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Abstract: Preservation of structures under aggregation functions is an active area of research with
applications in many fields. Among such structures, min-subgroups play an important role, for
instance, in mathematical morphology, where they can be used to model translation invariance.
Aggregation of min-subgroups has only been studied for binary aggregation functions . However,
results concerning preservation of the min-subgroup structure under binary aggregations do not
generalize to aggregation functions with arbitrary input size since they are not associative. In this
article, we prove that arbitrary self-aggregation functions preserve the min-subgroup structure.
Moreover, we show that whenever the aggregation function is strictly increasing on its diagonal, a
min-subgroup and its self-aggregation have the same level sets.

Keywords: aggregation function; T-subgroup; strictly monotone function

1. Introduction

Aggregation operators have become an important research topic in the last two
decades. The motivation to use such functions comes from the need to summarize different
pieces of information into a single object, which is a particularly challenging task when
the incoming information is heterogeneous, imprecise, or incomplete. These operators
are nowadays a fundamental tool of computer sciences with applications in classifica-
tion, databases, control, decision making, or image processing among others. Recent
monographs on this topic are [1–3].

An aggregation operator is a non-decreasing function A : [0, 1]n → [0, 1] satisfying
certain boundary conditions (see Definition 1). This construction allows one to aggregate
not only numerical values but also any functions, or structures on a set that have output in
the unit interval.

Min-subgroups were introduced by Rosenfeld in ([4]) as a fuzzy set µ whose domain
is a group G such that µ(x) = µ(x−1) and µ(xy) ≥ min{µ(x), µ(y)} for all x, y in G. Note
that from the definition, we immediately obtain µ(e) ≥ µ(x) for all x in G, and hence
the normalization condition µ(e) = 1 is often added to the definition of fuzzy subgroup.
Das studied min-subgroups thoroughly in [5], introducing a characterization in terms
of level sets in which the level sets of µ correspond to crisp subgroups of G. Das also
introduced an equivalence relation between fuzzy groups concerning level sets. Anthony
and Sherwood (see [6]) extended Rosenfeld’s definition using an arbitrary t-norm T instead
of the minimum. These groups are called T-subgroups. Formato and Gerla constructed
a correspondence between T-indistinguishability operators on a set (relations that are
reflexive, symmetric, and T-transitive) and T-subgroups related with the permutation
group of the set further motivating the study of T-subgroups (see [7]).

Min-subgroups can be identified as indistinguishability operators that are invariant
by translations (see [8]). This type of indistinguishability operator plays a fundamental
role in some applications, notably in mathematical morphology (see [8–11]).
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When the set of inputs of an aggregation function share a structure (i.e., they are all
indistinguishability operators, min-subgroups, or other fuzzy relations with additional
properties), the main problem is the preservation of that structure. In other words, the
problem is determining conditions guarantee that the output has the same structure.
Preservation of structures under aggregation has been widely studied in recent decades
(see [12–21]).

In particular, preservation of the min-subgroup structure under binary aggregations
was studied in [12]. However, these results cannot be immediately translated into n-ary
aggregation functions since these operators are not necessarily associative. In this article,
we obtain the first results concerning the preservation of the min-subgroup structure
for aggregation of more than two min-subgroups. More concretely, we focus on the
preservation of the min-subgroup structure under self-aggregation motivated by the central
role they play in the binary case. Note that the minimum t-norm is the only t-norm that is
idempotent, and it is characterized by its level-sets, which makes it very useful in certain
contexts ([22]).

The remainder of the article is organized as follows. In Section 2, we introduce the
relevant definitions and known facts. Section 3 contains our first new results. We show
that the aggregations of an arbitrary number of min-subgroups are also min-subgroups.
We also study the behavior of the fuzzy subgroup obtained from conjunctive, averaging,
disjunctive, and mixed aggregation functions. Section 4 is devoted to investigate self-
aggregations with respect to the equivalence classes of fuzzy subgroups given by its level
sets. Our main result states that, for aggregation functions that are strictly increasing on
their diagonal, the self-aggregation of a min-subgroup has the same level sets that the
original min-subgroup. The article ends with some concluding remarks and future lines of
research.

2. Preliminary Facts

Definition 1 ([1]). An operation A : [0, 1]n −→ [0, 1] is called an aggregation function if it
satisfies the following axioms:

(A1) Monotonicity. If xi ≤ yi for each i ∈ {1, . . . , n}, then A(x1, . . . , xn) ≤ A(y1, . . . , yn).
(A2) Boundary conditions. A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Moreover, A is called jointly strictly monotone if whenever xi < yi for all i ∈ {1, . . . , n},
then A(x1, . . . , xn) < A(y1, . . . , yn).

Among the most relevant aggregation functions, we find the arithmetic mean, the
geometric mean, the harmonic mean, and the quadratic mean (see [1,3]). Aggregation
functions are classified into four broad classes: conjunctive, averaging, disjunctive, and
mixed functions.

1. A conjunctive aggregation function A is an aggregation function such that A(r1, . . . , rn)
≤ min{r1, . . . , rn} for all (r1, . . . , rn) ∈ [0, 1]n. A prototypical example is any t-norm.

2. An averaging aggregation function A is an aggregation function such that min{r1, . . . ,
rn} ≤ A(r1, . . . , rn) ≤ max{r1, . . . , rn} for all (r1, . . . , rn) ∈ [0, 1]n. Ordered weighted
averaging operators belong to this category.

3. A disjunctive aggregation function A is an aggregation function such that max{r1, . . . ,
rn} ≤ A(r1, . . . , rn) for all (r1, . . . , rn) ∈ [0, 1]n. One example is any t-conorm.

4. An aggregation function A is called mixed if A is not conjunctive, averaging, nor
disjunctive. Uninorms belong to this type of aggregation functions.

Note that the averaging class is frequently called idempotent class since every aver-
aging aggregation function A satisfies A(r, . . . , r) = r for all (r, . . . , r) ∈ [0, 1]n. Extensive
information about aggregation functions can be found in [3].

Definition 2 ([4]). Let (G, ·) be a group. We say that µ : G −→ [0, 1] is a min-subgroup of G if:

(G1) For all x ∈ G, µ(x) ≥ µ(x−1).
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(G2) For all x, y ∈ G, µ(xy) ≥ min{µ(x), µ(y)}.

Note that G1 is equivalent to µ(x) = µ(x−1) for all x ∈ G. In the paper, e denotes the
neutral element of the group G.

Definition 3 ([23]). Let µ be a fuzzy subset of a given universe X. For each t ∈ [0, 1], the level set
µt and strict level set µt are defined as follows:

µt = {x ∈ X | µ(x) ≥ t} µt = {x ∈ X | µ(x) > t}

The support of µ is defined by supp µ = µ0.

Level sets (or α-cuts) have been studied extensively in fuzzy subgroups (see for
instance [24,25]). P. Das used level sets to characterize the notion of min-subgroup ([5]).

Proposition 1 ([5]). Let G be a group and µ a fuzzy set of G; then µ is a min-subgroup of G if and
only if all its non-empty level sets are subgroups of G.

3. Self-Aggregation

Given an aggregation function A and n fuzzy subsets µ1, . . . , µn of a group G, we
consider the fuzzy set A(µ1, . . . , µn) on G defined by

A(µ1, . . . , µn)(x) = A(µ1(x), . . . , µn(x))

for each x ∈ G. We say that A(µ1, . . . , µn) is the aggregation of µ1, . . . , µn through A.
In this section, we will study the aggregation of A(µ, . . . , µ) whenever µ is a min-

subgroup of a group G, i.e., the self-aggregation of µ through A.
Anthony and Sherwood (see [6]) introduced T-subgroups as an extension of min-

subgroups using an arbitrary t-norm T instead of the minimum.
The following theorem underlines the relevance of min-subgroups within T-subgroups

since the minimum is the only t-norm that guarantees preservation of the T-subgroup
structure for any binary self-aggregation process.

Theorem 1 ([12]). Let G be a group with at least four elements and T a t-norm satisfying T 6= TD,
where TD is the drastic t-norm. The following assertions are equivalent:

1. T = min.
2. For each T-subgroup µ and each aggregation function A, A(µ, µ) is a T-subgroup.

Due to this result, given any aggregation function and any min-subgroup µ, A(µ, µ)
is also a min-subgroup. However, since A is not necessarily associative, the previous result
does not guarantee that A(µ, µ, . . . , µ) is also a min-subgroup. We establish that this is the
case for arbitrarily sized aggregations.

Proposition 2. Let A : [0, 1]n −→ [0, 1] be an aggregation function and µ a min-subgroup of a
group G. Then, A(µ, . . . , µ) is also a min-subgroup of G.

Proof. Take x ∈ G; we have that

A(µ, . . . , µ)(x) = A(µ(x), . . . , µ(x)) = A(µ(x−1), . . . , µ(x−1)) = A(µ, . . . , µ)(x−1).

Take x, y ∈ G. Without loss of generality, let us assume that µ(x) ≤ µ(y). Under this
premise, using the fact that A is a non-decreasing function, we have that

A(µ, . . . , µ)(x) = min
{

A(µ, . . . , µ)(x), A(µ, . . . , µ)(y)
}

. (1)
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Therefore,

A(µ, . . . , µ)(xy) = A(µ(xy), . . . , µ(xy)) ≥ A
(

min{µ(x), µ(y)}, . . . , min{µ(x), µ(y)}
)
.

Since µ(x) ≤ µ(y) and the monotonicity of A,

A
(

min{µ(x), µ(y)}, . . . , min{µ(x), µ(y)}
)
= A(µ(x), . . . , µ(x)) = A(µ, . . . , µ)(x).

Taking into account (1), the proof is completed.

We proceed to study the comparison between A(µ, . . . , µ) and µ with respect to the
usual order of fuzzy sets, that is, if A(µ, . . . , µ) ≤ µ or A(µ, . . . , µ) ≥ µ. The following
result shows sufficient conditions on A in order to compare both of them.

Proposition 3. Let A : [0, 1]n −→ [0, 1] be an aggregation function and µ a min-subgroup of a
group G.

1. If A is a conjunctive aggregation function, then A(µ, . . . , µ) ≤ µ.
2. If A is an averaging aggregation function, then A(µ, . . . , µ) = µ.
3. If A is a disjunctive aggregation function, then A(µ, . . . , µ) ≥ µ.

Proof. Let us consider x ∈ G.

1. A(µ, . . . , µ)(x) = A(µ(x), . . . , µ(x)) ≤ min
{

µ(x), . . . , µ(x)
}
= µ(x).

2. On the one hand, µ(x) = min
{

µ(x), . . . , µ(x)
}
≤ A(µ(x), . . . , µ(x)) = A(µ, . . . , µ)(x).

On the other hand, A(µ, . . . , µ)(x) = A(µ(x), . . . , µ(x)) ≤ max
{

µ(x), . . . , µ(x)
}
=

µ(x).
3. A(µ, . . . , µ)(x) = A(µ(x), . . . , µ(x)) ≤ max

{
µ(x), . . . , µ(x)

}
= µ(x).

However, if A is mixed, it is possible that A(µ, . . . , µ) is not comparable to µ, and
when it is, all the above inequalities can appear, as the following example shows.

Example 1. Consider the group G = (Z6,+) and the fuzzy sets µ, η, ν, σ defined in the table below.

G 0 1 2 3 4 5
µ 0.9 0.5 0.5 0.9 0.5 0.5
η 1 0.2 0.8 0.2 0.8 0.2
ν 0.4 0.3 0.3 0.4 0.3 0.3
σ 1 0 0 0.5 0 0

Clearly, they are min-subgroups of G because their level sets are crisp subgroups of G. Let
us consider the following binary aggregation function A, where e = 0.5 is the neutral element:

A(x, y) =


y if x = e,
x if y = e,
0 if x < e, y < e,
1 if x > e, y > e,
e otherwise.

It is easy to check that A is a mixed aggregation function. The self-aggregations of the previous
min-subgroups are:

G 0 1 2 3 4 5
A(µ, µ) 1 0.5 0.5 1 0.5 0.5
A(η, η) 1 0 1 0 1 0
A(ν, ν) 0 0 0 0 0 0
A(σ, σ) 1 0 0 0.5 0 0

We can conclude that
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A(µ, µ) ≥ µ,

A(ν, ν) ≤ ν,

A(σ, σ) = σ,

but A(η, η) is not comparable to η.

4. Self-Aggregation on the Equivalence Class

There are infinitely many min-subgroups that generate the same chain of subgroups.
In order attempt any classification, it is natural to relate two such min-subgroups. P. Das
introduced in [5] the following relation between min-subgroups of a group.

Definition 4. Let G be a group and µ, η two min-subgroups of G. We say that µ is equivalent to
η, written µ ∼ η, if

{
µt
}

t∈µ(G)
=
{

ηs
}

s∈η(G)
where µ(G) and η(G) are the ranges of µ and η,

respectively. The class of an element µ will be denoted by [µ].

There are other significant equivalences on min-subgroups [26–28]. A study on their
connections has been recently presented in [29]. Our paper focuses only on the given one
by P. Das, which is the most relevant in the literature. Many results can be transferred
easily taking into account the implications diagram from [29]. A. Jain characterized the
equivalence relation ∼ as follows.

Proposition 4 ([30]). Let G be a group and µ, η two min-subgroups of G. The following assertions
are equivalent:

1. µ(x) > µ(y) if and only if η(x) > η(y).
2. µ(x) ≥ µ(y) if and only if η(x) ≥ η(y).
3. {µt}t∈µ(G) = {ηs}s∈η(G).
4. {µt}t∈µ(G) = {ηs}s∈η(G).

We introduce the following example showing equivalence classes according to ∼ in
order to illustrate how self-aggregation acts on the equivalence class.

Example 2. Consider the min-subgroups µ, η, ν, σ and the aggregation A presented in Example 1.
We have:

[σ] 6= [µ] = [ν] 6= [η] and [σ] 6= [η].

Moreover, self-aggregating each of these min-subgroups through A provides:

[A(µ, µ)] = [µ]

[A(η, η)] 6= [η]

[A(ν, ν)] 6= [ν]

[A(σ, σ)] = [σ]

The example shows that self-aggregation does not preserve equivalence classes in
general. We dedicate the last part of the section to finding conditions on an aggregation
function A, which ensures that a min-subgroup and its self-aggregation by A belong to the
same equivalence class.

The following result is a straightforward consequence of Proposition 3.

Proposition 5. If A is an averaging aggregation function and µ a min-subgroup of a group G, then
[A(µ, . . . , µ)] = [µ].
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The next proposition shows the relevance of jointly strictly monotone aggregation func-
tions.

Proposition 6. Let G be a group and A : [0, 1]n −→ [0, 1] be an aggregation function. If A is
jointly strictly monotone, then [A(µ, . . . , µ)] = [µ] for each min-subgroup µ of G.

Proof. We need to prove that A(µ, . . . , µ) and µ induce the same level sets. We will use the
characterization of the Proposition 4. Let us take x, y ∈ G. Firstly, assume that µ(x) ≥ µ(y);
by monotonicity of A, we have that A(µ, . . . , µ)(x) ≥ A(µ, . . . , µ)(y).

Conversely, assume that A(µ, . . . , µ)(x) ≥ A(µ, . . . , µ)(y). We must check that
µ(x) ≥ µ(y). By contradiction, µ(x) < µ(y). Since A is jointly strictly monotone, we conclude
that A(µ(x), . . . , µ(x)) < A(µ(y), . . . , µ(y)); equivalently, A(µ, . . . , µ)(x) < A(µ, . . . , µ)(y),
obtaining the desired contradiction.

We proceed with the main result of the article. Let us recall that an aggregation
function A is strictly increasing on its diagonal if for each x, y ∈ [0, 1], satisfying x < y;
then

A(x, . . . , x) < A(y, . . . , y).

Theorem 2. Let G be a group and A : [0, 1]n −→ [0, 1] be an aggregation function. The following
assertions are equivalent:

1. A is a strictly increasing function on its diagonal.
2. A(µ, . . . , µ) and µ induce the same level sets.

Proof. 1 =⇒ 2. We will use the characterization of the Proposition 4. Let us take
x, y ∈ G. Assume that µ(x) ≥ µ(y); by monotonicity of A, we have that A(µ, . . . , µ)(x) ≥
A(µ, . . . , µ)(y).

Conversely, assume that A(µ, . . . , µ)(x) ≥ A(µ, . . . , µ)(y). We must check that µ(x) ≥
µ(y). By contradiction, suppose that µ(x) < µ(y). Since A is a strict increasing function
on its diagonal, we conclude that A(µ(x), . . . , µ(x)) < A(µ(y), . . . , µ(y)), and equivalently,
A(µ, . . . , µ)(x) < A(µ, . . . , µ)(y), which is a contradiction.

2 =⇒ 1. We prove that if A is not strictly increasing on its diagonal, then there is a
min-subgroup µ ∈ G such that A(µ, . . . , µ) and µ do not have the same level sets. Under
this premise, there are a, b ∈ [0, 1] such that

a < b and A(a, . . . , a) ≥ A(b, . . . , b).

By monotonicity, we have that A(a, . . . , a) = A(b, . . . , b). Let us create the fuzzy
set µ : G −→ [0, 1], satisfying µ(e) = b and µ(x) = a whenever x 6= e. (We remember
that e denotes the neutral element of G.) Clearly, µ is a min-subgroup of G according to
Proposition 1. Therefore, considering an element x 6= e, we conclude that

A(µ(x), . . . , µ(x)) = A(a, . . . , a) = A(b, . . . , b) = A(µ(e), . . . , µ(e)).

Since µ(x) < µ(e), they induce different level sets.

As a direct consequence of the previous theorem, we have obtained the desired
characterization.

Corollary 1. Let µ be a min-subgroup of a group G. If A is a strict t-norm or a strict t-conorm,
then A(µ, . . . , µ) belongs to the same equivalence class as µ.

5. Concluding Remarks

Let A be a generic aggregation function, G a group, µ a min-subgroup of G, and [µ]
the Das class of µ.
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Firstly we have shown that the structure of min-subgroup is preserved by arbitrary
self-aggregation functions—i.e., A(µ, . . . , µ) is a min-subgroup—and we have studied
when A(µ, . . . , µ) is comparable to µ.

Secondly, we have shown an example of an aggregation function A and a fuzzy
subgroup µ satisfying [A(µ, . . . , µ)] 6= [µ]. Hence, the Das class of a min-subgroup is not
necessarily preserved by an arbitrary aggregation function. We have shown that this class
is preserved if A is an averaging or a jointly strictly monotonous aggregation function.

Thirdly, our main results states that A(µ, . . . , µ) and µ induce the same level sets if
and only if A is a strictly increasing function on its diagonal. This result implies that if A is
a strict t-norm or a strict t-conorm, A(µ, . . . , µ) belong to the same equivalence class as µ.

Future research could examine under what conditions the Lukasiewicz and product
subgroup structures are preserved by arbitrary self-aggregation functions and explore
the implications of the migrativity property ([31]) for the preservation of these subgroup
structures under self-aggregation functions.
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