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Abstract: In this paper, the aim is to capture the global pandemic of COVID-19 with parameters that
consider the interactions among individuals by proposing a mathematical model. The introduction of
a parsimonious model captures both the isolation of symptomatic infected individuals and population
lockdown practices in response to containment policies. Local stability and basic reproduction
numbers are analyzed. Local sensitivity indices of the parameters of the proposed model are
calculated, using the non-normalization, half-normalization, and full-normalization techniques.
Numerical investigations show that the dynamics of the system depend on the model parameters.
The infection transmission rate (as a function of the lockdown parameter) for both reported and
unreported symptomatic infected peoples is a significant parameter in spreading the infection.
A nationwide public lockdown decreases the number of infected cases and stops the pandemic’s
peak from occurring. The results obtained from this study are beneficial worldwide for developing
different COVID-19 management programs.

Keywords: SEIHR model; lockdown; epidemic peak; basic reproductive number; containment
policies; sensitivity analysis

1. Introduction

Today, the entire world is experiencing a pandemic and uncertainty of global public
health and economic stability due to the emergence of a pneumonia known as COVID-19
or SARS-CoV-2. The virus is believed to have originated from animals to humans, with
its source being linked to the Huanan Seafood Wholesale Market in Wuhan, China [1–3]
and, consequently, transmitted from human-to-human. This disease was first recognized
in Wuhan, the capital city of Hubei Province, China, in December 2019. Since then, it has
spread rapidly from Wuhan to other provinces of China and almost all other countries,
globally (see [4] and the reference therein).

According to Tang et al. [5], people infected with COVID-19 are expected to be quaran-
tined for 14 days under the most restrictive measures, while the incubation period is about
seven days. Consequently, individuals exposed to the virus are expected to be quarantined
for 14 days. Rocklöv et al. [6] advocate that early response against the virus is a powerful
force in curtailing the spread of the disease. According to their school of thought, this would
have protected many more people from the infection. Similar advocacy was recorded in
Tang et al. [5], thereby necessitating social distancing (or, where possible, strict restriction in
the movement of people) [7], quarantining of suspected cases and the isolation of infected
cases for treatment as the current most effective control measures obtainable in the fight
against SARS-CoV-2 in the face of a limited number of vaccines [8]. The rapid spread of
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the coronavirus and the high fatality rate have motivated many researchers to search for a
solution. Mathematically, most of these works at the emergence of the coronavirus aimed
to estimate the transmission rate and the peak period, among other measures of evaluating
the disease control in different countries [3–5]. These were achieved by adopting a basic
epidemic model, SIR (Susceptible-Infected-Removed), and/or SEIR (Susceptible-Exposed-
Infected-Removed) to generate extensions of the model, such as SEIAR, SEIHR (Susceptible-
Exposed-Infected-Hospitalized-Removed, SEAIHR (Susceptible-Exposed-Asymptomatic-
Infected-Hospitalized-Recovered), SEIRD (Susceptible-Infected-Exposed-Recovered-Dead),
SEDQIR (Susceptible-Exposed-Suspected-Quarantined-Infected-Recovered), and other re-
lated mathematical models, respectively, to determine the basic reproduction number from
available real data within a defined time interval [9–11].

It is essential to know how the basic reproduction number is measured. There are
several difficulties in estimating basic reproductive numbers, particularly when the data
are not so easy to collect. This makes model validation practically impossible [12]. For
this, mathematical models are handled with care [13], as any alternative method may
lead to mismanagement of the disease [14]. A time-dependent reproduction number is
proposed in [15] and calculated by using notification data to generate daily estimates in
different regions and countries. In [16], the authors proposed a Poisson model with time-
dependent transmission and removal rates to estimate possible random errors in reporting
and to determine a time-dependent disease reproduction number. In [17], the authors
used two model-based methods for estimating the risk of the international spread of the
novel coronavirus from the outbreak epicenter and obtained an average basic reproduction
number of 5.31 (ranging from 4.08 to 7.91) and a risk of growing at 0.75 latent individuals
per 1000 travelers.

Mathematical models have the potential to trace and predict the epidemic trajectory
under different circumstances [18–21]. Many mathematical and statistical models have
been proposed to explain the propagation trajectory for a pandemic [22,23]. Some of these
studies were concerned with fractional order models [24,25].

In order to control the transmission rate of COVID-19 cases, lockdown is considered
the most effective mitigation policy adopted worldwide [26,27]. In the present investigation,
we aim to study the dynamics of COVID-19 with lockdown effects. Consequently, a
mathematical model was established. This model enables us to study the impact of the
imposition of lockdown in a country [28,29]. A sensitivity analysis is also carried out for
determining the importance of the model parameters.

The model we propose here is a five compartmental mathematical model, including a
Susceptible (S), an Exposed (E), an Infected (I), Hospitalized (H) and a Recovered R(t) class,
(i.e., SEIHR model) to discuss the progression of COVID-19 and forecast the peak of the
COVID-19 pandemic under the influence of a nationwide public lockdown. In particular, a
few essential factors, i.e., the optimized transmission rate, adequate reproduction number
R0, and under-reporting, are included in this study for accounting for the influence of the
public lockdown. The incorporation of these additional parameters is remedial to provide
a more complete picture of COVID-19 dissemination.

This paper is organized as follows. In Section 2, the COVID-19 transmission model
with lockdown effects is formulated. In Section 3, investigation of the model is carried out
with qualitative theory. In Section 4, a local stability analysis of the solutions of the model
is conducted. Section 5 includes the numerical simulations to demonstrate the analytical
results. Finally, Section 6 concludes the paper.

2. The Mathematical Model

Let S(t) denote the population of Susceptible individuals; E(t) is the exposed class;
I(t) represents the Infective population; the Hospitalized population is H(t); and the
Recovered population is R(t). Then, the total population is denoted by N(t), i.e., N(t) =
S(t) + E(t) + I(t) + H(t) + R(t).
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λ is the rate of lockdown, defined between 0 ≤ λ < 1; b is the birth rate; µ is the death
rate; and µo = µd + µ, where µd is the disease-related death.

κq is the rate at which the infected peoples are isolated–hospitalized and α is the
recovery rate from infection, while κc denotes the rate at which those exposed are deemed
negative for infection and are permitted to unite with the rest of the society, whereas ε
depicts the rate at which the exposed are verified positive and thus infective.

Then, we propose the schematic diagram (Figure 1) with the lockdown rate, λ. Based
on the diagram, we derive the equations using the Mass Action law.

The model parameters and initial populations are taken from [7,8,30], and the lock-
down parameter is assumed to be between 0 and 1 (i.e., λ ∈ [0, 1]) and the model schematic
diagram is presented in Figure 1. Short descriptions of the parameters are presented in
Table 1.

Figure 1. Transmission diagram of COVID-19 model.

With this assumption, we have the following mathematical model.

dS
dt

= bN − β(1−λ)SI
N − µS,

dE
dt

= β(1−λ)SI
N − (ε + κc + µ)E,

dI
dt

= εE− (α + κq + µ0)I,

dH
dt

= κq I − µ0H,

dR
dt

= κcE + αI − µR,

(1)

The system (1) is subjected with the non-negative initial conditions as given below:

S(0) > 0, E(0) > 0, I(0) > 0, H(0) >= 0, R(0) >= 0.
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Table 1. Short description of model parameters and their values [7,8,30].

Parameters Description Values

λ the lockdown parameter 0.4
b human birth rate 4× 10−5

µd the disease-related death rate 1.7826× 10−5

κq rate of isolation–hospitalization of infective individuals 0.13266
α rate of recovery of infected people 0.33029

κc
rate at which those exposed become negative 0.0006and allowed to integrate with rest of the population

ε rate at which the exposed are confirmed infective 0.1428

3. Next Generation Matrix for Infection Diseases

In this section, the compartmental model for infection transmission is explained. If
the individuals are infected in a compartment, then the compartment is classified as an
infected compartment. Such a compartment includes both asymptomatic and symptomatic
individuals.

Suppose that an infectious disease model has m compartments (x1, x2, . . . , xm). The
model equations are given as follows:

dxi
dt

= fi(x). i = 1, 2, ..., m (2)

This compartments can be split into n disease compartments (infected individuals)
and k non-disease compartments (non-infected individuals) as follows:

(x1, x2, . . . , xm) =
(

x1, x2, . . . , xn︸ ︷︷ ︸
n-infected

, xn+1, xn+2, ..., xm︸ ︷︷ ︸
k-noninfected

)
.

Let Fi(x) be the rate of appearance of new infections in ith compartment and let the
following hold:

Vi(x) = V−i (x)− V+i (x),

where v+i is the rate of transfer of individuals into the ith compartment and v−i is the rate
of transfer of individuals out of the ith compartment (Figure 2).

Figure 2. Entering and leaving fluxes related to compartment i.

Again, we denote the subpopulations by xI ∈ Rn and xN ∈ Rk. The grouping of
new infections from all other model compartments is essential. It helps in determining the
basic reproduction numberR0. The compartmental model Equation (2) can be put in the
following form:
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dxI
i

dt
= Fi(xI , xN)− Vi(xI , xN), i = 1, 2, ..., n

dxN
j

dt
=Mj(xI , xN), j = 1, 2, ..., k

(3)

Now, we define the Jacobian matrices F and V as follows:

F =

[
∂Fi(x0)

∂xI
j

]
and V =

[
∂Vi(x0)

∂xI
j

]
, 1 ≤ i, j ≤ n (4)

where x0 is the free equilibrium for Equation (2), F is entrywise non-negative and V is
a non-singular matrix. The basic reproduction ratio R0 is given by the spectral radius
(dominant eigenvalue) of the next generation matrix F V−1 below:

R0 = ρ(F V−1), (5)

where ρ denotes the spectral radius. The reader can see more details regarding to the next
generation matrix and the basic reproduction ratio with their applications in infection
disease models in [31–39].

The Next Generation method of calculating R0 plays a great role in identifying the
model critical parameters and understanding the dynamical behavior of infectious disease
models. Although, this method is the most common approach to calculating this threshold
parameter, it has some limitations. Firstly, there are some biologists that claim that there is
only one value of R0 for any infectious disease model. This is commonly true, but the Next
Generation method only guarantees that R0 maintains the threshold nature, but does not
guarantee that it accurately describes the number of secondary infections [40]. Secondly,
another limitation of using the Next Generation matrix is that we may have different values
of R0, depending on the method used. Therefore, this threshold parameter is flawed; for
example, it was shown that the same model of malaria gives many different values of
R0 [41].

4. Disease-Free Equilibrium: The Basic Reproduction Number

Taking the right-hand side of system (1) and equating it to zero, we have two types
of equilibrium points for the system. The disease-free equilibrium point given by the
following,

E1
0 = (

bN
µ

, 0, 0, 0, 0)

and the endemic equilibrium point defined by the following:

E2
0 = (S∗, E∗, I∗, H∗, R∗)

where

S∗ =
N(ε + κc + µ)

(
α + κq + µ0

)
ε β (1− λ)

E∗ =
b ε β (1− λ)− µ (ε + κc + µ)(α + κq + µ0)

ε β
N (1− λ)(ε + κc + µ)

I∗ =
b ε β (1− λ)− µ (ε + κc + µ)(α + κq + µ0)

β
N (1− λ)(ε + κc + µ)(α + κq + µ0)

H∗ =
κq

(
b ε β (1− λ)− µ (ε + κc + µ)(α + κq + µ0)

)
β µ0

N (1− λ)(ε + κc + µ)(α + κq + µ0)
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R∗ =

(
b ε β (1− λ)− µ (ε + κc + µ)(α + κq + µ0)

)(
ε α + κc (α + κq + µ0)

)
β µ ε

N (1− λ)(ε + κc + µ)(α + κq + µ0)

The Next Generation matrix approach can be illustrated by returning to the SEIHR
model. The infected compartments here are E and I. Then, the model equations for the
infected compartments are expressed below:

d
dt

(
E
I

)
=

 0
β(1− λ)S

N
0 0

−( ε + κc + µ 0
−ε α + κq + µ0

)( E
I

)
(6)

For system (6) and using the equilibrium point E1
0 = ( bN

µ , 0, 0, 0, 0), the matrices F and
V are defined below:

F =

(
0 β(1− λ)
0 0

)
and V =

(
ε + κc + µ 0
−ε α + κq + µ0

)
Therefore, the next generation matrix is as follows:

FV−1 =

 β(1− λ)ε

(ε + κc + µ)(α + κq + µ0)

β(1− λ)

(α + κq + µ0)
0 0


Thus, FV−1 has two eigenvalues 0 and

β(1− λ)ε

(ε + κc + µ)(α + κq + µ0)
. The basic repro-

duction ratio is given as follows:

R0 =
β(1− λ)ε

(ε + κc + µ)(α + κq + µ0)
. (7)

In addition, for system (6) and using the endemic equilibrium point
E2

0 = (S∗, E∗, I∗, H∗, R∗), the matrices F and V are defined below:

F =

(
ρ1 ρ2
0 0

)
and V =

(
k1 0
−ε k2

)
,

where k1 = ε + κc + µ, k2 = α + κq + µ0, ρ1 =
µk1k2 − bεβ(1− λ)

Nk1k2
,

ρ2 =
εβ(1− λ)k1k2 − k2

1k2
2 − bε2β(1− λ)− εµk1k2

εk1k2
,

Thus, the next generation matrix is given below:

FV−1 =

 ρ1k2 + ερ2

k1k2

ρ2

k2
0 0

.

Therefore, the basic reproduction ratio is given as follows:

Rn = R1 +R2. (8)

where

R1 =
µk1k2 − bεβ(1− λ)

Nk2
1k2
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and

R2 =
εβ(1− λ)k1k2 − k2

1k2
2 − bε2β(1− λ)− µεk1k2

k2
1k2

2
.

5. Model Sensitivity Analysis

The idea of sensitivity can be applied to infectious disease models to decide which
variable or parameter is sensitive to a particular situation. Assume that an infectious disease
model has m compartments xi for i = 1, 2, ..., m and n parameters k j for j = 1, 2, ..., n.

The model balanced equations are represented as a system of differential equations as
follows:

dxi
dt

= fi(x, k), (9)

where x ∈ Rm and k ∈ Rn. The model sensitivities can be calculated using the following
techniques: full-normalization, half-normalization and non-normalization.

The full-normalization sensitivities are defined as follows:

Sxi
kj

=
( k j

xi

)(∂xi
∂k j

)
. (10)

The half-normalization sensitivities are given as follows:

Sxi
kj

=
( 1

xi

)(∂xi
∂k j

)
. (11)

The non-normalization sensitivities are given as follows:

Sxi
kj

=
∂xi
∂k j

, (12)

where Sxi
kj

is measured as a sensitivity coefficient of each xi with respect to each parameter
k j.

The key factor that can be discussed for COVID-19 is the model-sensitive analysis.
This technique was used recently in [7,8,30]. This technique can be applied to determine
the local sensitivities for non-normalization, half-normalization, and full-normalization in
computational models.

For the defined model of COVID-19 given here, it is essential to work more widely and
accurately in order to identify critical model parameters based on the sensitivity analysis.
In the computational cases, we take the model initial populations S(0) = 1.1081× 107,
E(0) = 105.1, I(0) = 27.679, H(0) = 1, R(0) = 2 and the model parameters as given in
Table 1. They are mainly defined in [8]. We have taken these estimated parameters and
initial values of the model variables in our numerical simulations. The results obtained
from this investigation helps us in understanding the model dynamics more widely. In
this way, we can identify the important parameters and how the model can be affected by
others parameters.

Generally, the simulated results here show that most of the model classes are sensitive
to the critical parameters. For example, susceptible people are susceptible to parameters b
and µ, whereas the exposed and recovered individuals are sensitive to the model parameter
κc; see Figures 3 and 4. On the other hand, Figure 5 reveals that almost all the classes have
the same sensitivity to parameter µ, while they have less sensitivity to parameters N, β,
and λ. Interestingly, E, I, H and R are more sensitive to ε, α and κq, related to the other
parameters (see Figure 6). It is essential to note that the suggested technique can be further
enhanced or improved upon for complicated models of COVID-19, effectively.
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Figure 3. Local sensitivity analysis with non-normalization technique of all variables with respect
to all parameters in computational simulations, using MATLAB. Parameters values are taken from
Table 1.

Figure 4. Local sensitivity analysis with non-normalization technique of all variables with respect to
all parameters, except b and µ in computational simulations using MATLAB.

Figure 5. Local sensitivity analysis with half-normalization technique of all variables with respect to
all parameters in computational simulations using MATLAB.
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Figure 6. Local sensitivity analysis with full-normalization technique of all variables with respect to
all parameters in computational simulations using MATLAB.

Based on the effect of each involved parameter over the model states using three
techniques of sensitivity analysis, some differences and similarities are shown. Firstly, the
impact of the model parameters on the model variables cannot be well identified by the non-
normalization technique when we include all model parameters; see Figure 3. This issue
can be solved when we exclude the human birth rate “b” from the model computational
simulations; see Figure 4. Secondly, the half-normalization technique would be used to
identify the sensitivity of all model variables and parameters, which is clearly shown in
Figure 5. This technique is effectively applied to show the model sensitivities for all model
components. Finally, the full-normalization technique can provide only the sensitivity of
some model critical parameters compared to the half-normalization technique; see Figure 6.
Therefore, we can conclude that the half-normalization technique is more appropriate to
identify the model critical parameters in comparison with other techniques.

6. Model Dynamics and the Stability Regions

Implementing the parameter values used previously in the sensitivity analysis of the
model, the numerical simulation of the system of Equation (1) is carried out for the analysis
of the stability region for varied values of β, ε and λ. This is done in order to ascertain the
impact of lockdown on the spread of COVID-19. The result achieved is captured in Figure 7.
The region below each curve indicates the stable-steady state for the corresponding values
of λ (0.05, 0.35, 0.65 and 0.95, respectively) with respect to varied values of β and ε, using
Equation (7) as defined for the basic reproduction number, R0. On the other hand, the parts
above the curves represent the unstable steady states for each respective value of λ as listed
above with varied values of β and ε.

From the result captured by Figure 7, it indicates that whenever the value of λ in-
creases, the stable region leading to the disease-free steady state increases in a similar
manner. This signifies that if the measure of lockdown increases, it will certainly curtail the
spread of the virus and eventually could wipe it out completely if about 95% of lockdown
measures are ensured/enforced appropriately among the populace.

The dynamics of the model for the disease-free steady state (that is, when the value
of the basic reproduction number is less than one, R0 < 1) and the endemic steady state
with R0 > 1 were obtained using the MATLAB application; the results are represented
pictorially in Figures 8 and 9 respectively. The compartment S denotes the susceptible,
E the exposed, I the infected, H the hospitalized, and R the recovered population. The
parameter values used for the simulation are the same as those defined in the previous
section for the sensitivity analysis of the model with the exception that β = 0.68 in the case
of the disease-free steady state and β = 0.8 for the endemic steady state. The corresponding
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values for the basic reproduction number are R0 = 0.8773 and R0 = 1.0321, respectively,
which signify that with R0 < 1, the disease gradually dies out of the population, whereas
with R0 > 1, it results in an endemic steady state as a result of the increasing spread of the
virus within the population.

Figure 7. The stability region of the model: (a) 3D representation, (b) 2D representation. The portions
below the curves represent the stable regions, while the portion above the curves represent the
unstable regions of the model.

Figure 8. The dynamics of the model equation for the disease-free steady state with R0 < 1.

Figure 9. The dynamics of the model equation for the endemic steady state with R0 > 1.
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Furthermore, since the value of the basic reproduction number obtained using Equation (7)
is R0 = 0.8773 when β = 0.68 and R0 = 1.0321 when β = 0.8, it indicates that with
β =< 0.68, the system has a disease-free steady state but switches to an endemic steady
state at some point when 0.68 < β < 0.8, with the other parameter values remaining as
defined (also see Figure 7).

7. Conclusions

This paper proposed a mathematical model that captures the global COVID-19 pan-
demic by analyzing additional parameters resulting from individual interactions. The
introduction of this novel model brings to light the isolation of the symptomatic infective
and the population lockdown practiced during the widespread of the virus as responses to
the containment policies. Identifying the critical model parameters is another novelty of
the paper since, with this information, biologists, among others with primitive knowledge
of mathematical modeling, could further improve on the existing model, both theoretically
and practically.

The study took a review of some existing models on COVID-19 and consequently
developed a mathematical model to address very significant questions regarding global
health care. The model analyzed the transmission parameters, using a dynamical system of
differential equations. Furthermore, the paper investigated some essential numerical simu-
lations and sensitivity analyses. The computation of the local sensitivities for the model
parameters was completed using three techniques: non-normalization, half-normalization,
and full-normalization.

The results of this study are considered to be significantly helpful to the health sector,
particularly for health authorities, serving as tools to be used in curtailing the spread of
COVID-19 across the globe. In addition to already existing models, the proposed model is
also applicable in studying the current reality of countries whose outbreaks have been on
the rise.

Nationwide public lockdown is recommended along with other control measures
used not only in India, but also across the globe as an effective control policy for preventing
the dissemination of COVID-19. This is because it plays a crucial role in the suppression of
the epidemic peak of COVID-19 dissemination.

The proposed model has a few limitations. The model contains no parameters for the
imported or exported cases, asymptotic infective, etc. These can be included in the model
to increase the model validity in predicting the spread of epidemic diseases even though
the outcome of our SEIHR model analysis provides satisfactory results; we leave this as
future work.
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