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Abstract: The step derivative of a complex function can be defined with various methods. The
step direction defines a basis that is distinct from that of a complex number; the derivative can
then be treated by using Taylor series expansion in this direction. In this study, we define step
derivatives based on complex numbers and quaternions that are orthogonal to the complex basis
while simultaneously being distinct from it. Considering previous studies, the step derivative
defined using quaternions was insufficient for applying the properties of quaternions by setting a
quaternion basis distinct from the complex basis or setting the step direction to which only a part of
the quaternion basis was applied. Therefore, in this study, we examine the definition of quaternions
and define the step derivative in the direction of a generalized quaternion basis including a complex
basis. We find that the step derivative based on the definition of a quaternion has a relative error in
some domains; however, it can be used as a substitute derivative in specific domains.

Keywords: complex functions; quaternion; step derivatives; non-commutativity

MSC: Primary 32G35; 32W50; 32A99; Secondary 11E88

1. Introduction

It is difficult to directly identify targets in the complex domain. Thus, there is sig-
nificant reluctance in using complex numbers when performing practical calculations.
However, to obtain a better solution to the problem of real-valued finite difference approxi-
mation, the use of complex numbers for computational purposes plays an important role.
Several studies have used the complex domain to explain various physical phenomena,
and it can be confirmed that the expression of a phenomena using complex numbers is
more efficient than the expression of it by using real numbers (see [1–5]). The use of
complex variables to develop estimates of derivatives through complex step approximation
started with the study by Lyness and Moler [6] and Lyness [7], wherein they introduced
several methods using complex variables, including the calculation of the nth derivative
of an analytic function. Consequently, based on the methods introduced by [6,7], Squire
and Trapp [8] derived a simple expression for estimating the first derivative of complex
variables. They found that the estimates were suitable for use in modern numerical cal-
culations. Subsequently, various recent studies have used a complex step approach in
engineering fields. Anderson et al. [9] and Newman et al. [10] used sensitivity analysis in
a multidisciplinary environment of computational fluid dynamics. Martins et al. [11,12]
examined the results by studying the derivation of the step derivative and the complex
direction for a real function by using the Taylor series expansion concurrently. A complex
step differential approximation and its application to a numerical algorithm were presented
(see [13–16]). The first derivative can be determined through a complex step-differential
approximation, and the analysis accuracy can be verified. In order to improve the analysis
accuracy, the difference in the step derivative in the complex direction, considering the
real function in the numerical algorithm ([17,18]), was treated based on the Taylor series
of expansion. The complex step approximation approach offers four primary advantages
over the standard finite difference method [19,20].
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The complex step derivative for real functions is suitable for representing the nu-
merical derivative of real functions because the imaginary unit is distinguished from the
real line. Therefore, in this study, we propose a step derivative for a complex function as
an extension of the step derivative of a real function. In particular, a limitation exists in
setting the direction of the step when deriving the complex step derivative of the complex
function because the step direction is not independent of the complex function. Therefore,
in previous studies, the step derivative was derived by defining an imaginary number that
is distinct from the imaginary number constituting a complex number (see [19,20]). These
studies proposed a multicomplex number expressed as Cn = {z1 + z2in | z1, z2 ∈ Cn−1}.
By defining i2n = −1, each in is treated as an imaginary number of different dimensions in
order to form a step derivative. Based on this, the step derivative was extended by using a
unit that was distinguished from i, constituting a complex number. In 1894, the quaternion
was proposed by Hamilton as an extension of the complex number systems, and various
algebraic and analytic research results had subsequently been derived. The application
of complex variables to develop estimates of the derivatives used by the Taylor series ex-
pansion has also been extensively studied. Kim et al. [21–23] investigated the composition
and properties of the regularity of quaternion functions based on the algebraic features of
quaternions. They suggested that the function limit and derivative of the quaternionic func-
tions can be defined on various forms of quaternions. For example, the non-commutativity
of a product in quaternions is a typical characteristic of quaternionic functions. Therefore,
they applied differentiation calculations and the results of various types of differential
operators to theorems in order to replace the definition of differential properties .

In 2020, Roelfs et al. [24] proposed a quaternion-step derivative by defining the ge-
ometric algebra G(R3). Orthogonal basis vectors ei (i = 1, 2, 3) satisfying e2

i = 1 and
eiej = −ejei for i 6= j were suggested. By using the non-commutativity of orthogonal
basis vectors ei, the bivectors ei can be associated with the quaternion q = a + ib + jc + kd
such that the following is the case.

i := e3e2, j := e1e3, k := e2e1.

The imaginary unit i of the complex numbers is denoted by i := e1e2e3, known as
the pseudoscalar of G(R3). In [24], the complex basis i is treated separately based on the
quaternion, that is, the complex basis i is treated as a scalar considering the quaternion.
This indicates that the complex basis i and quaternion base i, j, k are treated as individual
bases that are commutative and independent of the product. However, in this study, we
consider quaternions as extensions of complex numbers, indicating that the imaginary
number i defined in the complex function is the basis for constituting the quaternion and
is treated as a basis with non-commutativity for the product of j and k. The set H of the
quaternions is defined as follows:

H = {q | q = x0 + x1i + x2 j + x3k, xr ∈ R (r = 0, 1, 2, 3)},

satisfying i2 = j2 = k2 = −1 and ij = −ji = k. Considering the structure of the quaternion,
i, j, and k are independent of each other and are the basis of the orthogonal unit of the
quaternion. Thus, the base i of the complex number and bases j and k of the quaternions
are mutually transformed. Previously defined step derivatives for complex functions use a
setup in which the quaternion and the complex bases are commutative. Consequently, it is
difficult to apply the properties of the quaternion function because it is difficult to use a
quaternionic elementary function that utilizes the definition of the actual quaternion by
applying its non-commutativity. Furthermore, motivated by Roelfs’ results, Kim [25] have
focused on the underlying properties of quaternions by considering the basis of the defini-
tion of the quaternions. Thus, we defined the step derivative in the quaternion direction
and evaluated its accuracy by considering the complex function using various examples.
In [25], a step derivative limited to j was studied. Considering the characteristics of the
quaternion structure, more diverse quaternion directions can be configured. Kim defines
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the step derivative using only a part of the quaternion basis; therefore, the quaternion
function used as an example is not defined in the whole quaternion system. Compared to
the step derivative used in the previous study, it can be confirmed that the region where the
relative error exists is wide, and the magnitude of the relative error in that region is large.

In this study, we aim to determine the quaternion step derivative for a complex func-
tion using a generalized setting of the step size in the quaternion direction and to examine
the relative error by using the derivative defined in complex analysis. In Section 2, the step
derivative is first presented by the generalized quaternion (j, k)-direction, which is defined
by bj + ck, where b, c ∈ R and r := b2 + c2 are the squares of the norm of bj + ck. Since the
derivative of the complex function is defined in the complex system, as presented in [26],
the generalized quaternionic step derivative is expressed by using the properties referring
to the orthogonality and non-commutativity of i, j, k and specifying the terms included in
the Taylor series expansion in the complex system. Moreover, using the definition of the
generalized quaternionic step derivative, we examine the generalized quaternionic step
derivatives of elementary functions such as ez, sin z, and cos z as defined in the complex
analysis. In Section 3, we calculated the value of the derivative at any point to examine
the use of generalized quaternionic step derivatives. In addition, we investigated the
relative error between the derivative value calculated from the derivative based on the
limit definition in the complex analysis and the generalized quaternionic step derivative
value. Furthermore, in order to visually estimate the range of occurrence of relative er-
ror and its size, a picture using Maple programming was implemented. Additionally,
Section 3 considers f (z) = ez/

√
cos3 z + sin3 z as an example; this is a common example

used in many studies on step derivatives of complex functions. We determined the step
derivative by considering f (z) = ez/

√
cos3 z + sin3 z as the step derivative proposed in

this study. The relative error with the derivative in the complex analysis is calculated from
the result, and the use and effectiveness of the generalized quaternionic step derivative
are confirmed by using the visualization. In Section 4, the generalized quaternionic step
derivative proposed in the previous sections is considered, and the characteristics of the
derivative, depending on the direction and magnitude of the step direction of the Taylor
series expansion, are summarized. Based on this, we will be able to define the step differ-
ential in the basic directions of various Clifford algebras in the future and reveal a plan to
investigate the accuracy and utility of these derivatives.

2. Generalized Quaternionic Step Derivative in the (j, k)-Direction

We derive the derivative set in the step direction by using a linear combination of
the bases j and k of the quaternions that are distinguished from the base of the complex
number. The Taylor series expansion for a holomorphic function on C is written as follows.
For z ∈ C, h ∈ R and any b, c ∈ R, we have the following:

f (z + (bj + ck)h) = f (z) + f ′(z)(bj + ck)h +
1
2!

f ′′(z)(bj + ck)2h2 +O(h3)r2, (1)

where any real numbers b, c, and r > 0 satisfy b2 + c2 = r. Therefore, we obtain the follow-
ing

− f (z + (bj + ck)h)(bj + ck) =− f (z)(bj + ck) + f ′(z)hr

+
1
2!

f ′′(z)(bj + ck)h2r +O(h3)r2.

Let [ ]C : H→ C referenced in [25] be a function known as the complex part of · that
outputs a complex element among the input quaternions. For example,
[a + bi + cj + dk]C = a + bi. Thus, we consider the complex part of both sides of the Taylor
series Expansion (1). Dividing it by h and r yields the following definition.
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Proposition 1. Let f : C → C be a complex function. For z ∈ C and any b, c ∈ R, f ′(z) is
expressed by the following:

f ′(z) =
1
rh

[− f (z + (bj + ck)h)(bj + ck)]C +O(h2)r, (2)

which is known as the generalized quaternionic step derivative in the (j, k)-direction for a complex-
valued function of a complex variable.

It is referred to as the generalized (j, k)-step derivative. The term O(h2)r approaches
zero when each of h and r are sufficiently small to approximately obtain the correction O.
The generalized quaternion (j, k)-step derivative can be used to infer the approximation
of the derivative of a complex function without considering the limit of the difference.
However, a deviation from the actual value occurs owing to the error termO(h2)r. The term
O(h2)r with order h2 or higher can be ignored because the interval h and r can be chosen
to approximately machine precision. Hence, the approximation is an O(h2)r estimate of
the derivative of f . The second-order errors in the function derivative (2) can be eliminated
when using finite precision arithmetic by ensuring that h and r are sufficiently small.
However, if ε is the relative working precision of a given algorithm, in order to make the
truncation error of the derivative estimate vanish, we require the following.

|O(h2)r| < ε| f ′(z)|.

Although steps h and r can be set to extremely small values, it is not always possible
to satisfy these conditions, especially when f ′(z) approaches zero. Therefore, using several
examples, we examined whether the generalized quaternion (j, k)-step derivative is differ-
ent from the typical definition of the derivative of a complex function in complex analysis.
In addition, the region that minimizes O(h2)r is examined according to the range wherein
h and r are defined.

Using the definition of the generalized (j, k)-step derivative, we present the step
derivatives of the following elementary functions.

Example 1. For z = x + yi ∈ C, we find that the generalized (j, k)-step derivative for the
exponential function f (z) = ez is denoted by the following.

f ′(z) ≈ 1
rh

[−e(z+(bj+ck)h)(bj + ck)]C. (3)

We refer to the definition of the elementary functions of a quaternion variable summarized
in [27]. Considering quaternion q = x + yi + bhj + chk and b2 + c2 = r, the function eq is
defined as follows.

eq = ex
(

cos
√

y2 + rh2 +
yi + bhj + chk√

y2 + rh2
sin
√

y2 + rh2
)

.

Using the definition of the generalized (j, k)-step derivative, we obtain the following:

1
rh

[−e(z+(bj+ck)h)(bj + ck)]C =
1
rh

[
−ex

(
cos

√
y2 + rh2(bj + ck)

+
(iy + jbh + kch)(bj + ck)√

y2 + rh2
sin
√

y2 + rh2
)]

C

=
ex sin σ

σ
,

where σ =
√

y2 + rh2.
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Example 2. Thereafter, using the definition of the cosine function of a quaternion variable, we obtain
the following:

cos(z + (jb + kc)h)

=
1
2

(
e
(z+(jb+kc)h) iy+(jb+kc)h√

y2+rh2
+ e

(−z−(jb+kc)h) iy+(jb+kc)h√
y2+rh2

)
=

1
2

{
e−
√

y2+rh2
(

cos(x
√

y2 + rh2) +
iy + jbh + kch√

y2 + rh2
sin(x

√
y2 + rh2)

)
+ e
√

y2+rh2
(

cos(x
√

y2 + rh2)− iy + jbh + kch√
y2 + rh2

sin(x
√

y2 + rh2)
)}

=
1
2

{
e−σ
(

cos(xσ) +
iy + jbh + kch

σ
sin(xσ)

)
+ eσ

(
cos(xσ)− iy + jbh + kch

σ
sin(xσ)

)}
,

where σ =
√

y2 + rh2. Furthermore, in order to obtain the generalized (j, k)-step derivative of the
cosine function for a complex variable, we calculate the following.

cos(z + (jb + kc)h)(bj + ck) =
1
2

{
e−σ
(
(bj + ck) cos(xσ) +

iy(bj + ck)− rh
σ

sin(xσ)
)

+ eσ
(
(bj + ck) cos(xσ)− iy(bj + ck)− rh

σ
sin(xσ)

)}
.

Therefore, considering z = x + yi ∈ C, the generalized (j, k)-step derivative of f (z) = cos z
is obtained as follows.

f ′(z) ≈ 1
h
[− cos(z + (jb + kc)h)(bj + ck)]C =

(e−σ − eσ) sin(xσ)

2xσ
. (4)

Example 3. Considering z = x + yi ∈ C, in order to find the generalized (j, k)-step derivative of
sin z, the sine function of a quaternion variable is expressed as follows:

sin(z + (jb + kc)h)

=
1
2

iy + jbh + kch√
y2 + rh2

{
e−
√

y2+rh2
(

cos(x
√

y2 + rh2) +
iy + jbh + kch√

y2 + rh2
sin(x

√
y2 + rh2)

)
− e
√

y2+rh2
(

cos(x
√

y2 + rh2)− iy + jbh + kch√
y2 + rh2

sin(x
√

y2 + rh2)
)}

=
1
2

iy + jbh + kch
σ

{
e−σ
(

cos(xσ) +
iy + jbh + kch

σ
sin(xσ)

)
− eσ

(
cos(xσ)− iy + jbh + kch

σ
sin(xσ)

)}
,

where σ =
√

y2 + rh2. In addition, we perform the following operations to find the step derivative
of sin z.

sin(z + (jb + kc)h)(bj + ck)

=
1

2σ

{
e−σ
(
(iy(bj + ck)− rh) cos(xσ) +

−x(y2 + rh2)(bj + ck)
σ

sin(xσ)
)

− eσ
(
(iy(bj + ck)− rh) cos(xσ)− −x(y2 + rh2)(bj + ck)

σ
sin(xσ)

)}
.
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Therefore, the generalized (j, k)-step derivative of sin z is expressed as follows.

f ′(z) ≈1
h
[− sin(z + (jb + kc)h)(bj + ck)]C

=
1

2σ
(e−σ − eσ) cos(xσ).

The aforementioned examples induce the generalized (j, k)-step derivative of the
elementary functions ez, cos z, and sin z. In order to verify the value of each step derivative
at any point, we find the value of each generalized (j, k)-step derivative at z0 = π/4+ iπ/3,
which has been often used in previous studies on the step derivative of a complex function.

3. Relative Error Examples for the Generalized (j, k)-Step Derivative

In this section, considering Examples 1–3, we determine each generalized (j, k)-step
derivative value at z0, the relative error between the value of the derivative at z0 derived
by the step derivative according to h and r, and the value of the derivative in the typical
definition of the complex derivative in complex analysis. Let f ′exac(z) be the exact value of
the derivative based on the definition of differentiation in complex analysis. Thereafter,
the relative error, denoted by Err( f , z0), is expressed as follows.

Err( f , z0) =
∣∣∣ f ′(z0)− f ′exac(z0)

f ′exac(z0)

∣∣∣.
Regarding z0 = π

4 + π
3 i, the generalized (j, k)-step derivative of ez is the following:

f ′(z0) =
e

π
4 sin

√
(π

3 )
2 + rh2√

(π
3 )

2 + rh2
=

eπ/4 sin σ0

σ0
,

where σ0 =
√
(π

3 )
2 + rh2. Considering the function f (z) = ez, the relative error Err(ez, z0)

is written as follows.

Err(ez, z0) = e−
π
4

√
e

π
2

( sin σ0

σ0
− 1

2

)2
+

3
4

e
π
2 =

√( sin σ0

σ0
− 1

2

)2
+

3
4

.

Figures 1 and 2 present the relative error between f ′exac(z0) and the generalized (j, k)-
step derivative f ′(z0) of ez at z0 = π

4 + i π
3 , considering h and r, respectively, by using the

Maple program.
Considering Figures 1 and 2, according to h and r, Err(ez, z0) cannot be completely

approximated as 0; nevertheless, considering an arbitrary r > 0, when h lies in the range of
− 3π

2 ≤ h ≤ −π
2 and π

2 ≤ h ≤ 3π
2 , the relative error Err(ez, z0) has values close to 0.

Considering z0 = π
4 + i π

3 , the generalized quaternionic step derivative in the (j, k)-
direction for cos z is the following:

f ′(z0) =
(e−σ0 − eσ0) sin(π

4 σ0)
π
2 σ0

,

where σ0 =
√
(π

3 )
2 + rh2. The relative error Err(cos z, z0) of cos z at z0 is expressed as

follows.

Err(cos z, z0) =
2

√(
(e−σ0−eσ0 ) sin( π

4 σ0)
π
2 σ0

+ (e−
π
3 +e

π
3 )

2
√

2

)2
+ 1

8 (e
− 2π

3 + e
2π
3 − 2)√

e−
2π
3 + e

2π
3

.
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Figures 3 and 4 show the relative error Err(cos z, z0) between f ′exac(z0) and the gen-
eralized (j, k)-step derivative of cos z at z0 considering h and r, respectively, by using the
Maple program.

(a) (b)

Figure 1. (a) Three-dimensional (3D) graph showing both zero and Err(ez, z0). This indicates the
relative error of ez at z0, when the step size h (−2π ≤ h ≤ 2π) and direction magnitude r (0 ≤ r ≤ 2π)
are changed independently of one another. (b) Contour line drawn on a plane to estimate the
distribution and magnitude of the relative error according to h and r in the 3D graph of (a).

(a) (b)

Figure 2. (a) Side view of Figure 1a observed in the direction perpendicular to h (−2π ≤ h ≤ 2π).
(b) Side view of Figure 1a observed in the direction perpendicular to r (0 ≤ r ≤ 2π).

As shown in Figures 3 and 4, it is possible to observe how the value of Err(cos z, z0)
changes considering h and r, which are independent of each other. In particular, Figure 4a
shows that considering r > 0, Err(cos z, z0) vanishes when the step size h is in the range of
(−9π/8, 9π/8). As shown in Figure 4b, regarding h(h ∈ R and −2π < h < 2π), when the
step direction magnitude r is less than π/2, Err(cos z, z0) becomes 0.

The generalized quaternionic step derivative in the (j, k)-direction for sin z at
z0 = π

4 + i π
3 is as follows:

f ′(z0) =
1

2σ0
(e−σ0 − eσ0) cos(xσ0),
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where σ0 =
√
(π

3 )
2 + rh2. The relative error Err(sin z, z0) for the generalized (j, k)-step

derivative of sin z is obtained as the following.

Err(sin z, z0) =
2

√(
(e−σ0−eσ0 ) cos( π

4 σ0)
2σ0

− e−
π
3 +e

π
3

2
√

2

)2
+ 1

8 (e
2π
3 + e−

2π
3 − 2)√

e−
2π
3 + e

2π
3

.

Figures 5 and 6 present the relative error Err(sin z, z0) of the generalized (j, k)-step
derivative of sin z for z0, considering h and r, respectively, by using the Maple program.

(a) (b)

Figure 3. (a) Three-dimensional (3D) graph showing the relative error of cos z at z0 according to h
and r. (b) Contour line drawn on a plane to estimate the distribution and magnitude of the relative
error Err(cos z, z0) according to h and r in the 3D graph of (a).

(a) (b)

Figure 4. (a) Side view of Figure 3a observed in the direction perpendicular to h. (b) Side view of
Figure 3a observed in the direction perpendicular to r.
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(a) (b)

Figure 5. (a) Three-dimensional (3D) graph showing the relative error Err(sin z, z0) at z0 according to
h and r. (b) Contour line drawn on a plane to estimate the distribution and magnitude of the relative
error Err(sin z, z0) according to h and r in the 3D graph of (a).

(a) (b)

Figure 6. (a) Side view of Figure 5a observed in the direction perpendicular to h. (b) Side view of
Figure 5a observed in the direction perpendicular to r.

Figure 6 shows the values of the relative error Err(sin z, z0) between the generalized
(j, k)-step derivative of sin z and f ′exac for each h and r. Considering r > 0, Err(sin z, z0)
vanishes when the step size h is in (−11π/8, 11π/8). Moreover, regarding h(−2π < h <
2π), when the step direction magnitude r is less than 7π/8, Err(sin z, z0) becomes 0.

The step differentiation proposed in this study is applied to the representative exam-
ples considered in the previous studies on step differentiation.

Example 4. Let f be a complex-valued function of a complex variable denoted by the following.

f (z) =
ez√

cos3 z + sin3 z
.

In order to induce the generalized quaternionic step derivative of f in the (j, k)-step direction
for z0 = π/4 + iπ/3, we proceed with the following.
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f (z + (bj + ck)h) =
ez+(bj+ck)h√

cos3(z + (bj + ck)h) + sin3(z + (bj + ck)h)
.

Thereafter, the generalized (j, k)-step derivative of f is expressed as follows:

f ′(z) ≈
−ex

(
cos σ (bj + ck) + iy(bj+ck)−rh

σ sin σ
)

rh
√

C3 + D3
,

where v = iy + jbh + kch and the following is the case.

C =
1
2

(
e−σ(cos(xσ) +

v
σ

sin(xσ)) + eσ(cos(xσ)− v
σ

sin(xσ))
)

,

D =
1
2

v
σ

(
e−σ(cos(xσ) +

v
σ

sin(xσ))− eσ(cos(xσ)− v
σ

sin(xσ))
)

.

Regarding z0 = π
4 + i π

3 , the derivative of f , using the definition of the derivative in the
complex analysis, is expressed as follows:

f ′exac(z) =
(A(−1 +

√
3)− B

√
3)

8e−
π
2 A2

+ i
(A(−1−

√
3) + B)

1
4
√

2
(eπ − e−π + 3e

π
3 − 3e

−π
3 )

,

where

A = e
π
4

1
211/4

√
eπ − e−π + 3e

π
3 − 3e−

π
3 , B =

3
16
√

2
e

π
4 (eπ + e−π + e

π
3 + e−

π
3 ).

Hence, the generalized (j, k)-step derivative f ′(z) of f is obtained as follows:

f ′(z) ≈ −ex(− sin σM + cos σN)

σ
√

M2 + N2
+ i
−ex2π sin σN
3σ2
√

M2 + N2
,

where

M =
1
8
(e3σ + e−3σ)(cos(3xσ) + sin(3xσ)) +

3
8
(e−σ + eσ)(cos(xσ)− sin(xσ)),

N =
1
8
(e3σ − e−3σ)(cos(3xσ)− sin(3xσ))− 3

8
(eσ − e−σ)(cos(xσ) + sin(xσ)),

M2 + N2 =
1
16
{sin(6xσ) + 3(e2σ + e−2σ) cos(4xσ) + 3(e4σ + e−4σ − 3) sin(2xσ)}.

The relative error Err( f (z), z0) between f ′(z0) and fexac(z0) is expressed as the following:

Err( f (z), z0) =
∣∣∣ f ′(z0)− f ′exac(z0)

f ′exac(z0)

∣∣∣,
where ∣∣∣ f ′(z0)− f ′exac(z0)

∣∣∣2
=
(−ex(− sin σM + cos σN)

σ
√

M2 + N2
− (A(−1 +

√
3)− B

√
3)

8e−
π
2 A2

)2

+
( −ex2π sin σN

3σ2
√

M2 + N2
− (A(−1−

√
3) + B)

8e−
π
2 A2

)2
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and the following is the case.

∣∣∣ f ′exac(z0)
∣∣∣ =
√
(
(A(−1 +

√
3)− B

√
3)

8e−
π
2 A2

)2 + (
(A(−1−

√
3) + B)

8e−
π
2 A2

)2

=
e

π
2
√

2A2 − 2AB + B2

4A2 .

In this example, we derived the relative error Err( f (z), z0) between the definition
of the derivative at z0 and generalized (j, k)-step derivative for a particular function.
The results of the relative error according to h and r in z0 are shown in Figure 7 and
Figure 8, respectively, using the Maple program.

(a) (b)

Figure 7. (a) Three-dimensional (3D) graph showing both zero and Err( f (z), z0) when
h (−π ≤ h ≤ π) and r (0 ≤ h ≤ π) are changed independently of each other. (b) Contour line
drawn on a plane to estimate the distribution and magnitude of the relative error Err( f (z), z0)

according to h and r in the 3D graph of (a).

(a) (b)

Figure 8. (a) Side view of Figure 7 observed in the direction perpendicular to h (−π ≤ h ≤ π).
(b) Side view of Figure 7 observed in the direction perpendicular to r (0 ≤ h ≤ π).

Considering Figures 7 and 8, the derivative value of f resulting from the generalized
(j, k)-step derivative has an error with the derivative value calculated using the definition of
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the actual derivative. However, it is evident that the range of the relative error Err( f (z), z0)
independently decreases similarly to the range of h and r. Regarding h = 0, the value of the
relative error Err( f (z), z0) is symmetric, and when h is approximated to 0, it has a relative
error of Err( f (z), z0), which is close to 0 regardless of r. In addition, as r decreases, it has a
relative error of Err( f (z), z0) close to 0 over a wider range of h.

4. Conclusions

We attempted to calculate the derivative of a complex function based on a numerical
algorithm. A formula for deriving the first derivative of a complex function was defined us-
ing the characteristics of the Taylor series expansion. The quaternion defined by extending
the complex number is an algebra that includes the basis i of the complex number and other
bases j and k, the product of which is non-commutable. A complex function is related to i;
nonetheless, considering each of j and k, the complex function is interpreted in different
dimensions such that we can define a step derivative in the quaternionic direction for the
complex function. Therefore, the step derivative of the complex function was expressed
by applying the basis direction of the quaternions distinguished from the basis i of the
complex function.

Furthermore, we defined the generalized quaternionic step derivative of complex-
valued elementary functions. By determining the value of the generalized quaternionic
step derivative at a point, we verified the applicability of the step derivative and calculated
it for various elementary functions. Consequently, because of the independent roles of
h and r, the quaternionic step derivative of the complex functions was compared to the
typical definition of the derivative of the complex functions while considering the error. It
was possible to consider the independent ranges for h and r, resulting in similar derivative
values at the same point. By applying the definition of the generalized quaternionic
direction step derivative to an example ( f (z) = ez/

√
cos3 z + sin3 z) that had often been

used in previous studies, the value of the derivative of a complex function at a point was
compared to previous studies. We obtained and visualized the relative error between
the derivative value based on the derivative definition in complex analysis and the step
derivative value in the direction defined in the present study. Moreover, we concluded in
this study that the generalized quaternionic direction step derivative can be used within the
relative error range, replacing the determination of the derivative with the typical definition
of complex functions. Contrary to the step derivative asserted in previous studies, the step
derivative herein uses the quaternion, which is an expansion algebra of a complex number,
indicating a step direction clearly distinct from the complex number. This can clarify the
existing complex number; moreover, it suggests another application of the quaternion
system by applying the characteristics of quaternions to the step derivative.

The step derivative was defined by setting the step direction to the generalized
direction of the quaternion basis. However, relative errors still exist in some areas. It
is necessary to compare the bases of various modified quaternions derived from the
quaternions, such as the split quaternion, dual quaternion, and generalized quaternion,
and to secure a base that can reduce the relative error among these bases. Additionally,
because the Taylor series for quaternionic functions are being studied in various ways, it is
possible to derive the step derivative of quaternionic functions. Based on the present results,
in the future, we intend to define step derivatives for complex functions by proposing
various types of quaternionic directions, such as matrix, polar, and Cullen forms, based on
quaternions. In addition, we aim to define the step derivative for the quaternion-valued
function in the Clifford algebraic direction by defining the Taylor series expansion for the
quaternionic function and to derive the step derivative to replace its differential operator.
This ensures the versatility and applicability of the step derivative and its variations. This
can also provide a tool that can replace the calculation and derivation of the derivative
value for the quaternionic function. This has been a challenge because of the characteristics
of the quaternion system. In addition, because substitutable derivatives can be derived for
the quaternion system, it is expected that the step derivative proposed in this study can be
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used in the detection of certain errors in discrete orthogonal conjugate nets and isothermal
immersions, etc., where derivatives are utilized.
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