics assistants, and forklift battery costs. Costs were calculated based on the total
number of vehicles and by vehicle type. Likewise, penalty costs for violation of time
windows were calculated considering the general trip preparation costs (i.e., penalty costs
for each minute corresponds to the cost of one minute of trip preparation). Finally, variable
costs are obtained based on the fuel consumption per kilometer traveled. Table 6 presents
all these data.

Table 6. Vehicle data.

Vehicle Type Preparation Costs
(COP$)

Fuel Costs
(COP$/km)

Load Capacity
(Units)

35 Ton 215,730 1058.292 1410
32 Ton 215,730 857.773 1410
20 Ton 135,405 679.071 885
8 Ton 120,105 417.889 785
4 Ton 62,530 626.834 412

The results of the model correspond to the weight combinations α = (0.3, 0.2, 0.1, 0.05,
0.15, 0.25, 0.45) and β = (0.7, 0.8, 0.9, 0.95, 0.85, 0.75, 0.55) given by the Neos Server platform.
The other combinations of weights did not give any numerical solution; the solver gave a
message of “Out of memory”. The Pareto frontier is built with the results. The best selected
solution is that with weights α = 0.05 y β = 0.95 with a total cost of COP$12,103,056 (see
Figure 9).
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Locations of the transshipments ULS is establishes in two zones. Transshipments
ULS j1 and j2 are in zone 2, while transshipment ULS j3 is in zone 1 (see Figure 10). This
location generates a violation of the arrival times at the three transshipments ULS. This
also generates delays for points of sale 6 and 9 (68.31 min and 77.13 min, respectively).
These outcomes of the model are to be considered by the decision-maker.
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5. Conclusions

Urban logistics spaces (ULS) are logistics infrastructures that facilitate transport and
goods flows between cities and their surroundings (peripheral areas). Therefore, some gen-
eral characteristics for the ULS are assumed (e.g., design, dimensions, flows, stakeholders,
specific purposes of each ULS), as proposed in for the development of the proposed model.
This paper developed a bi-objective mathematical model of two-echelon for the location
and distribution of multiple goods in an urban context. Soft time windows were applied to
control the arrival at each of the related nodes at each level of the distribution process. In
addition, the impact of time windows on the variation of velocities for the travel process
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in each arc is evident. The model was validated with a set of instances corresponding to
two theoretical scenarios. A set of variations were generated for the weights associated
with the objectives of minimizing costs by distribution and re-location, and the second
objective associated with minimizing costs by violation of time windows. The results
showed similar behavior for both instances. The variations that assigned greater weight to
the first objective (α > 0.5) presented results with a gap greater than 20%. On this basis, we
decided to duplicate the variations for the values (α ≤ 0.5). We obtained results with a best
integer solution with a gap of 4%. The Pareto frontiers were built for both scenarios using
those model outputs. The results selected as optimal solutions from the set of efficient
solutions were obtained with (α = 0.5; β = 0.5) and (α = 0.45; β = 0.55) or the first and
second scenario, respectively. In a second experiment, the model was applied to a real-life
case study of a company delivering products to a well-known chain of supermarkets in the
city of Barranquilla, Colombia. Numerical results allow the decision-maker to consider the
selected locations as strategic points for relocating its urban logistics spaces for supermar-
ket delivery. There is an inverse relationship between the objectives, that is while the costs
associated with distribution increase, the time window violations in the nondominated
solutions decrease.

After the results, it is to note that locating intermediate facilities and improving the
distribution policies, the company avoids failure to deliver on time. These outputs also do
help logistics managers and other decision-makers in government to consider quantitative
information allowing to define the framework in which urban distribution activities can
operate. The proposed model hence contributes to the solution of complex two-echelon
production-distribution problems in urban settings. This extends the current state-of-the-
art by including delivery time windows, and location and relocation costs, under multiple
objectives.

Due to the complexity of the model, approximate solution strategies can be applied
for future work that allow efficient results in shorter computational times. A strategy can
be derived from working on the problem following decomposition approaches, such as
location first and distribution second. Furthermore, the actual routing of vehicles can
be included in the distribution process, leading to solve the NP-hard location routing
problem (LRP). On another hand, the inclusion of other types of ULS that can be part of the
configurations in the defined levels is considered as a research opportunity. This provides
a more realistic approach in studies due to the variety of ULS that define the supply chains
in different contexts. In addition, more general results can be established for a variety of
real-life logistical situations.
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