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Abstract: We introduce new necessary conditions for the existence and uniqueness of stationary weak
solutions and the existence of the weak solutions for the evolution problem in the system arising
from the modeling of the bioconvective flow problem. Our analysis is based on the application of
the Galerkin method, and the system considered consists of three equations: the nonlinear Navier–
Stokes equation, the incompressibility equation, and a parabolic conservation equation, where the
unknowns are the fluid velocity, the hydrostatic pressure, and the concentration of microorganisms.
The boundary conditions are homogeneous and of zero-flux-type, for the cases of fluid velocity and
microorganism concentration, respectively.
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1. Introduction

In this paper, we consider the analysis of the existence of solutions for the governing
equations modeling the bioconvective flow problem. In order to define the system, we
consider Ω ⊂ R3 a bounded and regular domain with rigid boundary ∂Ω where the
outward normal unitary vector to ∂Ω is given by n = (n1, n2, n3). The flow induced by the
upward swimming of certain microorganisms in Ω and during an interval of time [0, T] is
given by the following system [1]:

∂u
∂t
− µ∆u + (u · ∇)u +∇q = −kme3 + F, in QT = Ω× [0, T], (1)

div (u) = 0, in QT , (2)
∂m
∂t
− θ∆m + u · ∇m + U

∂m
∂x3

= 0, in QT , (3)

u(x, 0) = u0(x), m(x, 0) = m0(x), in Ω, (4)

u = 0, on Γ := ∂Ω× [0, T], (5)

θ
∂m
∂n
−Un3m = 0, on Γ, (6)

where u = (u1, u2, u3)
t is the velocity of the fluid; q is related to the pressure and defined

by q = p + gx3 with p the hydrostatic pressure and g the acceleration gravity constant; m
is related to the local concentration of the microorganisms c and defined by m = (gρ̄c)/k
with k a positive constant; ρ̄ is a positive constant defined as follows ρ̄ = (ρ0 − ρm)/ρm
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with ρ0 and ρm the densities of the fluid and the microorganisms, respectively; µ > 0
is the viscosity of the fluid; e3 = (0, 0, 1)t is the unit vector in the vertical direction;
F = (F1, F2, F3)

t is the external source; θ is a constant defining the diffusion rate of microor-
ganisms; and U is the average velocity of swimming for the microorganisms. Moreover,
the notations ∇, ∆, div , and (u · ∇)u denote the gradient, Laplacian, divergence, and
convection operators, respectively.

The system (1)–(6) was derived by Y. Moribe [2] and independently by M.
Levandowsky, W. S. Hunter, and E. A. Spiegel [3] (see also [1,4,5] for the mathemati-
cal analysis). More recently, some new bioconvective flow models have been introduced,
for instance: [6] (see also [7]) considered a generalized model with a nonconstant viscosity
and the symmetric part of the deformation rate tensor, and Tuval et al. [8] constructed
a mathematical model by considering as an additional unknown variable: the oxygen
concentration (see also [9–11]).

In order to study the well-posedness of (1)–(6), we applied the Galerkin method twice.
Firstly, we study the existence and uniqueness of solutions for the stationary problem by
using the Galerkin method. Then, we study the existence of the evolution problem by
combining the Galerkin method and perturbation arguments in a neighborhood where
the stationary problem is well-posed. As a consequence of our analysis, we obtained the
two main results: (i) we proved the existence and uniqueness of weak solutions for the
stationary problem associated with (1)–(6) (see Theorem 1); (ii) we proved the existence
of solutions of the evolution problem (see Theorem 3). We also proved the existence of
weak solutions of a transformed problem defined as a change of variable for the stationary
problem associated with (1)–(6) (see Theorem 1).

In this paper, we introduce two necessary conditions. The first one was assumed to
obtain the uniqueness of weak solutions of the stationary problem associated with (1)–(6),
and the second one is a necessary condition condition for the existence of weak solutions
of the evolution problem (1)–(6). To be more specific, we proved the existence of stationary
solutions assuming that the external force is of L2(Ω) regularity and the coefficients satisfy
the inequality:

2UCP < Θ, (7)

with CP defined in (13) for p = 2.
To prove the uniqueness of weak stationary solutions, in addition to (7), we assumed

that the parameters U, θ, k, and µ are small enough such that, for any stationary solution
u, m and some ε0 independent of ∇u, the inequalities:

θ − UCP
θ −UCP

− C2
P‖∇u‖L2(Ω) ≥ ε0 > 0,

µ− C2
P‖∇u‖L2(Ω) −

kC5
P

(θ −UCP)ε0
‖∇m‖L2(Ω) > 0,

 (8)

are satisfied. To prove existence of weak solutions for the evolution problem, we considered
that the stationary problem is solvable, the external force is of L2(0, T; L2(Ω)) regularity,
and the constants U, CP, and θ are small enough such that:

0 <
1

µC2
P

(
θ − UCP

θ −UCP

)2
≤ 1. (9)

The condition (7) is the standard assumption considered for instance in [1,6,7]. How-
ever, to the best of our knowledge, the conditions (8) and (9) have not been considered
before. Moreover, we remark that the assumption (8) improves the recent result given in [6],
where the authors obtained the uniqueness assuming that stationary solution u, m is small
enough without a precise bound in terms of the parameters U, θ, k, µ and the constant CP.

On the other hand, we mention two facts. The conditions (7)–(9) are useful in several
situations, for instance in the implementation and analysis of the convergence for numerical
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methods approximating the stationary solution.However, we must clarify that there could
be some situations where these conditions may not be valid. The authors of [12] deduced the
existence of a weak solution for a generalized bioconvective model by uniquely considering
the condition UC2

P < Θ instead of (7)–(9).
The paper is organized as follows. In Section 2, we introduce the notation, some

previous results, and the general assumptions. In Section 3, we study the well-posedness
and the stationary problem. In Section 4, we study the existence of weak solutions of the
evolution problem. Finally, in Section 5, we give some conclusions and challenges.

2. Preliminaries
2.1. Functional Framework

We use the standard notation of functional spaces, which are used in the analysis of
Navier–Stokes and the related equations of fluid mechanics; see for instance [13–15]. To be
more precise, we considered the Lebesgue, Sobolev, and Bochner spaces. The Lebesgue
space Lp(Ω) for p ≥ 1 is defined by:

Lp(Ω) =
{

u : Ω→ R : u is Lebesgue measurable, ‖u‖Lp(Ω) < ∞
}

,

where:

‖u‖Lp(Ω) =

{ (∫
Ω |u(x)|pdx

)1/p, p ∈ [1, ∞[,
ess supΩ |u(x)|, p = ∞.

(10)

We recall that the spaces Lp(Ω) are Banach spaces with the norm given in (10) and
L2(Ω) is a separable Hilbert space. For m ∈ N and p ≥ 1, the Sobolev spaces are defined
as follows:

Wm,p(Ω) :=
{

u ∈ Lq(Ω) : Dαu ∈ Lq(Ω), ∀|α| ≤ m
}

,

In particular, when p = 2, we use the notation Wm,2(Ω) = Hm(Ω). The spaces of
vector-valued functions are defined in the usual componentwise sense and are denoted
by bold symbols, for instance C∞(Ω) = [C∞(Ω)]3, Lp(Ω) = [Lp(Ω)]3 and Wm,p(Ω) =
[Wm,p(Ω)]3. Let X be a Banach space and r ≥ 1. The Bochner spaces Lr(0, T; X) are defined
as follows:

Lr(0, T; X) =
{

u : [0, T]→ X : u is strongly measurable, ‖u‖Lr(0,T;X) < ∞
}

,

where:

‖u‖Lr(0,T;X) =


(∫ T

0 ‖u(t)‖
pdx
)1/p

, p ∈ [1, ∞[,
ess sup[0,T] ‖u(t)‖, p = ∞.

Moreover, we considered the following spaces and notation:

C∞
0,σ(Ω) =

{
f ∈ C∞

0 (Ω) : div f = 0
}

,

V the completion of C∞
0,σ(Ω) in H1(Ω),

H the completion of C∞
0,σ(Ω) in L2(Ω),

X the closed subspace of L2(Ω) orthogonal to the constants,
B = H1(Ω) ∩ X.


(11)

We notice that C∞
0,σ(Ω) is the space of smooth solenoidal vector fields with compact

support on Ω.
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2.2. Some Classical Inequalities

We use some classical inequalities and Sobolev embeddings with the appropriate
notation. To be more precise, we use the notation in the following three inequalities:

(i) The Young and Cauchy inequalities. Let us consider p, q ∈]1, ∞[ such that p−1 + q−1 = 1, then:

ab ≤ εap + Cεbq, a, b ≥ 0, ε > 0, Cε = (p− 1)ε(1−q)p−q, (12)

which are called the Young and Cauchy inequalities. We observe that, when (p, q, ε) =
(2, 2, 1/2), the inequality (12) is reduced to the standard Cauchy inequality;

(ii) The Poincaré inequality. Let Ω ⊂ R3 be a connected, bounded Lipschitz domain, then
the estimate:

‖u‖Lq(Ω) ≤ CP‖∇u‖Lp(Ω), u ∈W1,p
0 (Ω), p ∈ [1, 3[, q ∈

[
1,

3p
3− p

]
, (13)

is satisfied for a positive constant CP depending only on p and Ω. For a generalized
version of the Poincaré inequality on W1,p(Ω), we refer to Proposition III.2.39 in [14];

(iii) The Gagliardo–Nirenberg inequality. Let Ω ⊂ R3 be a bounded Lipschitz domain, then
there exists a positive constant Cgn depending only on q and Ω such that:

‖∇u‖L2q/(q−2)(Ω) ≤ Cgn‖∇u‖1−3/q
L2(Ω)

‖u‖3/q
H2(Ω)

, u ∈ H2(Ω), q ∈ [2, ∞[. (14)

Other forms of the Gagliardo–Nirenberg inequality were given for instance on Propo-
sition III.2.35 of [14], and for a recent review, we refer to [16].

Moreover, we considered the continuous embedding of H2(Ω) in L∞(Ω) for some
Ω ⊂ R3 to be a bounded Lipschitz domain, or equivalently, we have that the estimate:

‖u‖L∞(Ω) ≤ C2,∞
iny ‖u‖H2(Ω), u ∈ H2(Ω). (15)

is satisfied for a positive constant C2,∞
iny .

2.3. The Stokes Operator and the Friedrichs Extension

The notation A : D(A) := V ∩H2(Ω) ⊂ H → H is used for the Stokes operator
defined Av = P(−∆v) with P the orthogonal projection of L2(Ω) onto H induced by the
Helmholtz decomposition of L2(Ω). We recall that A has the following properties: linear,
unbounded, positive, self-adjoint, and characterized by the identity:

(Aw, v) = (∇w,∇v), ∀w ∈ D(A), v ∈ V, (16)

where (·, ·) is the standard scalar product in L2(Ω).
The Friedrichs extension is denoted by A1 and is defined from D(A1) to X by A1φ =

P1(−θ∆φ) for all φ ∈ D(A1) with:

D(A1) :=
{

φ ∈ X ∩ H2(Ω) : θ
∂φ

∂n
−Un3φ = 0 on ∂Ω

}
and P1 the orthogonal projection of L2(Ω) onto X. The operator A1 is an unbounded linear
and positive self-adjoint operator and satisfies the inequalities:

(A1φ, φ) ≥ (θ −UCP)‖∇φ‖2
L2(Ω), CP‖A1φ‖L2(Ω) ≥ (θ −UCP)‖∇φ‖L2(Ω), (17)

for all φ ∈ D(A1). We refer to [1] for other properties on A and A1.
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2.4. The Trilinear Forms B0 and B1

Let us consider B0 from V × V × V to R and B1 from V × H1(Ω) × H1(Ω) to R.
defined as follows:

B0(u, v, w) = ((u · ∇)v, w) =
∫

Ω

N

∑
i,j=1

uj(x)
∂vi
∂xj

(x)wi(x)dx, (18)

B1(u, φ, ψ) = (u · ∇φ, ψ) =
∫

Ω

N

∑
j=1

uj(x)
∂φ

∂xj
(x)ψ(x)dx. (19)

The applications B0 and B1 are well-defined trilinear forms with the following properties:

B0(u, v, w) = −B0(u, w, v), B1(u, φ, ψ) = −B1(u, ψ, φ), (20)

B0(u, v, v) = 0, B1(u, φ, φ) = 0, (21)

|B0(u, v, w)| ≤ C2
P‖∇u‖L2(Ω)‖∇v‖L2(Ω)‖∇w‖L2(Ω), (22)

|B1(u, ψ, φ)| ≤ C2
P‖∇u‖L2(Ω)‖∇ψ‖L2(Ω)‖∇φ‖L2(Ω), (23)

for all u, v, w ∈ V, and ψ, φ ∈ H1(Ω).

3. The Stationary Problem

The stationary problem associated with the bioconvective system (1)–(6) is defined as
follows: given α > 0, find the functions (uα, mα, qα) such that:

−µ∆uα + (uα · ∇)uα +∇qα = −kme3 + Fs in Ω, (24)

div uα = 0 in Ω, (25)

−θ∆mα + uα · ∇mα + U
∂mα

∂x3
= 0 in Ω, (26)

uα = 0 on ∂Ω, (27)

θ
∂mα

∂n
−Un3mα = 0 on ∂Ω, (28)∫

Ω
mα(x)dx = α. (29)

Our analysis is based on recalling and adapting the results of Boldrini et al. [6] (see
also [1]). Indeed, we introduce the change of variable:{

m̃ = mα − E with E of the form E(x) = Cα exp(Ux3/θ) where:
the constant Cα is selected such that

∫
Ω E(x)dx = α,

(30)

and we obtain that the problem (24)–(29) can be rewritten as follows:

−µ∆uα + (uα · ∇)uα +∇(qα + kθU−1E) = −km̃e3 + Fs in Ω, (31)

div uα = 0 in Ω, (32)

−θ∆m̃ + uα · ∇(m̃ + E) + U
∂m̃
∂x3

= 0 in Ω, (33)

uα = 0 on ∂Ω, (34)

θ
∂m̃
∂n
−Un3m̃ = 0 on ∂Ω, (35)∫

Ω
m̃(x)dx = 0. (36)

The deduction of (31)–(36) is straightforward by noticing that−θ∆E+U∂x3 E = 0 in Ω
and θ∂nE−Un3E = 0 on ∂Ω. Then, we use the concept of the weak solution for (31)–(36).
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Definition 1. Let us consider Fs ∈ H. Then, (uα, m̃) ∈ V × B is called a weak solution of
(31)–(36) if the following identities:

µ(∇uα,∇v) + B0(uα, uα, v) + (km̃e3, v) = (Fs, v), (37)

θ(∇m̃,∇φ) + B1(uα, m̃ + E, φ)−U
(

m̃,
∂φ

∂x3

)
= 0, (38)

are satisfied for all (v, φ) ∈ V× B.

Theorem 1. Suppose that

2UCP < θ. (39)

If Fs ∈ H, there is a weak solution of (31)–(36) in the sense of Definition 1.

Proof. The proof is made by using the Galerkin method. Let us consider a Schauder basis
(wj)∞

1 for V and (φ
j
)∞

1 for B. For each n ∈ N, we define the spaces Wn = span{wj : 1 ≤
j ≤ n} and Mn = span{φ` : 1 ≤ ` ≤ n} and consider the Galerkin approximations:

un
α =

n

∑
j=1

cn,jwj ∈ Wn, and mn =
n

∑
`=1

dn,`φ
` ∈ Mn, (40)

satisfying the approximate problem:

µ(∇un
α ,∇wj) + B0(un

α , un
α , wj) + k(m̃ne3, wj) = (Fs, wj), j = 1, . . . , n, (41)

θ(∇m̃n,∇φ
`
) + B1(un

α , m̃n + E, φ
`
)−U

(
m̃n,

∂φ
`

∂x3

)
= 0, ` = 1, . . . , n. (42)

Applying the Galerkin method requires proving two facts: the existence of (un
α , m̃n)

satisfying (41) and (42) for each n ∈ N and the convergence of (un
α , m̃n) along subsequences

to the weak solution of (31)–(36).
We prove the existence of solutions for (41) and (42) by the application of Brouwer’s

fixed point theorem. Let (z, ξ) ∈ Wn ×Mn, and consider (v, Ψ) ∈ Wn ×Mn satisfying the
linearized equations:

µ(∇v,∇wj) + B0(z, v, wj) + k(Ψe3, wj) = (Fs, wj), j = 1, . . . , n, (43)

θ(∇Ψ,∇φ
`
) + B1(z, Ψ + E, φ

`
)−U

(
Ψ,

∂φ
`

∂x3

)
= 0, ` = 1, . . . , n. (44)

We note that (43) and (44) is a linear system with 2n equations where the unknowns
are the 2n coefficients of the expansion v = ∑n

j=1 cjwj and Ψ = ∑n
`=1 d`φ

`. Thus, (v, Ψ)

is uniquely defined, since (v, Ψ) = 0 is the only solution of the homogeneous system,
i.e., when Fs = 0 and E = 0. To prove this fact, we consider that (v, Ψ) is a solution of
the homogeneous system. Then, multiplying (43) by cj and (44) by d` and summing on
j ∈ {1, . . . , n} and ` ∈ {1, . . . , n}, respectively, we obtain:

µ(∇v,∇v) + B0(z, v, v) + k(Ψe3, v) = 0, (45)

θ(∇Ψ,∇Ψ) + B1(z, Ψ, Ψ)−U
(

Ψ,
∂Ψ
∂x3

)
= 0. (46)
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Then, using (21) and the Hölder and Poincaré–Friedrichs inequalities, we obtain:

µ‖∇v‖2
L2(Ω) ≤ | − k(Ψe3, v)| ≤ k‖Ψ‖L2(Ω)‖v‖L2(Ω)

≤ k(CP)
2‖∇Ψ‖L2(Ω)‖∇v‖L2(Ω), (47)

θ‖∇Ψ‖2
L2(Ω) ≤

∣∣∣∣U(Ψ,
∂Ψ
∂x3

)∣∣∣∣ ≤ UCP‖∇Ψ‖2
L2(Ω). (48)

Then, from (48) and the hypothesis (39), we obtain ‖∇Ψ‖L2(Ω) = 0. This implies
that Ψ is constant and by a reformulation of (36), we deduce, that Ψ = 0. Now, replacing
‖∇Ψ‖L2(Ω) = 0 in (47), we obtain that ‖∇v‖L2(Ω) = 0, which implies that v = 0. Moreover,
from (43) and (44), we obtain the following estimate:

‖∇v‖2
L2(Ω) + ‖∇Ψ‖2

L2(Ω) ≤ C(‖Fs‖2
L2(Ω) + ‖∇E‖2

L2(Ω)) ≤ F1; (49)

see the deduction of (54) for the details. Then, (43) and (44) define a continuous application
T : (z, ξ) 7→ (v, Ψ) from Wn ×Mn to Wn ×Mn such that the closed convex set {(z, ξ) ∈
Wn × Mn : ‖∇z‖2

L2(Ω)
+ ‖∇ξ‖2

L2(Ω)
≤ F1} is invariant. Thus, by Brouwer’s fixed point

theorem, we deduce that T has at least one fixed point, which is the solution of (41) and (42).
Let us prove the convergence of (un

α , m̃n) along subsequences to the weak solution
of (31)–(36). Multiplying (41) by cn,j and (42) by dn,`, summing on j ∈ {1, . . . , n} and
` ∈ {1, . . . , n}, respectively, and adding E to the second result, we obtain:

µ(∇un
α ,∇un

α) + B0(un
α , un

α , un
α) + k(m̃ne3, un

α) = (Fs, un
α), (50)

θ(∇m̃n,∇(m̃n + E)) + B1(un
α , m̃n + E, m̃n + E)−U

(
m̃α,

∂

∂x3
(m̃n + E)

)
= 0. (51)

From (21) and using the Hölder and Poincaré–Friedrichs inequalities, we obtain:

µ‖∇un
α‖2

L2(Ω) ≤ | − k(m̃ne3, un
α) + (Fs, un

α)|

≤ k‖m̃n‖L2(Ω)‖un
α‖L2(Ω) + ‖Fs‖L2(Ω)‖un

α‖L2(Ω)

≤ k(CP)
2‖∇m̃n‖L2(Ω)‖∇un

α‖L2(Ω) + CP‖Fs‖L2(Ω)‖∇un
α‖L2(Ω),

θ‖∇m̃n‖2
L2(Ω) ≤

∣∣∣∣−θ(∇m̃n,∇E) + U
(

m̃α,
∂m̃n

∂x3

)
+ U

(
m̃α,

∂E
∂x3

)∣∣∣∣
≤ θ‖∇m̃n‖L2(Ω)‖∇E‖L2(Ω)

+ UCP‖∇m̃n‖2
L2(Ω) + UCP‖∇m̃n‖L2(Ω)‖∇E‖L2(Ω)

≤
(

θ + UCP

)
‖∇m̃n‖L2(Ω)‖∇E‖L2(Ω) + UCP‖∇m̃n‖2

L2(Ω).

Then, by the application of the Young inequality, we obtain:(
µ− 1

4ε

(
k(CP)

2 + CP

))
‖∇un

α‖2
L2(Ω) ≤ εk(CP)

2‖∇m̃n‖2
L2(Ω) + εCP‖Fs‖2

L2(Ω), (52)(
θ −UCP −

1
4ε

(
θ + UCP

))
‖∇m̃n‖2

L2(Ω) ≤ ε
(

θ + UCP

)
‖∇E‖2

L2(Ω), (53)

for any ε > 0. Now, by (39), we can select:

ε∗ > max
{

k(CP)
2 + CP

4µ
,

θ + UCP
4(θ −UCP)

}
> 0,
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such that by applying (53), we deduce an estimate for ‖∇m̃n‖2
L2(Ω)

, and using this result

in (52), we can obtain an estimate for ‖∇un
α‖2

L2(Ω)
. Then, adding both estimates, we obtain:

‖∇un
α‖2

L2(Ω) + ‖∇m̃n‖2
L2(Ω)

≤
4(ε∗)2

(
θ + UCP

)
4ε∗(θ −UCP)− (θ + UCP)

(
4(ε∗CP)

2k
4ε∗µ− (k(CP)2 + CP)

+ 1
)
‖∇E‖2

L2(Ω)

+
4(ε∗)2CP

4ε∗µ− (k(CP)2 + CP)
‖Fs‖2

L2(Ω).

(54)

Thus, the sequence {(un
α , m̃n)} is bounded in V× B. Now, using the fact that V is

compactly immersed in H and B is compactly immersed in X, we can select a subsequence
of {(un

α , m̃n)} and (uα, m̃) ∈ V× B such that:

un
α → uα weakly in V and strongly in H,

m̃n → m̃ weakly in B and strongly in X,

∇un
α → ∇uα weakly in L2(Ω),

∇mn
α → ∇m̃ weakly in L2(Ω).

Thus, letting n → ∞ in (41) and (42) and using the properties of B0 and B1, we
conclude the proof of theorem.

Theorem 2. Suppose (39) is satisfied. If Fs ∈ H, there is the uα ∈ H2(Ω) ∩V, mα ∈ H2(Ω),
and qα ∈ H1(Ω) solution of the system (24)–(29). Moreover, if we consider Fs and E are such that
the condition:

the constants U, θ, k are small enough such that there is ε0
independent of ∇uα such that Π1 ≥ ε0 > 0 and Π2 > 0, where:

Π1 = θ − UCP
θ −UCP

− C2
P‖∇uα‖L2(Ω),

Π2 = µ− C2
P‖∇uα‖L2(Ω) −

kC5
P

(θ −UCP)ε0
‖∇mα‖L2(Ω),

for any uα, mα satisfying (24)–(29)


(55)

is satisfied, uα and mα are uniquely defined, and qα is uniquely defined up to an additive constant.

Proof. From Theorem 1, we have that there is (uα, m̃) ∈ V× B satisfying the variational
formulation (37) and (38). Then, using (30) and applying regularity arguments similar
to the proof of Theorem 3.1 in [1], we follow the existence of the uα ∈ H2(Ω) ∩V, mα =
m̃ + E ∈ H2(Ω) and qα ∈ H1(Ω) solution of the system (24)–(29).

Let us consider that (uα,i, mα,i, qα,i) for i = 1, 2 are two solutions of (24)–(29). By
the application of Theorem 1, we have that uα,i and m̃i = mα,i − E for i = 1, 2 are weak
solutions of (31)–(36). Then, we have that the functions z = uα,1 − uα,2 and ϕ = m̃1 − m̃2,
satisfy the identities:

µ(∇z,∇v) + B0(z, uα,1, v) + B0(uα,2, z, v) + (kϕe3, v) = 0, (56)

θ(∇ϕ,∇φ) + B1(z, m̃1 + E, φ) + B1(uα,2, ϕ, φ)−U
(

ϕ,
∂φ

∂x3

)
= 0, (57)

for all (v, φ) ∈ V × B. In particular, considering (v, φ) = (z,−A1 ϕ), we deduce some
useful estimates. Indeed, from (56), using the properties of B0 given in (20)–(23) and (17),
we deduce that:
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µ‖∇z‖2
L2(Ω)

≤ C2
P‖∇z‖2

L2(Ω)
‖∇uα,1‖L2(Ω) + k‖ϕ‖L2(Ω)‖z‖L2(Ω)

≤
{

C2
P‖∇z‖L2(Ω)‖∇uα,1‖L2(Ω) + k

C3
P

θ −UCP
‖A1 ϕ‖L2(Ω)

}
‖∇z‖L2(Ω).

(58)

Similarly, from (57) and the properties for B1 given in (20)–(23) and (17), we obtain:

θ‖A1 ϕ‖2
L2(Ω) ≤ C2

P‖∇z‖L2(Ω)‖∇m̃1 +∇E‖L2(Ω)‖A1 ϕ‖L2(Ω)

+C2
P‖∇uα,2‖L2(Ω)‖A1 ϕ‖2

L2(Ω) +
UCP

θ −UCP
‖A1 ϕ‖2

L2(Ω),

Now, using (55), we have the bound:

‖A1 ϕ‖L2(Ω) ≤
C2

P
ε0
‖∇z‖L2(Ω)‖∇m̃1 +∇E‖L2(Ω). (59)

Replacing (59) in (58) and simplifying, we obtain that Π2‖∇z‖2
L2(Ω)

≤ 0 or, equiva-

lently, that ‖∇z‖2
L2(Ω)

= 0. Consequently, (59) implies |A1 ϕ| = 0, and hence, |∇ϕ| = 0

by (17). Thus, from (34), (36), and ‖∇z‖2
L2(Ω)

= ‖∇ϕ‖L2(Ω) = 0, we deduce that
(z, ϕ) = (0, 0) or equivalently that (uα,1, mα,1) = (uα,2, mα,2). The uniqueness of qα up to a
constant follows by standard arguments in the Stokes equation; see [17] for the details.

Remark 1. By applying similar arguments to those used in the proof of Theorem 4.1 in [6], we can
deduce the existence of:

(uα, mα, qα) ∈ (V ∩H2(Ω))× (X ∩ H2(Ω))× (H1(Ω) ∩ L2
0(Ω))

with L2
0(Ω) = {h ∈ L2(Ω) : h(1, 0) = 0}, such that:

P
[
− µ∆uα + (uα · ∇)uα + kme3 − Fs

]
= 0 in L2(Ω), (60)

P1

[
− θ∆mα + uα · ∇mα + U

∂mα

∂x3

]
= 0 in L2(Ω), (61)

−µ∆uα + (uα · ∇)uα + kme3 − Fs = −∇qα in Ω, (62)

that is the existence of strong solutions of (24)–(29). To prove (60) and (61), we introduce the
following modifications in the proof of Theorem 3: (i) we consider that (wj)∞

1 for V and (φ
j
)∞

1 for
B are given by the eigenfunctions of A and A1, respectively; (ii) using the identities (Av, wj) =
(∇v,∇wj) (A1v, φ`) = (∇v,∇φ`), multiplying (43) by cj and (44) by d`, and summing on
j ∈ {1, . . . , n} and ` ∈ {1, . . . , n}, respectively, we deduce the system:

µ(Av, Av) + B0(z, v, Av) + k(Ψe3, Av) = (Fs, Av), (63)

θ(A1Ψ, A1Ψ) + B1(z, Ψ + E, A1Ψ)−U
(

∂Ψ
∂x3

, A1Ψ
)
= 0; (64)

(iii) from (63) and (64), applying the Hölder, Poincaré–Friedrichs, and Cauchy inequalities, and
using the equivalence of the L2(Ω)-norm of operator A (respectively the L2(Ω)-norm of operator
A1) and the norm of V ∩H2(Ω) (respectively, the norm of X ∩ H2(Ω)), we deduce the estimates:

µ‖Av‖2
L2(Ω) ≤ C

(
‖Az‖L2(Ω) + 2k + 2

)
‖Av‖2

L2(Ω) + 2k‖A1Ψ‖2
L2(Ω) + 2‖Fs‖2

L2(Ω),(
θ −UCP

)
‖A1Ψ‖2

L2(Ω) ≤ C‖Az‖L2(Ω)

(
‖A1Ψ‖2

L2(Ω) + ‖∇E‖2
L2(Ω)

)
,



Axioms 2021, 10, 205 10 of 15

which implies that:

‖Av‖2
L2(Ω) + ‖A1Ψ‖2

L2(Ω) ≤C
(
‖Az‖L2(Ω) + 2k + 2

)(
‖Av‖2

L2(Ω) + ‖A1Ψ‖2
L2(Ω)

)
+ C‖Az‖L2(Ω)‖∇E‖2

L2(Ω) + 2‖Fs‖2
L2(Ω),

(65)

with C a generic positive constant; (iv) using (65) we can define appropriately F2, such that we
can apply Brouwer’s fixed point theorem to the operators Tn : Gn → Gn with Gn = {(z, ξ) ∈
Wn × Mn : ‖Az‖2

L2(Ω)
+ ‖A1ξ‖2

L2(Ω)
≤ F2}, and also, we can deduce that the approximate

solutions of (41) and (42) are uniformly bounded in H2(Ω)× H2(Ω); and (v) taking the limit
when n → ∞, we conclude the proof of the required statements. Meanwhile, we can deduce the
equation in (62) by the standard arguments, which were given for instance in [17].

4. The Evolution Problem

Let us consider {u, m, q} satisfying the bioconvective system (1)–(6) with the initial
condition

∫
Ω m0dx = α and {uα, mα, qα} a solution of the stationary problem (24)–(29).

Then, we analyze the relation of the evolution problem and the corresponding stationary
problem by studying the perturbations of the stationary problem. Indeed, let us consider
the change of variable:

v = u− uα, η = m−mα (66)

which satisfies the following relations:

∂v
∂t
− µ∆v + (v · ∇)v + (v · ∇)uα + (uα · ∇)v

+∇(q− qα) = −kme3 + F− Fs in QT , (67)

div v = 0 in QT , (68)
∂η

∂t
− θ∆η + v · ∇η + v · ∇mα + uα · ∇η + U

∂η

∂x3
= 0 in QT , (69)

v(x, 0) = v0(x) η(x, 0) = η0(x) in Ω. (70)

v = 0, on Γ, (71)

θ
∂η

∂n
−Un3η = 0 on Γ. (72)

Definition 2. Let us consider F ∈ L2(0, T; H) and Fs ∈ H. Then:

(v, η) ∈ L2(0, T, V) ∩ L∞(0, T, H)× L2(0, T, B) ∩ L∞(0, T, X)

is called a weak solution of (67)–(72) if the following identities:(
∂v
∂t

, w
)
+ µ(∇v,∇w) + B0(v, v, w) + B0(v, uα, w)

+ B0(uα, v, w) + (kηe3, w) = (F− Fs, w),
(73)

(
∂η

∂t
, φ

)
+ θ(∇η,∇φ) + B1(v, η, φ) + B1(v, mα, φ) + B1(uα, η, φ)

−U
(

η,
∂φ

∂x3

)
= 0,

(74)

are satisfied for all (w, φ) ∈ L2(0, T; V) ∩ L∞(0, T; B).
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Theorem 3. Suppose F ∈ L2(0, T; H), Fs ∈ H, α ∈ R+, the hypotheses (39), (55) are satisfied,
and {uα, mα, qα} is the solution of the stationary problem (24)–(29) corresponding to α =

∫
Ω m0dx.

Moreover, we assume the constants U, CP and θ are small enough such that:

0 <
1

µC2
P

(
θ − UCP

θ −UCP

)2
≤ 1, (75)

Then, for all (v0, η0) ∈ H× X, there is (v, η), a weak solution of (67)–(72). Furthermore,
the weak solution is such that ‖v(·, t)− v0‖H → 0 and ‖η(·, t)− η0‖X → 0 when t→ 0+.

Proof. The proof is performed by using the Galerkin method. Indeed, let us consider
a Schauder basis (wj)∞

1 for V and (φ
j
)∞

1 for B. For each n ∈ N, we define the spaces

Wn = span{wj : 1 ≤ j ≤ n} and Mn = span{φ` : 1 ≤ ` ≤ n} and consider the
Galerkin approximations:

vn(t, x) =
n

∑
j=1

cn,j(t)wj(x) ∈ Wn, and ηn(t, x) =
n

∑
`=1

dn,`(t)φ
`
(x) ∈ Mn,

satisfying the approximate problem:(
∂vn

∂t
, wj

)
+ µ(∇vn,∇wj) + B0(vn, vn, wj) + B0(vn, uα, wj)

+ B0(uα, vn, wj) + (kηne3, wj) = (F− Fs, wj),
(76)

(
∂ηn

∂t
, φ

`
)
+ θ(∇ηn,∇φ

`
) + B1(vn, ηn, φ

`
) + B1(vn, mα, φ

`
)

+ B1(uα, ηn, φ
`
)−U

(
ηn,

∂φ
`

∂x3

)
= 0,

(77)

vn(x, 0) = Pnv0, ηn(x, 0) = Pnη0, (78)

where Pn and Pn are orthogonal projections on Wn and Mn, respectively. We note that
the system (76) and (77) is a system of ordinary differential equations for the coefficients
cn,j and dn,` with the initial conditions cn,j(0) = (v0, wj) and dn,`(0) = (η0, φ

`
). The initial

value problem for cn,j and dn,` has a maximal solution on the interval [0, tn] for some
tn ≤ T. Moreover, we note that we can choose tn = T as a consequence of the fact that
the properties:

{(vn, ηn)} is bounded in L2(0, T, V) ∩ L∞(0, T, H)× L2(0, T, B) ∩ L∞(0, T, X); (79){(
∂vn

∂t
,

∂ηn

∂t

)}
is bounded in L1(0, T, V′)× L1(0, T, B′). (80)

are satisfied. Indeed, we detail the proofs of (79) and (80).

Proof of (79). Multiplying (76) by cn,j and (77) by dn,` and summing on j ∈ {1, . . . , n} and
` ∈ {1, . . . , n}, respectively, we obtain:(

∂vn

∂t
, vn
)
+ µ(∇vn,∇vn) + B0(vn, vn, vn)

+ B0(vn, uα, vn) + B0(uα, vn, vn) + (kηne3, vn) = (F− Fs, vn),
(81)
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(
∂ηn

∂t
, ηn
)
+ θ(∇ηn,∇ηn) + B1(vn, ηn, ηn)

+ B1(vn, mα, ηn) + B1(uα, ηn, ηn)−U
(

ηn,
∂ηn

∂x3

)
= 0.

(82)

Using the properties of B0 and B1 given in (20)–(23) and the Poincaré inequality,
we obtain:

1
2

d
dt
‖vn(·, t)‖2

L2(Ω)
+ µ‖∇vn(·, t)‖2

L2(Ω)

≤ C2
P‖∇vn(·, t)‖2

L2(Ω)
‖∇uα‖L2(Ω) + kCP‖ηn(·, t)‖L2(Ω)‖∇vn(·, t)‖L2(Ω)

+CP‖F(·, t)− Fs(·)‖L2(Ω)‖∇vn(·, t)‖L2(Ω),

(83)

1
2

d
dt
‖ηn(·, t)‖2

L2(Ω)
+ θ‖∇ηn(·, t)‖2

L2(Ω)

≤ C2
P‖∇vn(·, t)‖L2(Ω)‖∇mα‖L2(Ω)‖∇ηn(·, t)‖L2(Ω) + UCP‖∇ηn(·, t)‖2

L2(Ω)
.

(84)

By applying Young’s inequality, we obtain:

1
2

d
dt
‖vn(·, t)‖2

L2(Ω)
+ γ1(ε)‖∇vn(·, t)‖2

L2(Ω)

≤ εkCP
2
‖ηn(·, t)‖2

L2(Ω)
+

εCP
2
‖F(·, t)− Fs(·)‖2

L2(Ω)

(85)

1
2

d
dt
‖ηn(·, t)‖2

L2(Ω)
+ γ2(ε)‖∇ηn(·, t)‖2

L2(Ω)
≤

εC2
P

2
‖vn(·, t)‖2

L2(Ω)
, (86)

for any ε > 0, where:

γ1(ε) = µ− C2
P‖∇uα‖2

L2(Ω) −
(k + 1)C2

P
2ε

, γ2(ε) = θ −UCP −
C2

P
2ε
‖∇mα‖2

L2(Ω).

Now, noticing that Π1 > 0 in (55) and (75) implies that µ > C2
P‖∇uα‖2

L2(Ω)
, we can select:

ε = ε = max

{
(k + 1)C2

P
2(µ− C2

P‖∇uα‖2
L2(Ω)

)
,

C2
P‖∇mα‖2

L2(Ω)

2(θ −UCP)

}
> 0,

such that γ1(ε) > 0 and γ2(ε) > 0. Consequently, by adding (85) and (86), we deduce that:

1
2

d
dt

(
‖vn(·, t)‖2

L2(Ω)
+ ‖ηn(·, t)‖2

L2(Ω)

)
+min

{
γ1(ε), γ2(ε)

}(
‖∇vn(·, t)‖2

L2(Ω)
+ ‖∇ηn(·, t)‖2

L2(Ω)

)
≤ εCP

2
max{k, CP}

(
‖vn(·, t)‖2

L2(Ω)
+ ‖ηn(·, t)‖2

L2(Ω)

)
+

εCP
2
‖F(·, t)− Fs(·)‖2

L2(Ω)
.

(87)

Then, from the Gronwall inequality, the initial condition (78) and recalling that P and
P are orthogonal projections, i.e., ‖Pn‖ ≤ 1 and ‖Pn‖ ≤ 1, we have that:

‖vn(·, t)‖2
L2(Ω) + ‖η

n(·, t)‖2
L2(Ω) ≤ exp

( εCP
2

max{k, CP}t
)

×
[
‖vn(·, 0)‖2

L2(Ω) + ‖η
n(·, 0)‖2

L2(Ω) +
εCP

2

∫ t

0
‖F(·, s)− Fs(·)‖2

L2(Ω)ds
]

≤ G(t),

(88)
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with G : [0, T]→ R+ a continuous function independent of n and defined by:

G(t) = exp
( εCP

2
max{k, CP}t

)
×
[
‖v0‖2

L2(Ω) + ‖η0‖2
L2(Ω) +

εCP
2

∫ t

0
‖F(·, s)− Fs‖2

L2(Ω)ds
]
.

Thus, the estimate (88) implies (79).

Proof of (80). Let us consider the orthogonal projectors Pn and Pn defined on L(V, V)
and L(B, B), respectively, with norms less than or equal to one, and also, we define the
following operators:

(A(u), w) = (µ∇u,∇w), (B0(u, v), w) = B0(u, v, w),

(B1(u, m), φ) = B1(u, m, φ), (H(m), w) = (kme3, w) + (F− Fs, w),

(A(m), φ) = (θ∇m,∇φ)− θ
∫

∂Ω

∂m
∂n

φdS−U
∫

Ω
m

∂φ

∂x3
dx + U

∫
∂Ω

mn3dS.

Then, from (76) and (77) and using the arguments of Lions [18], we obtain:

∂vn

∂t
= −P∗n

(
A(vn) +B0(vn, vn) +B0(vn, uα) +B0(uα, vn)−H(ηn)

)
,

∂ηn

∂t
= −P∗n

(
A(ηn) +B1(vn, ηn) +B1(vn, mα) +B1(uα, ηn)

)
,

where P∗n and P∗n are the adjoint operators of P∗n and P∗n, respectively. Now, noticing that:

‖A(u)‖V′ ≤ µ‖∇u‖L2(Ω),

‖B0(u, v)‖V′ ≤ C2
P‖∇u‖L2(Ω)‖∇v‖L2(Ω),

‖B1(u, m)‖B′ ≤ C2
P‖∇u‖L2(Ω)‖∇m‖L2(Ω),

‖H(m)‖V′ ≤ CP

(
k‖m‖L2(Ω) + ‖F− Fs‖L2(Ω)

)
,

‖A(m)‖B′ ≤ θ‖∇m‖L2(Ω) + U‖m‖L2(Ω),

we deduce that (80) is satisfied.

From (79) and (80) and applying Corollary 6 of [19], we conclude that the sequence
{(vn, ηn)} is relatively compact in Lq(0, T, H) × Lq′(0, T, X) for all q, q′ ∈ [1, ∞[. Then,
there is a subsequence of {(vn, ηn)} labeled again by {(vn, ηn)} and (v, η) such that:

(v, η) ∈ L2(0, T, V) ∩ L∞(0, T, H)× L2(0, T, B) ∩ L∞(0, T, X)

(vn, ηn)→ (v, η) weakly in L2(0, T; V× B) ,

(vn, ηn)→ (v, η) weakly * in L∞(0, T; H× X),

(vn, ηn)→ (v, η) strongly in L2(0, T; H× X),

(∇vn,∇ηn)→ (∇v, η) weakly in L2(0, T; L2(Ω)× L2(Ω)),

ηn → η c.t.p. in Ω× [0, T].

Moreover, we can deduce that (v, η) is a weak solution of (67)–(72). Indeed, multiply-
ing (76) and (77) by a function ψ ∈ C1([0, T]) such that ψ(T) = 0 and integrating on [0, T],
we have that:
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−
∫ T

0

(
vn, wj

)
ψ′dt + µ

∫ T

0
(∇vn,∇wj)ψdt +

∫ T

0
B0(vn, vn, wj)ψdt

+
∫ T

0
B0(vn, uα, wj)ψdt +

∫ T

0
B0(uα, vn, wj)ψdt +

∫ T

0
(kηne3, wj)ψdt

=
∫ T

0
(F− Fs, wj)ψdt + (Pnv0, wj)ψ(0),

−
∫ T

0

(
ηn, φ

`
)

ψ′dt + θ
∫ T

0
(∇ηn,∇φ

`
)ψdt +

∫ T

0
B1(vn, ηn, φ

`
)ψdt

+
∫ T

0
B1(vn, mα, φ

`
)ψdt +

∫ T

0
B1(uα, ηn, φ

`
)ψdt−U

∫ T

0

(
ηn,

∂φ
`

∂x3

)
ψdt

= (Pnη0, φ
`
)ψ(0).

Then, letting n→ ∞ and using the standard density arguments, we obtain that (v, η)
satisfy the variational relations in Definition 2.

On the other hand, for n = 3, we have that v(·, t) ∈ C([0, T]; V′). Then:

v(·, t)→ v0 weakly in H when t→ 0+. (89)

Similarly:

η(·, t)→ η0 weakly in X when t→ 0+. (90)

From (88), we have that ‖v(·, t)‖2
L2(Ω)

+ ‖η(·, t)‖2
L2(Ω)

≤ G(t). Then,

lim sup ‖v(·, t)‖2
L2(Ω)

+ ‖η(·, t)‖2
L2(Ω)

≤ ‖v0‖2
L2(Ω)

+ ‖η0‖2
L2(Ω)

when t → 0+. More-
over, we recall that H is a uniformly convex space, since the square of the norm
is a semicontinuous functional in the weak topology. Then, we conclude that
‖v0‖2

L2(Ω)
+ ‖η0‖2

L2(Ω)
≤ lim inf ‖v(·, t)‖2

L2(Ω)
+ ‖η(·, t)‖2

L2(Ω)
when t → 0+. Thus,

‖v(·, t)‖2
L2(Ω)

+ ‖η(·, t)‖2
L2(Ω)

→ ‖v0‖2
L2(Ω)

+ ‖η0‖2
L2(Ω)

; see [20]. Thus, by (89) and (90),

we obtain that (v(·, t), η(·, t))→ (v0, η0) strongly in H× X when t→ 0+.

Remark 2. Recently, in [12], the authors considered a generalized bioconvective problem and
obtained the existence and uniqueness over two-dimensional domains and the existence over three-
dimensional domains. They applied the Galerkin method without using the perturbation of steady
states and deduced their existence result requiring uniquely that UC2

P < θ (see Theorem 3.5 in [12]).

5. Conclusions and Future Work

This paper presented new necessary conditions to obtain the existence and uniqueness
of stationary weak solutions and the existence of the weak solutions for the evolution
problem of the bioconvective system introduced in [1]. The new conditions were formulated
in terms of the Poincaré constant, the coefficients, and the external force of the system (see
(7)–(9)). The conditions introduced in the paper generalize the assumptions given in [6] for
the stationary problem and differ from the hypothesis considered in [1] for the evolution
problem. In [1], the authors considered a different smallness condition for the solution of
the stationary problem and did not consider any relation between the parameters of the
system as those considered in (75). The relation (75) is easy to verify, for instance, in the
case of the implementation of numerical methods.

In our future work, we plan to continue the research of bioconvective system in at
least three ways. First, we plan to study other analogous new conditions for the case
of the generalized bioconvective system studied in [7]. The second idea is to apply the
Galerkin methodology to the generalized bioconvective system introduced in [8] (see
also [9] for stationary problem results). Moreover, we expect to develop an analysis of the
bioconvective system of this paper, under the methodology and the conditions considered
in [12].
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