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Abstract: We consider computing an arbitrary singular value of a tensor sum: T := In ⊗ Im ⊗ A +

In ⊗ B⊗ I` + C⊗ Im ⊗ I` ∈ R`mn×`mn, where A ∈ R`×`, B ∈ Rm×m, C ∈ Rn×n. We focus on the shift-
and-invert Lanczos method, which solves a shift-and-invert eigenvalue problem of (TTT− σ̃2 I`mn)

−1,
where σ̃ is set to a scalar value close to the desired singular value. The desired singular value is
computed by the maximum eigenvalue of the eigenvalue problem. This shift-and-invert Lanczos
method needs to solve large-scale linear systems with the coefficient matrix TTT − σ̃2 I`mn. The
preconditioned conjugate gradient (PCG) method is applied since the direct methods cannot be
applied due to the nonzero structure of the coefficient matrix. However, it is difficult in terms of
memory requirements to simply implement the shift-and-invert Lanczos and the PCG methods since
the size of T grows rapidly by the sizes of A, B, and C. In this paper, we present the following two
techniques: (1) efficient implementations of the shift-and-invert Lanczos method for the eigenvalue
problem of TTT and the PCG method for TTT − σ̃2 I`mn using three-dimensional arrays (third-order
tensors) and the n-mode products, and (2) preconditioning matrices of the PCG method based on the
eigenvalue and the Schur decomposition of T. Finally, we show the effectiveness of the proposed
methods through numerical experiments.

Keywords: tensor sum; singular value; shift-and-invert Lanczos method; preconditioned conjugate
gradient method

MSC: 65F15; 65F08

1. Introduction

We consider computing an arbitrary singular value of a tensor sum:

T := In ⊗ Im ⊗ A + In ⊗ B⊗ I` + C⊗ Im ⊗ I` ∈ R`mn×`mn, (1)

where A ∈ R`×`, B ∈ Rm×m, C ∈ Rn×n, In is the n× n identity matrix, and the symbol
“⊗” denotes the Kronecker product. The tensor sum T arises from a finite difference
discretization of three-dimensional constant coefficient partial differential equations (PDE)
defined as follows:[

−a ·
(
∇ ∗∇

)
+ b · ∇+ c

]
u(x, y, z) = g(x, y, z) in Ω, u(x, y, z) = 0 on ∂Ω, (2)

where Ω = (0, 1)× (0, 1)× (0, 1), a, b ∈ R3, c ∈ R, and the symbol “∗” denotes element-
wise products. If a = (1, 1, 1), then a · (∇ ∗∇) = ∆. Matrix T tends to be too large even if
A, B and C are not. Hence it is difficult to compute singular values of T with regard to the
memory requirement.
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Previous studies [1,2] provided methods to compute the maximum and minimum
singular values of T. By the previous studies, one can compute only the maximum and
minimum singular values of T without shift. On the other hand, one can compute arbitrary
singular values of T with the shift by this work. The previous studies are based on the
Lanczos bidiagonalization method (see, e.g., [3]), which computes the maximum and
minimum singular values of a matrix. For insights on Lanczos bidiagonalization method,
see, e.g., [4–6]. The Lanczos bidiagonalization method for T was implemented using
tensors and their operations to reduce the memory requirement.

The Lanczos method with the shift-and-invert technique, see, e.g., [3], is widely known
for computing an arbitrary eigenvalue λ of a symmetric matrix M ∈ Rn×n. This method
solves the shift-and-invert eigenvalue problem: (M− σ̃In)−1x = (λ− σ̃)−1x, where x is
the eigenvector of M corresponding to λ, and σ̃ is a shift point which is set to the nearby
λ (σ̃ 6= λ). Since the eigenvalue problem has the eigenvalue (λ− σ̃)−1 as the maximum
eigenvalue, the method is effective for computing the desired eigenvalue λ near σ̃. For
successful work using the shift-and-invert technique, see, e.g., [7–13].

Therefore, we obtain a computing method for an arbitrary singular value of T based
on the shift-and-invert Lanczos method. The method solves the following shift-and-invert
eigenvalue problem: (TTT − σ̃2 I`mn)

−1x = (σ2 − σ̃2)−1x, where σ is the desired singular
value of T, x is the corresponding right-singular vector, and σ̃ is close to σ (σ̃ 6= σ). This
shift-and-invert Lanczos method requires the solution of large-scale linear systems with the
coefficient matrix TTT − σ̃2 I`mn. Here, TTT − σ̃2 I`mn can be a dense matrix whose number
of elements is O(n6) even if T is a sparse matrix whose number of elements is O(n4) when
A, B, C ∈ Rn×n are dense.

Since it is difficult regarding the memory requirement to apply the direct method,
e.g., the Cholesky decomposition, which needs generating matrix TTT− σ̃2 I`mn, the pre-
conditioned conjugate gradient (PCG) method, see, e.g., [14], is applied, even though it
is difficult in terms of memory requirements to simply implement this shift-and-invert
Lanczos method and the PCG method since the size of T grows rapidly by the sizes of A,
B, and C.

We propose the following two techniques in this paper: (1) Efficient implementations
of the shift-and-invert Lanczos method for the eigenvalue problem of TTT and the PCG
method for TTT − σ̃2 I`mn using three-dimensional arrays (third-order tensors) and the
n-mode products, see, e.g., [15]. (2) Preconditioning matrices based on the eigenvalue
decomposition and the Schur decomposition of T for faster convergence of the PCG method.
Finally, we show the effectiveness of the proposed method through numerical experiments.

2. Preliminaries of Tensor Operations

A tensor means a multidimensional array. Particularly, the third-order tensor
X ∈ RI×J×K plays an important role. In the rest of this section, the definitions of some
tensor operations are shown. For more details, see, e.g., [15].

Firstly, a summation, a subtraction, an inner product, and a norm for X ,Y ∈ RI×J×K

are defined as follows:

(X ±Y)ijk := X ijk ±Y ijk, (X ,Y) :=
I

∑
i=1

J

∑
j=1

K

∑
k=1

X ijkY ijk, ‖X ‖ =
√
(X ,X ),

where X ijk denotes the (i, j, k) element of X . Secondly, the n-mode product of a tensor
X ∈ RI1×I2×···×IN and a matrix M ∈ RJ×In is defined as

(X ×n M)i1 ...in−1 jin+1 ...iN =
In

∑
in=1

X i1i2 ...iN Mpin ,

where n ∈ {1, 2, . . . N}, ik ∈ {1, 2, . . . , Ik} for k = 1, 2, . . . N, and j ∈ {1, 2, . . . , J}. Finally,
vec and vec−1 operators are the following maps between a vector space RI JK and a tensor
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space RI×J×K: vec : RI×J×K → RI JK and vec−1 : RI JK → RI×J×K. vec operator can
vectorize a tensor by combining all column vectors of the tensor into one long vector.
Conversely, vec−1 operator can reshape a tensor from one long vector.

3. Shift-and-Invert Lanczos Method for an Arbitrary Singular Value over Tensor Space

This section gives an algorithm for computing an arbitrary singular value of the tensor
sum T. Let σ and x be a desired singular value of T and the corresponding right singular
vectors, respectively. Then, the eigenvalue problem of T is written by TTTx = σ2x. Here,
introducing a shift σ̃ ≈ σ, the shift-and-invert eigenvalue problem is

(TTT − σ̃2 I`mn)
−1x =

1
σ2 − σ̃2 x. (3)

The shift-and-invert Lanczos method (see, e.g., [3]) computes the nearest singular
value σ based on Equation (3). Reconstructing this method over the `×m× n tensor space,
we obtain Algorithm 1 whose memory requirement is of O(n3) when n = m = `.

Algorithm 1: Shift-and-invert Lanczos method for an arbitrary singular value over
tensor space

1: Choose an initial tensor Q0 ∈ R`×m×n;
2: V := Q0, β0 := ||V ||;
3: for k = 1, 2, . . . , until convergence do
4: Qk := V/βk−1;
5: V := vec−1

{(
TTT − σ̃2 I`mn

)−1vec(Qk)
}

;
(Computed by Algorithms 3 or 4 in Section 4)

6: V := V − βk−1Qk−1;
7: αk := (Qk,V);
8: V := V − αkQk;
9: βk := ||V ||;

10: end for

11: Approximate singular value σ =

√
σ̃2 +

1
λ̃(k)

, where λ̃(k) is the maximum eigenvalue

of T̃k.

At step k, we have the following T̃k by Algorithm 1:

T̃k :=


α1 β1
β1 α2 β2

. . . . . . . . .
βk−2 αk−1 βk−1

βk−1 αk

 ∈ Rk×k.

To implement Algorithm 1, we need to iteratively solve the linear system

V := vec−1
{(

TTT − σ̃I`mn

)−1
vec(Qk)

}
, (4)

whose coefficient matrix is `mn× `mn, that is, the memory requirement is O(n6) when
n = m = `. Here, the convergence rate of the shift and invert Lanczos method depends on
the ratio of gaps between the maximum, the second maximum, and the minimum singular
values σ1, σ2, σm of (TTT − σ̃2 I`mn)

−1 as follows: (σ2
1 − σ2

2 )/(σ
2
1 − σ2

m).
In the next section, we consider solving the linear systems with memory requirement

of O(n3) when n = m = `.
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4. Preconditioned Conjugate Gradient (PCG) Method over Tensor Space

This section provides an efficient solver of Equation (4) using tensors. This linear
system is rewritten by v =

(
TTT − σ̃2 I`mn

)−1qk, where v := vec(V) and qk := vec(Qk).
Then we solve

(
TTT − σ̃2 I`mn

)
v = qk, where v and qk are unknown and known vectors.

Since the coefficient matrix is symmetric positive definite, we can use the preconditioned
conjugate gradient method (PCG method, see, e.g., [14]), which is one of the widely used
solvers. However, it is difficult to simply apply the method due to the complex nonzero
structure of the coefficient matrix TTT− σ̃2 I`mn. For applying the PCG method, we consider
transforming the linear system

(
TTT − σ̃2 I`mn

)
v = qk by the eigendecomposition and the

complex Schur decomposition as shown in the next subsections.

4.1. PCG Method by the Eigendecomposition

Firstly, T is decomposed into T := XDX−1, where X and D are a matrix whose column
vectors are eigenvectors and a diagonal matrix with eigenvalues, respectively. Then, it
follows that(

TTT − σ̃2 I`mn

)
v = qk ⇔

(
(XDX−1)H(XDX−1)− σ̃2 I`mn

)
v = qk

⇔
(

DXHXD− σ̃2XHX
)(

X−1v
)
= XHqk,

where D is the complex conjugate of D. We rewrite the above linear system into Ãỹ = b̃,
where Ã := DXHXD− σ̃2XHX, ỹ := X−1v, and b̃ := XHqk. Here, X is easily computed
by small matrices XA, XB, and XC whose column vectors are eigenvectors of A, B, and C as
follows: X = XC ⊗ XB ⊗ XA. Moreover, eigenvalues of T in D are obtained by summations
of each eigenvalue of A, B, and C.

The PCG method for solving Ãỹ = b̃ is shown in Algorithm 2. Since this algorithm
computes ỹ, we need to compute v = Xỹ. Section 4.1.1 proposes a preconditioning matrix
and Section 4.1.2 provides efficient computations using tensors.

Algorithm 2: PCG method over vector space for Ãỹ = b̃

1: Choose an initial vector x0 ∈ R`mn and p0 = 0 ∈ R`mn, and an initial scalar β0 = 0;
2: r0 = b̃− Ãx0;
3: z0 = M−1r0;
4: for k′ = 1, 2, . . . , until convergence do
5: pk′ = zk′−1 + βk′−1 pk′−1;
6: p̂k′ = Ãpk′ ;
7: αk′ = (zk′−1, rk′−1)/

(
pk′−1, p̂k′

)
;

8: xk′ = xk′−1 + αk′ pk′ ;
9: rk′ = rk′−1 − αk′ p̂k′ ;

10: zk′ = M−1rk′ ;
11: βk′ = (zk′ , rk′)/(zk′−1, rk′−1);
12: end for
13: Obtain an approximate solution ỹ ≈ xk′ ;

4.1.1. Preconditioning Matrix

Algorithm 2 solves (
M−1 ÃM−H

)(
MHỹ

)
= M−1b̃,

where M ∈ R`mn×`mn is a preconditioning matrix. M must satisfy the following two condi-
tions: (1) a condition number of M−1 Ã is close to 1; (2) the matrix-vector multiplication of
M−1 is easily computed.
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Therefore, we propose a preconditioning matrix based on the eigendecomposition
of T

M := DD− σ̃2 I`mn. (5)

Since M is the diagonal matrix, the second condition of the preconditioning matrix is
satisfied. Moreover, if T is symmetric, X is the unitary matrix, that is, XHX = I`mn. In the
case of the symmetric matrix T, we obtain M = Ã. Namely, the proposed matrix satisfies
the first conditions when T is symmetric. So, even if T is not exactly symmetric, if T is
almost symmetric, then we can expect the preconditioning matrix M to be effective.

4.1.2. Efficient Implementation of Algorithm 2 by the Eigendecomposition

Similarly to obtaining Algorithm 1, to improve an implementation of Algorithm 2, we
reconstruct `mn dimensional vectors into `×m× n tensors via vec−1 operator as follows:
X k′ := vec−1(xk′), Rk′ := vec−1(rk′), P k′ := vec−1(pk′), Z k′ := vec−1(zk′), and P̂ k′ :=
vec−1(p̂k′). Most computations of vectors are simply transformed into computations of
tensors because of the linearity of vec−1 operator.

In the rest of this section, we show the computations of vec−1(Ãvec(P k′)
)

and
vec−1(M−1vec(Rk′)

)
, which are required in the PCG method, using the 1, 2, and 3-

mode products for tensors and the definition of T. First, from the definitions of Ã and
X, vec−1(Ãvec(P k′)

)
= vec−1(DXHXDvec(P k′))− σ̃2vec−1(XHXvec(P k′)) holds. Let

D = vec−1(diag(D)), where diag(D) returns an `mn-dimensional column vector with
diagonals of D. Then, Dijk := λ

(A)
i + λ

(B)
j + λ

(C)
k , where λ

(A)
i , λ

(B)
j , and λ

(C)
k denote the

eigenvalues of A, B, and C. Note that (vec−1(Dvec(P k′)))ijk = Dijk(P k′)ijk since we com-
pute (Dpk′)i = Dii(pk′)i for i = 1, 2, . . . , `mn. Using the relation between the Kronecker
product and the mode products via vec−1 operator, we compute

vec−1(Ãvec(P)
)

= D ∗
{
(D ∗P k′)×1 XH

A XA + (D ∗P k′)×2 XH
B XB + (D ∗P k′)×3 XH

C XC

}
− σ̃2

(
P k′ ×1 XH

A XA +P k′ ×2 XH
B XB +P k′ ×3 XH

C XC

)
, (6)

where “∗” denotes elementwise product.
Next, from the definition of the diagonal matrix M in Equation (5), we easily obtain(

M−1
)

ii
=

1
(D)ii(D)ii − σ̃2

, i = 1, 2, . . . , `mn.

Here, let M = vec−1(diag(M−1)). Then it follows that Mijk = 1/(DijkDijk − σ̃2).
vec−1(M−1vec(Rk′)

)
is computed by

vec−1
(

M−1vec(Rk′)
)
= M ∗Rk′ . (7)

As shown in Algorithm 3, the PCG method can be implemented using the precondi-
tioning matrix M and the aforementioned computations, where the linear system Ãỹ = b̃
is transformed into Ã vec(Ỹ) = vec(B̃), where vec(B̃) := b̃ = vec(Qk ×1 XH

A +Qk ×2
XH

B +Qk ×3 XH
C ) and vec(Ỹ) := ỹ. Algorithm 3 requires only small matrices A, B, and

C and `×m× n tensors X k′ ,Rk′ ,P k′ , and Z k′ . Therefore the memory requirement is of
O(n3) in the case of n = m = `.
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4.2. PCG Method by the Schur Decomposition

Firstly, the Schur decomposition of T is T := QRQH, where R and Q are upper
triangular and unitary matrices, respectively. Then,(

TTT − σ̃2 I`mn

)
v = qk ⇔

(
(QRQH)H(QRQH)− σ̃2 I`mn

)
v = qk

⇔
(

RHR− σ̃2 I`mn

)
(QHv) = QHqk.

This linear system denotes Ãỹ = b̃, where Ã := RHR − σ̃2 I`mn, ỹ := QHv, and
b̃ := QHqk. The PCG method for Ãỹ = b̃ is shown in Algorithm 2. R and Q are obtained
from the complex Schur decomposition of A, B, and C as follows: R = In ⊗ Im ⊗ RA +
In ⊗ RB ⊗ I` + RC ⊗ Im ⊗ I` and Q = QC ⊗ QB ⊗ QA from the definition of T, where
A = QARAQH

A , B = QBRBQH
B , and C = QCRCQH

C by the Schur decomposition of A, B,
and C.

Algorithm 3: PCG method over tensor space for the 5-th line of Algorithm 1 [Pro-
posed inner algorithm using the eigendecomposition]

1: Choose an initial tensor X 0 ∈ R`×m×n and P0 = O`×m×n, and an initial scalar β0 = 0;
2: R0 = (Qk ×1 XH

A +Qk ×2 XH
B +Qk ×3 XH

C )

−
[
D ∗ {(D ∗X 0)×1 XH

A XA + (D ∗X 0)×2 XH
B XB + (D ∗X 0)×3 XH

C XC}
−σ̃2(X 0 ×1 XH

A XA +X 0 ×2 XH
B XB +X 0 ×3 XH

C XC)
]
;

3: Z0 = M ∗R0;
4: for k′ = 1, 2, . . . , until convergence do
5: P k′ = Z k′−1 + βk′−1P k′−1;
6: P̂ k′ = D ∗

{
(D ∗P k′)×1 XH

A XA + (D ∗P k′)×2 XH
B XB + (D ∗P k′)×3 XH

C XC
}

−σ̃2(P k′ ×1 XH
A XA +P k′ ×2 XH

B XB +P k′ ×3 XH
C XC

)
;

7: αk′ = (Z k′−1,Rk′−1)/
(
P k′−1, P̂ k′

)
;

8: X k′ = X k′−1 + αk′P k′ ;
9: Rk′ = Rk′−1 − αk′P̂ k′ ;

10: Z k′ = M ∗Rk′−1;
11: βk′ = (Z k′ ,Rk′)/(Z k′−1,Rk′−1);
12: end for
13: Obtain an approximate solution Ỹ ≈ X k′ ;
14: V = Ỹ ×1 XA + Ỹ ×2 XB + Ỹ ×3 XC;

4.2.1. Preconditioning Matrix

A preconditioning matrix for Ãỹ = b̃ satisfies the conditions in Section 4.1.1. Therefore,
we propose the preconditioning matrix based on the Schur decomposition

M := DRDR − σ̃2 I`mn,

where DR is a diagonal matrix with diagonals of R. Since M is also the diagonal matrix,
the above second conditions are satisfied. Moreover, if T is symmetric, R is a diagonal
matrix, that is, R = DR. Therefore M = Ã in the case of the symmetric matrix T. From
this, we expect that the preconditioning matrix M is effective if T is not symmetric but
almost symmetric.

4.2.2. Efficient Implementation of Algorithm 2 by the Schur Decomposition

We show the computations of vec−1(Ãvec(P k′)
)

and vec−1(M−1vec(Rk′)
)

for the
PCG method over tensor space using the 1, 2, and 3-mode products for tensors and the
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definition of T. First, from the definitions of Ã and R, we have vec−1(Ãvec(P k′)
)
=

vec−1(RH(Rvec(P k′))− σ̃2vec(P k′)
)
. Therefore,

vec−1(Ãvec(P k′)
)
= P k′ ×1 RH

A RA +P k′ ×2 RH
B RB +P k′ ×3 RH

C RC − σ̃2P k′ .

Next, from M = DRDR − σ̃2 I`mn, we easily obtain(
M−1

)
ii
=

1
(DR)ii(DR)ii − σ̃2

, i = 1, 2, . . . , `mn.

Similarly to Section 4.1.2, let D = vec−1(diag(DR)) and M = vec−1(diag(M−1)).
Then, we have Mijk = 1/(DijkDijk − σ̃2), where Dijk = (RA)ii + (RB)jj + (RC)kk.
vec−1(M−1vec(Rk′)) is computed by (7).

As shown in Algorithm 4, the PCG method can be implemented using the precondi-
tioning matrix M and the aforementioned computations, where the linear system Ãỹ = b̃
is transformed into Ã vec(Ỹ) = vec(B̃), where vec(B̃) := b̃ = vec(Qk ×1 QA +Qk ×2
QB +Qk ×3 QC) and vec(Ỹ) := ỹ. Algorithm 4 just requires small matrices A, B, and
C and ` × m × n tensors X k′ ,Rk′ ,P k′ , and Z k′ , namely, do not require large matrix T.
Therefore the memory requirement is of O(n3) in the case of n = m = `.

Algorithm 4: PCG method over tensor space for the 5-th line of Algorithm 1 [Pro-
posed inner algorithm using the Schur decomposition]

1: Choose an initial tensor X 0 ∈ R`×m×n and P0 = O`×m×n, and an initial scalar β0 = 0;
2: R0 = (Qk ×1 QA +Qk ×2 QB +Qk ×3 QC)

−
(
X 0 ×1 RH

A RA +X 0 ×2 RH
B RB +X 0 ×3 RH

C RC − σ̃2X 0
)
;

3: Z0 = M ∗R0;
4: for k′ = 1, 2, . . . , until convergence do
5: P k′ = Z k′−1 + βk′−1P k′−1;
6: P̂ k′ = P k′ ×1 RH

A RA +P k′ ×2 RH
B RB +P k′ ×3 RH

C RC − σ̃2P k′ ;

7: αk′ = (Z k′−1,Rk′−1)/
(
P k′−1, P̂ k′

)
;

8: X k′ = X k′−1 + αk′P k′ ;
9: Rk′ = Rk′−1 − αk′P̂ k′ ;

10: Z k′ = M ∗Rk′ ;
11: βk′ = (Z k′ ,Rk′)/(Z k′−1,Rk′−1);
12: end for
13: Obtain an approximate solution Ỹ ≈ X k′ ;
14: V = Ỹ ×1 QA + Ỹ ×2 QB + Ỹ ×3 QC;

5. Numerical Experiments

This section provides results of numerical experiments using Algorithm 1 with
Algorithm 3 and Algorithm 1 with Algorithm 4. There are the two purposes of this ex-
periments: (1) to confirm convergence to the singular value of T nearest to the shift by
Algorithm 1, and (2) to confirm the effectiveness of the proposed precondition matrix
in Algorithms 3 and 4. For comparison, the results using Algorithms 3 and 4 in the case
of M = I are also given as the results by the CG method. All the initial guesses of
Algorithms 1, 3, and 4 are tensors with random numbers. The stopping criteria used in
Algorithm 1 was βk||eT

k sk
MAX|| < 10−8, where sk

MAX is the eigenvector corresponding
to the maximum eigenvalue of T̃k and ek denotes the k-th canonical basis for k dimen-
sional vector space. Algorithms 3 and 4 were stopped when either the relative residual
||Rk′ ||/||B̃|| < 10−12 or the maximum number of iterations k′ > 20, 000 were satisfied.

All computations were carried out using MATLAB R2021a version on a workstation
with Xeon processor 3.7 GHz and 128 GB of RAM.
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In the following subsection, we show the results computing the 5-th maximum,
median, and 5-th minimum singular values σ of the test matrices T. For all the cases, for
the first purpose, we set the shift value in Algorithm 1 as

σ̃ = σ− 10−2, (8)

where σ̃’s and σ’s are the perturbed singular values of T and the aforementioned singular
values computed by the svd function in MATLAB, respectively.

Test matrices T in Equation (1) are obtained from a seven-point central difference
discretization of the PDE (2) in over an (n + 1)× (n + 1)× (n + 1) grid. The test matrices
T in Equation (1), whose size is n3 × n3, are generated from

A = B = C, A :=
1
h2 aM1 +

1
2h

bM2 +
1
3

cIn, (9)

where h = 1/(n+ 1), M1 and M2 are symmetric and skew-symmetric matrices given below.

M1 =


−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

 ∈ Rn×n, M2 =


0 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0

 ∈ Rn×n.

Numerical Results

In all tables, the number of iterations of the shift-and-invert Lanczos method (“the
Lanczos method" hereafter) and the average of the number of iterations of the CG or PCG
method based on the eigendecomposition or the Schur decomposition are summarized.
“Not converged” denotes Algorithm 3 or 4 did not converge.

We show the first results in the case of almost symmetric matrix with a = c = 1
and b = 0.01 in Equation (9) for the shift (8). From Tables 1–3, the numbers of iterations
of Lanczos methods using any inner algorithms were almost the same. Focusing on the
effectiveness of the proposed preconditioning matrix M, the numbers of iterations of both
PCG methods were less than 19 regardless of the size of T. On the other hand, the numbers
of iterations of both CG methods linearly increased depending on the size of T. From these
facts, the preconditioning matrix M is effective in the case of almost symmetric matrix
T. Moreover, the number of iterations of the shift and invert Lanczos method for the
median singular value is larger than the number for other singular values since the distance
between the maximum and second maximum singular values of (TTT− σ̃2 I`mn)

−1 for the
median singular value of T is closer than the cases of other singular values.

Here, the running time of Table 1 is summarized in Table 4. All the running time
by the PCG method were less than the time by the CG method. Moreover, the running
time by the PCG methods of Algorithms 3 and 4 were similar since the computational
complexities of these algorithms are similar. Thus, the running time is strongly correlated
with the number of iterations of Algorithms 3 and 4.

In addition, convergence histories of n = 15 in Tables 1 and 2 are shown in
Figures 1 and 2. Figure 2 displays that the relative residual norms unsteadily decreased
when the number of iterations of the shift and invert Lanczos method is not small.
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Table 1. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th max. singular value of almost symmetric matrix T with
a = c = 1 and b = 0.01 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 4 43.0 4 16.0 4 35.8 4 15.0
10 4 90.0 4 17.0 4 86.5 4 15.0
15 3 134.7 3 17.0 3 128.0 3 17.0
20 4 180.0 4 17.0 4 169.3 4 17.0
25 3 225.7 3 17.0 3 211.0 3 17.0
30 3 273.0 3 17.0 3 252.3 3 17.0

Table 2. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the median of singular value of almost symmetric matrix T with
a = c = 1 and b = 0.01 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 15 139.3 15 13.0 15 109.1 15 15.0
10 7 1081.0 7 13.0 7 943.7 7 15.0
15 41 5201.6 39 15.0 39 4858.1 41 17.0
20 13 8339.5 4 16.0 4 6847.3 4 15.0
25 (Not converged.) 48 17.0 (Not converged.) 48 17.0
30 (Not converged.) 8 19.0 (Not converged.) 8 15.0

Table 3. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th min. singular value of almost symmetric matrix T with
a = c = 1 and b = 0.01 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 3 124.7 3 13.0 3 97.9 3 14.6
10 3 748.1 3 13.0 3 654.9 3 14.1
15 3 4872.5 3 14.9 3 4531.1 3 16.7
20 3 775.5 3 13.8 3 2358.8 3 15.0
25 3 1494.0 3 16.8 3 1472.0 3 16.8
30 3 2158.0 3 16.8 3 2088.0 3 15.0

Table 4. Running time (seconds) of the Lanczos method using the CG/PCG method in the case of
the 5-th max. singular value of almost symmetric matrix T with a = c = 1 and b = 0.01 in (9) for the
shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos with CG Lanczos with PCG Lanczos with CG Lanczos with PCG

n

5 0.114 0.071 0.095 0.061
10 0.578 0.095 0.566 0.086
15 1.402 0.137 1.448 0.192
20 6.639 0.437 6.446 0.335
25 13.632 0.558 12.686 0.432
30 35.121 1.145 33.203 0.836
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Figure 1. Convergence histories with relative residual norm of the Lanczos method for the 5-th max.
singular value of the almost symmetric matrix T whose size is n = 15.

Figure 2. Convergence histories with relative residual norm of the Lanczos method for the median
singular value of the almost symmetric matrix T whose size is n = 15.

Next, we show the second results in the case of slightly symmetric matrix with a = c = 1
and b = 0.1 in Equation (9) for the shift (8). From Table 5, both PCG methods did not converge
for computing the 5-th maximum singular values of slightly symmetric matrix T. It seems that
the linear system for TTT− σ̃2I`mn is ill-conditioned since 10−2 in the shift (8) is much less
than the 5-th maximum singular values of the matrix. In Appendix A, we show the results
using relative shift without the effect of the magnitude of the singular values. Table 6 shows
Algorithms 1 and 4, that is, the algorithms based on Schur decomposition, was more robust
than Algorithms 1 and 3, that is, the algorithms based on the eigendecomposition. From
Table 7, both PCG methods converged regardless of n, and the numbers of iterations of
both PCG methods were less than the number of iterations of both CG method. Namely, it
seems that the preconditioning matrix M can be effective in the case of a slightly symmetric
matrix T when computing the 5-th minimum and median singular values of T.

Table 5. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th max. singular value of slightly symmetric matrix T with
a = c = 1 and b = 0.1 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 4 50.0 (Not converged.) 4 37.8 (Not converged.)
10 4 100.0 (Not converged.) 4 87.3 (Not converged.)
15 3 152.0 (Not converged.) 3 131.0 (Not converged.)
20 4 205.5 (Not converged.) 4 172.0 (Not converged.)
25 3 262.0 (Not converged.) 3 230.0 (Not converged.)
30 3 306.7 (Not converged.) 3 259.0 (Not converged.)
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Table 6. Number of iterations of the Lanczos method and the average of numbers of iterations of the
CG/PCG method in the case of the median of singular value of slightly symmetric matrix T with
a = c = 1 and b = 0.1 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 13 231.8 (Not converged.) 13 193.1 13 73.0
10 6 1582.7 6 55.0 6 1272.7 6 29.0
15 30 12,174.6 (Not converged.) 31 11061.9 31 97.0
20 4 13,777.8 (Not converged.) 4 8799.3 (Not converged.)
25 (Not converged.) (Not converged.) (Not converged.) 83 116.0
30 (Not converged.) (Not converged.) (Not converged.) 27 45.0

Table 7. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th min. singular value of slightly symmetric matrix T with
a = c = 1 and b = 0.1 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 3 195.5 3 59.0 3 163.9 3 68.4
10 3 949.8 3 58.0 3 771.2 3 44.0
15 3 616.0 3 63.0 3 597.3 3 94.5
20 3 859.8 3 63.0 3 2999.8 3 57.0
25 3 1695.7 3 63.0 3 1559.3 3 114.4
30 3 2388.0 3 63.0 3 2262.0 3 46.1

Finally, we show the third results in the case of marginally symmetric matrix with
a = c = 1 and b = 0.2 in Equation (9) for the shift (8). Both PCG methods did not converge
for computing the 5-th maximum singular values of T as shown in Table 8, similarly to
Table 5. Moreover, computing the median singular values of T sometimes did not converge
from Table 9. In Table 10, all methods converged for the 5-th minimum singular value of T.
The numbers of iterations by the PCG method with the proposed preconditioning matrix
were less than the number of iterations by the CG method in most cases. It seems that the
preconditioning matrix M can be effective in the case of the marginally symmetric matrix
T when computing the 5-th minimum singular values of T.

Table 8. Number of iterations of the Lanczos method and the average of numbers of iterations of the
CG/PCG method in the case of the 5-th max. singular value of marginally symmetric matrix T with
a = c = 1 and b = 0.2 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 4 52.8 (Not converged.) 4 39.8 (Not converged.)
10 4 107.0 (Not converged.) 4 93.0 (Not converged.)
15 3 162.0 (Not converged.) 3 135.7 (Not converged.)
20 4 217.8 (Not converged.) 4 206.3 (Not converged.)
25 3 271.3 (Not converged.) 3 248.0 (Not converged.)
30 3 334.0 (Not converged.) 3 260.0 (Not converged.)
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Table 9. Number of iterations of the Lanczos method and the average of numbers of iterations of the
CG/PCG method in the case of the median of singular value of marginally symmetric matrix T with
a = c = 1 and b = 0.2 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 11 481.4 (Not converged.) 10 355.6 (Not converged.)
10 6 2123.8 (Not converged.) 10 1550.8 10 4262.4
15 (Not converged.) (Not converged.) (Not converged.) (Not converged.)
20 15 13,268.7 89 6358.9 7 10019.9 108 160.0
25 (Not converged.) (Not converged.) (Not converged.) (Not converged.)
30 (Not converged.) 90 1150.0 (Not converged.) 28 11,764.0

Table 10. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th min. singular value of marginally symmetric matrix T
with a = c = 1 and b = 0.2 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 5 313.9 5 295.8 5 213.9 5 1077.8
10 3 1247.8 3 187.0 3 1150.6 3 3048.8
15 3 650.0 3 201.0 3 606.7 3 177.0
20 3 929.3 3 6151.3 3 847.8 3 162.8
25 3 1800.3 3 205.0 3 1683.7 3 249.0
30 3 2585.7 3 1118.6 3 2371.3 3 181.0

6. Conclusions

We considered computing an arbitrary singular value of a tensor sum. The shift-and-
invert Lanczos method and the PCG method reconstructed over tensor space. We proposed
the preconditioning matrices which are the following two diagonal matrices: (1) whose
diagonals of the eigenvalues by the eigendecomposition, and (2) whose diagonals of the
upper diagonal matrix by the Schur decomposition. This preconditioning matrix can be
effective if the tensor sum is almost symmetric.

From numerical results, we confirmed that the proposed method reduces memory
requirements without any conditions. The numbers of iterations of the PCG method
by the proposed preconditioning matrix were reduced in most cases of the almost and
slightly symmetric matrix. Moreover, the numbers of iterations of the PCG method by
the proposed preconditioning matrix were also reduced in certain cases of the marginally
symmetric matrix.

For future work, we will consider a robust preconditioning matrix for slightly or
marginally symmetric tensor sum, a suitable preconditioning matrix for non-symmetric tensor
sum, parallel implementations of the proposed algorithms, and finding real-life applications.
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Abbreviations
The following abbreviations are used in this manuscript:

PCG Preconditioned Conjugate Gradient
CG Conjugate Gradient
PDE Partial Differential Equation

Appendix A

This appendix gives the numerical results in the case of the 5-th maximum and the
median singular values of slightly and marginally symmetric matrices by the relative shift

σ̃ = σ− 10−2σ, (A1)

where σ’s are the singular values of T computed by the svd function in MATLAB. The
condition of the numerical experiments except for the setting of the shift is the same as the
experiments in Section 5.

Firstly, we show the results in the case of slightly symmetric matrix with a = c = 1
and b = 0.1 in Equation (9) for the shift (A1) in Tables A1 and A2. Computing the 5-th
and the median singular values of the slightly symmetric matrix using the shift (A1), the
number of iterations of both PCG methods is much less than the number of iterations of
both CG methods.

Secondly, Tables A3 and A4 are the results in the case of marginally symmetric matrix
with a = c = 1 and b = 0.2 in Equation (9) for the shift (A1). From Tables A3 and A4, both
PCG methods converged faster than both CG method using the relative shift. Moreover,
the PCG method by Algorithm 4 is more robust than the PCG method by Algorithm 3.

Consequently, when we compute the 5-th maximum and the median singular values
of the slightly symmetric matrix, the numerical experiments of Section 5 and Appendix A
imply that the proposed preconditioning matrix can work in the case of a suitable shift.

Table A1. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th max. singular value of slightly symmetric matrix T with
a = c = 1 and b = 0.1 in (9) for the shift (A1).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 5 41.0 5 17.0 5 35.8 5 15.0
10 7 84.0 7 20.0 7 77.0 7 13.0
15 4 162.0 4 22.0 4 154.0 4 17.0
20 7 223.7 7 23.0 7 197.3 7 12.0
25 5 383.6 5 24.0 5 307.4 5 15.0
30 6 522.7 6 24.0 6 426.5 6 13.0

Table A2. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the median of singular value of slightly symmetric matrix T with
a = c = 1 and b = 0.1 in (9) for the shift (A1).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 23 139.3 23 38.0 23 105.9 23 14.0
10 10 1081.0 10 21.0 10 1074.4 10 22.0
15 21 5201.6 21 21.0 21 3470.4 21 14.0
20 17 7333.1 (Not converged.) 17 6242.4 17 16.0
25 11 16,034.1 11 32.0 11 14,360.6 11 14.0
30 (Not converged.) 12 23.0 (Not converged.) 12 17.0



Axioms 2021, 10, 211 14 of 14

Table A3. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th max. singular value of marginally symmetric matrix T
with a = c = 1 and b = 0.2 in (9) for the shift (A1).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 5 43.0 5 25.0 5 38.4 5 17.0
10 7 90.0 7 29.0 7 79.0 7 13.0
15 4 174.5 4 32.0 4 152.5 4 62.0
20 7 253.0 7 33.0 7 198.1 7 15.0
25 5 403.0 5 35.0 5 319.0 5 19.0
30 6 626.0 6 36.0 6 441.2 6 16.0

Table A4. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the median of singular value of marginally symmetric matrix T
with a = c = 1 and b = 0.2 in (9) for the shift (A1).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 24 138.3 (Not converged.) 25 115.6 23 17.0
10 10 1479.0 (Not converged.) 10 1119.2 10 18.0
15 21 4506.6 21 34.0 21 3787.0 21 16.0
20 17 8603.3 (Not converged.) 17 6604.5 17 21.0
25 11 18,267.0 (Not converged.) 11 14,991.6 11 30.0
30 (Not converged.) 13 35.0 (Not converged.) 13 31.0
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