
axioms

Article

Random Walk Analysis in a Reliability System under Constant
Degradation and Random Shocks

Jewgeni H. Dshalalow *,† and Ryan T. White †

����������
�������

Citation: Dshalalow, J.H.; White, R.T.

Random Walk Analysis in a

Reliability System under Constant

Degradation and Random Shocks.

Axioms 2021, 10, 199.

https://doi.org/10.3390/

axioms10030199

Academic Editor:

Palle E. T. Jorgensen

Received: 4 July 2021

Accepted: 13 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematical Sciences, Florida Institute of Technology, College of Engineering and Science,
Melbourne, FL 32940, USA; rwhite@fit.edu
* Correspondence: edshalalow@scienceatlantic.net
† Current address: Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32940, USA.

Abstract: In this paper, we study a reliability system subject to occasional random shocks hitting
an underlying device in accordance with a general marked point process with position dependent
marking. In addition, the system ages according to a linear path that eventually fails even without
any external shocks that accelerate the total failure. The approach for obtaining the distribution of
the failure time falls into the area of random walk analysis. The results obtained are in closed form.
A special case of a marked Poisson process with exponentially distributed marks is discussed that
supports our claim of analytical tractability. The example is further confirmed by simulation. We also
provide a classification of the literature pertaining to various reliability systems with degradation
and shocks.

Keywords: reliability with degradation and non-fatal shocks; random walk analysis; fluctuation
theory; marked point process; marked poisson process

1. Introduction
1.1. Background

Most infrastructures, industrial systems, electronic devices, and manufactured prod-
ucts, experience multiple failures in their life times. Not only do they all deteriorate (as an
inevitable wear) but they are also subject to random shocks of various natures. Through
deterioration alone, sooner or later they die. The shocks further accelerate the decay, while
regular maintenance prolongs their lives. A typical modeling of a basic system includes
a formalism of deterioration, also referred to as degradation or fatigue, and the presence
of shocks which are almost exclusively marked Poisson. A threshold is also set so that
if underlying system’s operational capacity crosses that threshold when going downhill,
the system fails, and a key target is the prediction of the failure time.

The literature on reliability with degradation and shocks is very rich with myriads of
very interesting and practical models. To the best of our knowledge, they establish formulas
(most often of total probability type) for the distribution of the failure time that can be
computed numerically. The degradation process is commonly with stationary and indepen-
dent increments, such as the gamma process (almost exclusively used reliability), reverse
Gaussian process, and even Brownian motion with drift (called there a Wiener process).

The combination of a continuous (internal) deterioration, say Y(t), with abrupt (exter-
nal) shocks cause a so-called soft failure of the system, meaning that the cumulative wear
and a series of instantaneous damages exceed the sustainability of the system and make it
non-operational at some point of time. The sustainability threshold M of the system will
be crossed or exceeded dependent on whether it happens by gradual wear or upon one of
the shocks occurring at t1, t2, . . . . These shocks, say X1, X2, . . . , are accumulated over the
time, so that at one point in time tν, the sum ∑ν

k=1 Xk exceeds M (unless it happens earlier
upon continuous crossing of M).
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In addition, the same shocks that accelerate the wear of the system can knock down
one of the internal components (such as a capacitor) and make the system instantaneously
non-operational. This phenomenon is referred to as a hard failure of the system. A hard
failure can take place upon t1, t2, . . . and it is specified by another control threshold D and
a sequence of single damages such as W1, W2, . . . at t1, t2, . . . , so that a single one of them,
say Wν exceeds D at time tν. With the presence of such additional damages, the global
failure of the system occurs if at some point tν when ∑ν

k=1 Xk exceeds M or Wν exceeds D
or Y(t) + ∑ν−1

k=1 Xk = M for sup{t : t < tν}, whichever of the three comes first.

1.2. Pertinent Literature

Among most pertinent work related to our reliability systems are those with shocks
and degradation. There are models entirely based on degradation (as in Tsai et al. [1]) and
on shocks and both.

1.2.1. Shock Models

Most shock models fall into one of the five classes: cumulative shock models, extreme
shock models, δ-shock models, run shock models, and mixed shock models. A mixed shock
model must be a combination of at least two of the first four types.

1.2.2. Cumulative Shock Models

A cumulative shock model can be specified by a marked point process S = ∑∞
k=1 Xnεtn ,

where the marks Xn represent magnitude of shocks. S generally uses position dependent
marking. The random index ν(x) =inf{n : Sn = ∑n

k=1 Xk > x} gives the total number of
shocks until the failure. The failure time is tν(x). Gut [2] showed that tν(x)/x → Eδ

EX a.s. and
in L1 where δ ∼ tn − tn−1 and X ∼ Xn. See also the work of Gut and Hüsler [3] and Sumita
and Shanthikumar [4].

Abolnikov and Dshalalow [5] studied marked point process S = ∑∞
n=0 Xnεtn with

position dependent marking (that is, when Xn depends on δn = tn − tn−1, but not on
any other components) we assume a delay at (X0, t0). More specifically, the sequence
{(X0, t0), (X1, t1), . . .} is a delayed renewal process. Additionally, Xn ∈ N0.

With A = [0, M), assuming M ∈ N, of interest is the time and position of S upon its
escape from A, that is the failure time and the total damage to the system upon the failure.
Thus, we have: ν = inf{m : Sm = X0 + . . . + Xm ∈ Ac} giving the number of shocks that
cause the system to fail, tν—the failure time, Sν—the total amount of damage to the system
on tν (or excess value of M).

The transform

Φν = Φν(ξ, u, v, ϑ, θ) = EξνuSν−1 vSν e−ϑtν−1−θtν , (1)

with ξ, u, v ∈ B(0, 1), Re(ϑ) ≥ 0, and Re(θ) ≥ 0, is the joint probability-generating function
(PGF) of ν and Sν and Laplace Stieltjes Transform of tν, and includes two more useful
pre-failure quantities Sν−1 and tν−1 (pre-failure time), representing the damage to the system
and time the total damage seen in set A before the failure. Φν was expressed in a closed
form through the means of the D-operator, defined as follows

Dk
x ϕ(x, y) =

limx→0
1
k!

∂k

∂xk

[
1

1−x ϕ(x, y)
]

, k ≥ 0

0, k < 0
(2)

for x ∈ B(0, 1) and Re(y) ≥ 0. Here, ϕ is a function, analytic at zero in the first variable.
Suppose the joint transforms

γ0(z, θ) = EzX0 e−t0θ (3)

γ(z, θ) = EzX1 e−(t1−t0)θ , (4)
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assuming z ∈ B(0, 1) and Re(θ) ≥ 0, are known.

Theorem 1. The following formula holds:

Φν = DM−1
x

(
γ0(v, θ)− γ0(xv, θ) +

ξγ0(xuv, ϑ + θ)

1− ξγ(xuv, ϑ + θ)
(γ(v, θ)− γ(xv, θ)

)
, (5)

where x ∈ B(0, 1) (the open unit ball in C) and the rest of domains are specified as in (1).

In the work of Dshalalow and Huang [6] and Dshalalow and Robinson [7], the authors
studied the above marked point process S = ∑∞

n=0 Xnεtn with position dependent marking,
but now with Xn real-valued. With A = [0, L), assuming L > 0, define

µ = inf
{

m : Sm = X0 + . . . + Xm ∈ AC
}

(6)

as the total number of shocks that knock down the system, tµ—the failure time, Sµ, the total
damage to the system the failure time at tµ (or excess value of L). Additionally, tµ−1 is the
time of the µ− 1st shock preceding the failure time and Sµ−1 is the total damage to the
system at time tµ−1.

The transform

Φµ = Φµ(ξ, u, v, ϑ, θ) = Eξµe−uSµ−1 e−vSµ e−ϑtµ−1−θtµ , (7)

assuming ξ ∈ B(0, 1), Re(u) ≥ 0, Re(v) ≥ 0, Re(ϑ) ≥ 0, and Re(θ) ≥ 0, is the joint PGF of
µ and LST of Sµ, tµ, and two more useful pre-failure quantities Sν−1 and tν−1.

Theorem 2 (Dshalalow and Huang [6]). The functional Φµ satisfies the formula

Φµ(ξ, u, v, ϑ, θ) = L−1
s

[
1
s

(
G1

0 − G0 +
ξg0

1− ξg
(G1 − G)

)]
(L), (8)

where

L is the Laplace transform (9)

g0 = g0(u + v + s, ϑ + θ) g = g(u + v + s, ϑ + θ) (10)

G0 = g0(v + s, θ) G = g(v + s, θ) (11)

G1
0 = g0(v, θ) = Ee−vX0 e−t0θ G1 = g(v, θ) = Ee−vX1 e−(t1−t0)θ (12)

In the work of Dshalalow and Robinson [7], under the special assumptions made
on S , such as t0 = 0 and X0 (the initial damage) a constant, S with position indepen-
dent marking, Xj ∈ [Exp(η)], δj = tj − tj−1 ∈ [Exp(τ)], the marginal joint transform
Φ(1, 0, v, 0, θ) = Ee−vSµ−θtµ of the damage to the system on the failure and the failure time
satisfies the formula

Ee−vSµ−θtµ =
ητ

(η + v)(τ + θ)
e−η(L−X0)e−(v− ητ

τ+θ )e−X0
ητ

τ+θ (13)

that further implies that the marginal pdf of Sµ is

fSµ(x) = ηe−η(x−L)1(L,∞)(x) (14)

and the marginal pdf of tµ is

ftµ(t) = τe−η(L−X0)e−τt I0

(
2
√

ητ(L− X0)t 1R+(t)
)

, (15)
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where I0(x) is the modified Bessel function of order zero.
Furthermore, the PDF Ftµ−1(t) = P

{
tµ−1 ≤ t

}
of the pre-failure time is

Ftµ−1(t)

= e−η(L−X0)

[
e−τt I0

(
2
√

ητ(L− X0)t
)
+ τ

∫ t

z=0
e−τz I0

(
2
√

ητ(L− X0)z
)

dz
]

(16)

1.2.3. Extreme Shock Models

Gut and Hüsler [3,8] studied a shock model with the input of extreme shocks rep-
resented by a marked point process S = ∑∞

j=1 Xjεtj with position independent marking.
Under S , set ξ(x) =inf{n : Xn > x}, with tξ(x) being the hard failure time. Obviously,
ξ(x) ∈ [Geo(p(x))], where p(x) = P{X1 > x}. Furthermore, the authors established

Etξ(x) =
Eδ1
p(x) and the asymptotic behavior

tξ(x)
ξ(x) → Eδ1, as x →sup{u : FX(u) < 1}.

1.2.4. δ-Shock Models

Li and Kong [9] studied a system that fails when the time lag between two consecutive
shocks decreases than some positive δ. The δ-shock policy is often implemented whenever
shock damages are hard to observe. Here, external shocks arrive according to a Poisson
point process of rate λ. Let M ∈ N0, N(t) be the associated Poisson counting process,
and m(t) =min{δj = tj − tj−1 : M < j ≤ N(t)}. Furthermore, the first M shocks are not
fatal and the M + jth shock is fatal if δM+j < δ, j = 1, 2, . . .. In other words, the system is
considered with regard to the confined σ-algebra

FM = F ∩ {X1 ≥ δ, . . . , XM ≥ δ} (17)

Let ξ =inf{n : Xn < δ}. Then, P{ξ = hX1 ≥ δ, . . . , XM ≥ δ} = pqh−M−1, q = e−λδ.
The authors give the PDF of tν on FM and the asymptotic behavior of tν/Etν ∈ [Exp(1)] as
δ→ 0.

Eryilmaz and Bayramoglu [10] studied a δ-shock system where external shocks arrive
according to a renewal process with interrenewal times uniformly distributed. Earlier, Eryıl-
maz [11] considered a system with shocks arriving according to a marked Poisson process
with position independent marking, under the generalized model proposed by Eryilmaz in
which the failure occurs when the respective lengths of k consecutive interarrival times of
the shocks is less than δ. That is, the system’s failure occurs at tν, where

ν = inf{n : tn−k+1 − tn−k < δ, . . . , tn − tn−1 < δ} (18)

The authors found explicit distributions of ν (geometric distribution of order k) and of
failure time tν.

Eryilmaz further embellished this model by introducing

µ = inf{n : Xn−k+1 > M, . . . , Xn > M} (19)

and setting ρ = ν ∧ µ, so that the system’s failure occurs at time tρ. In the combination of
two types of failures (mixed model), the formulas for ρ and failure time tρ are not of closed
form except for special asymptotic cases.

1.2.5. Run Shock Models

Input of shocks is specified by a marked point process S = ∑∞
k=1 Xnεtn , with δk being

interarrival times of the shocks. Such a system was introduced and studied by [12,13],
with the failure of the system defined as follows. Given a critical region Rq ⊆ R, let
q = 1− p = P

{
Xj ∈ Rq

}
and

ν(q, k) = min
{

n : Xn, Xn−1, . . . , Xn−k+1 ∈ Rq
}

(20)
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being a critical run in a string of k critical shocks that cause the failure of the system, with the
failure time tν(q,k). The authors studied asymptotic behavior of ν and tν, showing that

qkν(q, k)→ e weakly as q→ 0 (21)

pqkν(q, k)→ e weakly as k→ ∞ (22)

qktν(q,k) → exp(E(δ1)) weakly as q→ 0 (23)

pqktν(q,k) → exp(E(δ1)) weakly as k→ ∞ (24)

Furthermore, [14] studied asymptotics in a mixed run and cumulative shock model.
Ozkut and Eryilmaz [15] studied a so-called Marshall–Olkin run shock model that

stemmed from Marshall and Olkin [16,17]. This system consists of two components that
are subject to shocks from three different sources such that the shocks from the first and
second source damage the first and second component, respectively, while the shocks
from the third source affect either component. The produced shocks are classified as
critical or non-critical. A component fails if it is subject to k consecutive critical shocks
from the same source. The authors assume that interarrival times of the shocks follow a
phase-type distribution and derive explicitly the distribution of the survival function of the
two components.

1.2.6. Mixed Shock Models

Eryilmaz and Tekin [18] considered a system with input of shocks being a marked
point process with and without position dependence. They introduce two thresholds,
d1 < d2, such that

µ = inf{n : Xn−k+1 > d1, . . . , Xn > d1} (run shock) (25)

ν = inf{n : Xn > d2} (extreme shock) (26)

ρ = µ ∧ ν (27)

The failure time is tρ. No assumption is made on the nature of that point process.
They found a closed formula for the probability distribution for ρ having a phase type
distribution, and for the special case of δn = tn − tn−1 being of the phase type and the
point process with position independent marking, the failure time tρ was proved to be of a
phase type.

Zhao et al. [19] dealt with a system where shocks arrive according to a Poisson process
of rate λ. Each shock can be one of the two types, valid (with probability p) or invalid (with
probability q = 1− p). A valid shock causes some random damage to the system, while
invalid shock does not. An invalid shock is called δ-invalid if the time elapsed from the
preceding shock is greater than δ. A so-called self-healing mechanism kicks in when i valid
shocks are followed by k invalid shocks, one after another. In this case, the last of the i
damages is healed. If the total number of valid shocks hits d, then a self-healing ability is
discontinued (end of stage 1), after which all valid shocks are accumulated until its number
reaches D > d and this is when the system fails (end of stage 2). The reliability of this system
is analyzed by a finite Markov chain. µ gives the total number of shocks that end stage 1, ν
is the total number of shocks until the system fails. The authors provide computational
formulas for both. However, they used a simulation to derive the probability distribution
of the failure tν.

1.2.7. Shock and Degradation Models

In the above models, the interest was more on shocks, with very little to no attention
paid to the degradation process. There are numerous articles on reliability systems entirely
focused on soft failures merely due to degradation and no shocks. Additionally, there
are some notable works with the failures due to both degradation and shocks and, in
addition, mixed shocks.
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Peng et al. [20] studied a system under the following assumptions.

(a) Soft failures are caused by continuous wear degradation and vocational non-fatal and
extreme shocks that arrive in accordance with a marked Poisson processS = ∑∞

j=1(Xj,
Wj)εtj of rate λ for its support counting measure ∑∞

j=1 εtj with position independent
marking and with marks Xj’s and Wj’s independent of each other. A soft failure
occurs when the cumulative degradation process (due to wear and periodic shocks
Xj’s) crosses a fixed threshold H. Additionally, N(t) = ∑∞

j=1 εtj [0, t];
(b) Hard failures caused by extreme shocks Wj (also referred to as shock loads) affect a

different unit of the system and that causes a catastrophic failure. Only in this case
does the system fail if any such shock exceeds some level D.

So, it is a mixed shock model of cumulative and extreme shocks—whichever comes
first on top of a continuous degradation process Y(t) being affine with Y(t) = ϕ+ βt, where
the initial value ϕ is a.s. a constant and the degradation rate β ∈

[
N
(
µ, σ2)]. The non-fatal

shocks Xj are Gaussian with parameters
(
µX , σ2

X
)
. As usual, no assumption is needed on

the distribution of extreme shocks Wj.
The total degradation accrued by the system, Ys(t), is the sum of the degradation due

to continual wear Y(t) and the instantaneous damages due to non-fatal and extreme shocks.
The cumulative damage size due to non-fatal shocks alone until time t, S(t), is given by
S(t) = X1 + . . . + XN(t). This implies a cumulative shock model. The overall degradation
of the system, considering both wear degradation and non-fatal shock damages (but
excluding the extreme shocks), is Ys(t) = Y(t) + S(t).

Therefore, the system reliability at time t is

R(t)

= P{Y(t) < H, N(t) = 0}+
∞

∑
j=1

[P
{

Wj < D
}
]jP

{
Y(t) +

j

∑
i=1

Xi < HN(t) = j

}
(28)

that presents a simple computational formula

R(t) =Φ

(
H − µt− ϕ

σt

)
e−λt

+
∞

∑
j=1

[
P
{

Wj < D
}]j

Φ

H − (µt + ϕ + iµX)√
σ2t2 + jσ2

X

e−λt(λt)j/j! (29)

with a rightly truncating series.
Hao et al. [21] considered a similar system with the degradation process, with Y(t) =

µt + σB(t) being Brownian motion with drift. Non-fatal shocks arrive according to a
marked Poisson process S = ∑∞

j=1 Xjεtj of rate λ for its support counting measure ∑∞
j=1 εtj

with position independent marking and with the absence of extreme shocks. The non-fatal
shock damages X1, X2, . . . are Gaussian with parameters

(
µX , σ2

X
)
. The reliability R(t)

obeys a similar formula as in the work of Peng et al. [20]
In another mixed shock model with degradation, Rafiee et al. [22] proposed a system

where the degradation process is affine Y(t) = ϕ + βt. All (non-fatal and extreme) shocks
arrive according to a marked Poisson process S = ∑∞

j=1
(
Xj, Wj

)
εtj of rate λ for its support

counting measure ∑∞
j=1 εtj with position independent marking and with the marks Xj and

Wj being independent of each other. Non-fatal shocks X1, X2, . . . not only accelerate degra-
dation but now make the slopes β (degradation rate) vary as to β1, β2, . . . . Extreme shocks
form W1, W2, . . . and they become fatal single shocks according to variable thresholds
D1, D2, . . . . Furthermore, β j+1 = β j + ηj (ηj are iid r.v.’s) while Dj+1 = Dj − θj (θj are iid
r.v.). The model also involves the δ-shock policy. The total failure occurs when one of the
three conditions are met: (a) a W-shock is above a fixed De, (b) a time lag between two
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consecutive shocks is less than δ, or (c) the degradation process Y(t) and non-fatal shocks
combined cross H.

In the work of Hao et al. [23], the authors propose a mixed model under the degrada-
tion process Y(t), a linear gamma process, that is Y(t)−Y(0) ∈ [Ga(αt, β)], and non-fatal
and fatal shocks arrive according to a marked Poisson process S = ∑∞

j=1
(
Xj, Wj

)
εtj of rate

λ0 for its support counting measure ∑∞
j=1 εtj with position independent marking, with each

Xj ∈
[
N
(
µX , σ2

X
)]

. A soft failure occurs when Y(t) + S(t) > H and a hard failure occurs
when WN(t) > D(t) = a(Y(t)+ S(t))+ b. Note that a stochastic process Y(t) is Gamma with
shape parameter α(t) and scale parameter β if Y(t)−Y(0) has independent and stationary
increments and its single-dimensional pdf is g(x; α(t), β) = βα(t)xα(t)−1e−βx/Γ[α(t)]. Thus,
in this case, the shape parameter α(t) = αt is linear.

Yousefi et al. [24] studied a series system with n components, each subject to degrada-
tion and periodic external shocks. The magnitudes of shocks exerted on each particular
component are iid Gaussian r.v. The shocks arrive simultaneously at all components ac-
cording to a marked Poisson process S = ∑∞

j=1

(
X1

j , . . . , Xn
j

)
εtj of rate λ for its support

counting measure ∑∞
j=1 εtj with position independent marking. The system ages according

to the gamma process Y(t) with shape parameter α(t) and scale parameter β.
Cao et al. [25] studied a system with the degradation process being gamma with

shape parameter α(t) = k1tk2 and scale parameter β. Shocks arrive in accordance with a
marked Poisson process of rate λ, with position independent marking, and the marks with
truncated Gaussian distributions. A soft failure occurs whenever the overall degradation
level exceeds a fixed threshold H.

Oliveira et al. [26] studied a run shock two-component series system with two
Marshall–Olkin shock structures [16,17]. According to Marshall and Olkin [17], there
are three independent shock sources. A fatal shock from source 1 destroys component 1,
which occurs at time W1; a shock from source 2 destroys component 2, which occurs at
time W2; a shock from source 3 destroys both components, which occurs at time W3. In this
case, the random lifetime of component 1 is X1 = W1 ∧W3, while the random lifetime of
component 2 is X2 = W2 ∧W3.

In the other variant of Marshall and Olkin of [16], each component is subjected to
independent stresses, say U1 and U2, and the system has overall stress U3 independently
transmitted equally to both components. The observed shocks to either of the two com-
ponents are X1 = U1 ∨U3 and X2 = U2 ∨U3. In both structures, the authors assumed
uniparametric Lindley distributions for Wj and Uj (j = 1, 2) with parameters β j; for the
latent random variables (W3 or U3), they assumed two probability distributions: an ex-
ponential distribution and a Lindley distribution, both with parameter β3. Moreover,
the dependence structure for the random variables X1 and X2 is related to the common
source of shock or stress 3. Lifetime for component i is Ti. The reliability function of the
system is R(t) = P{T1 ∧ T2 > t}. Note that a r.v. X is said to have a Lindley distribution with
parameter β if its pdf is

fX(x) =
β2

1 + β
(1 + x)e−βx1(0,∞)(x) (30)

for β > 0.

1.3. Our Model

In the present paper, our degradation process is linear or affine with a constant slope
(referred to as degradation rate), albeit under no assumptions upon the nature of shocks other
than being represented by a general marked random measure with position dependent
marking. (Of course, any marked Poisson process with position independent marking fits
into this category.) Additionally, we are after a closed form expression for the failure time
distribution and the overall damage upon the failure. From this context, with our focus on
an analytical solution, the reliability model is very different from the mainstream literature.
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Our claim for analytical (rather than computational) tractability is due to a unique approach
that we believe offers further embellishments and modifications applied to more general
reliability systems such as those with multiple components (in series or parallel).

So, our system is driven by a deterministic degradation real-valued process Y(t) with
a constant slope a that describes the well-being of the system. Under no further assumption
on the system, the process Y(t) crosses a given threshold M at time 1

a [M−Y(0)]. However,
under random shocks occurring at random times, the crossing of M will happen at a
random and possibly earlier time.

To be more specific, consider a piece of equipment that ages as it wears, meaning that
it eventually deteriorates and becomes useless when its operating power Y(t) = Y(0) + at
crosses some positive sustainability threshold M. However, in a real-world system,
the equipment deteriorates much faster due to occasional shocks occurring at random times
t1, t2, . . . of random magnitudes X1, X2, . . . that altogether form a marked point process
S = ∑∞

k=1 Xkεtk (εb is the point mass) with position dependent marking.
Without aging, the crossing would be a more familiar task previously analyzed

by the authors of [6,7], but along with aging it becomes a more challenging problem.
The question is when the (soft) failure takes place and to what detriment. The latter may
be of independent interest if the condition of an underlying device is beyond any repair or
if it can still be fixed.

Denote

An =
n

∑
k=1

Xk + aδk, where δk = tk − tk−1 (31)

and

ν = inf{n ∈ N : An ≥ M} (32)

The time dependent degradation of the system can be formalized by the marked
random measure

A =
∞

∑
k=1

(Xk + aδk)εtk , with A(t) = A[0, t], (33)

where A(t) is the associated continuous time parameter process. No assumption is made
on the nature of the point process {tk} and marks Xk’s and δk’s except that they are all
mutually dependent.

From the Figure 1, the failure can take place at the crossing of M or by an excess.
Namely, if Aν−1 + aδν ≥ M, then the crossing takes place in interval (tν−1, tν) with

crossing at time τν = tν−1 + (M− Aν−1)/a, so that A(τν) = M sharp. If Aν−1 + aδν < M,
then the crossing of the horizontal line of height M takes place exactly at time tν (the νth
shock) exceeding M and valued at Aν. Thus, Aν = A(τν) is the excess level of cumulative
damage above threshold M. The location of Aν can be arbitrarily higher than M (in reality,
process A(t) runs downhill and it can hit zero at worst).
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Figure 1. The linear degradation process with shocks.

1.3.1. Our Methodology

Our techniques fall into the category of fluctuation theory in the context of random
walk processes. However, our model is far from a classical random walk where a generic
particle or walker moves along a d-dimensional rectangular deterministic integer grid (also
known as a lattice). The walker moves along all possible directions with equal probability
and only one step at the time. It is placed in a bounded closed subset B of Zd and the
associated problem is to find its escape location from that set B. In our present model,
the walker moves along a randomly generated grid that is not even rectangular. (See more
on different variants of random walks in Dshalalow and White [27].) Here, the walker
moves in R2 within a random rectangular set B = (0, τν]× (0, M] ⊆ R2

+ and it escapes at
the random point (τnu, M) or (tν, Anu). (See the walker’s path in Figure 1.)

The model as set is not very common in the context of random walks, although as
far as grids, some walks allow looser configurations. Yet, this is a new identification
of reliability models as random walks. Secondly, we apply and embellish the theory of
fluctuations to arrive at analytically closed formulas and establish the main functional for
the joint probability distribution of the first passage time (called so in fluctuation theory) and
the position of walker or escape location associated with the failure time and the extent of
the overall damage, respectively.

Our approach allows further generalizations by including other types of shocks.
We earlier worked on multidimensional walks (cf. Dshalalow and White [27]), only this
time the walker’s movements are not rectangular. The present paper points to ways of
their modifications.

1.3.2. Paper’s Layout

The paper is organized as follows. In Section 2, we formalize the system with a linear
degradation process combined with cumulative shock model of non-fatal shocks arriving
according to a general marked point process S with position dependent marking that we
introduced in the beginning of this section. We use an approach previously developed



Axioms 2021, 10, 199 10 of 26

by the authors in [5–7] for a pure cumulative shock model but then expressed in terms
of a random walk using fluctuation analysis. In this case, the model embellished by the
presence of a degradation process required a quite different analysis, but still within the
framework of the theory of fluctuations. We obtained a closed form functional of the joint
distribution of the time failure and the detriment of the damage to the system, among other
useful characteristics, like the status of the system on the shock preceding the fatal one
or before the real crossing of the critical threshold. In Section 3, we support our claim
of analytical tractability of the results by discussing a special case of the S of a marked
Poisson process with exponentially distributed marks. The results are confirmed through a
comparison with simulation in Section 4.

2. Fluctuation Analysis of the Linear Degradation Process with Shocks

Consider a piece of equipment that ages and degrades at a deterministic rate a of
damage per unit time, eventually degrading to a point that it becomes unuseful when its
accumulated damage crosses a positive threshold M. In this idealized scenario, this occurs
precisely at time M/a. Practically, however, the piece of equipment deteriorates much faster
due to occasional irreversible shocks of random magnitudes X1, X2, . . . occurring at random
times t1, t2, . . . , which together form a marked point process. Estimating the crossing time
of M and excess level of a marked point process crossing M by a piecewise constant jump
process is a familiar task in the literature, but combining this with deterministic degradation
poses a more challenging problem. The question is when the failure takes place and to
what detriment. The latter may be of interest if the condition of the device is degraded
beyond any repair.

In the context of the shock random measure S = ∑∞
k=1 Xkεtk (introduced in subsection

Our Model of Section 1), we assume that the support counting measure N = ∑∞
k=1 εtk

represents a renewal process. That is, the times between consecutive shocks

δk = tk − tk−1 (34)

are i.i.d. for k ≥ 1 and assuming t0 = 0. Then, the cumulative damage due to continual
degradation and periodic shocks is

A =
∞

∑
k=1

(Xk + aδk)εtk , (35)

with A(t) = A[0, t] being the associated continuous time parameter counting process
describing the status of damage at any time t. Note that A is not assumed to be with
position independent marking, implying that the marks Xk and δk are not independent
for any fixed k but the vectors (Xk, δk), k = 1, 2, . . . are i.i.d. with a common joint Laplace–
Stieltjes transform (LST)

γ(α, θ) = Ee−α(Xk+aδk)−θδk , (36)

which is assumed to be known or at least not difficult to estimate. With

An =
n

∑
k=1

Xk + Aδk (37)

define

ν = inf{n : An ≥ M} (38)

the minimum number of shocks that along with degradation leads to the failure.
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The failure time is τν and it can be one of the two values. It either equals tν if there
no failure in interval (tν−1, tν) or it is tν−1 + (M − Aν−1)/a if the failure takes place in
(tν−1, tν). Thus,

τν =

{
tν, if Aν−1 + aδν < M
tν−1 + (M− Aν−1)/a, if Aν−1 + aδν ≥ M

(39)

We denote by Sν the failure damage of S upon the failure time τν. It obviously is

Sν =

{
Aν, if Aν−1 + aδν < M
M, if Aν−1 + aδν ≥ M

(40)

We target the joint LST Φν of the joint distribution of the failure time τν, the total
damage to the system Sν upon its failure (that is the crossing level), the pre-failure time (the
time of the (ν− 1)st shock preceding the failure), and the total damage to the system Aν−1
brought by the νth shock. Note that Aν−1 is not the biggest damage prior to the failure
unless τν = tν. The last two parameters can be of independent interest. Thus,

Φν(α, β, ϑ, θ) = Ee−αAν−1−βSν−ϑtν−1−θtν (41)

Theorem 3. The joint LST Φν(α, β, ϑ, θ) of the degradation upon the shock before the failure,
the damage upon failure, the time of the shock before the failure, and the failure time satisfies

Φν(α, β, ϑ, θ) = L−1
x

(
1

x + β + θ
a
F d(x)

)
(M) + L−1

x

(
1
x
F s(x)

)
(M), (42)

where

F d(x) =
1− γ(0, aβ + ax + θ)

1− γ(α + β + x, ϑ + θ)
(43)

F s(x) =
γ(β, θ + ax)− γ(β + x, θ)

1− γ(α + β + x, ϑ + θ)
. (44)

Proof. First, we introduce a set of failure indices {ν(p) = inf{n : An > p} : p > 0} so
that ν = ν(M−), which creates a set of functionals {Φν(p) : p > 0}. We will derive an
expression for Φν(p) and then use operational calculus to find a formula for Φν.

The functional Φν(p) can be computed as a convenient partition of the sample space.
The partition includes two subsets. First is the set of events where Aj−1 + aδj ≥ p ≥ Aj−1
and ν(p) = j is given, i.e., the failure occurs between the (j− 1)th and jth shocks as a result
of the constant degradation, which we call a degradation failure. Formally,

{{ν(p) = j} ∩ {Aj−1 + aδj ≥ p ≥ Aj−1} : j = 1, 2, . . . } (45)

Second is the set of events where Aj−1 + aδj < p ≤ Aj−1 and ν(p) = j is given, i.e., the
failure occurs upon the jth shock, which we call a shock failure. Formally,

{{ν(p) = j} ∩ {Aj−1 + aδj < p ≤ Aj} : j = 1, 2, . . . } (46)
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Therefore, we have

Φν(p) =
∞

∑
j=1

Ee−αAν(p)−1−βSν(p)−ϑtν(p)−1−θτν(p)1{ν(p)=j}1{Aj−1+aδj≥p≥Aj−1}

+
∞

∑
j=1

Ee−αAν(p)−1−βSν(p)−ϑtν(p)−1−θτν(p)1{ν(p)=j}1{Aj−1+aδj<p≤Aj}

=
∞

∑
j=1

Φd
j (p) + Φs

j (p). (47)

The first expression, corresponding to the degradation failure, simplifies to

Φd
j (p) = Ee−αAj−1−βSj−ϑtj−1−θτj 1{Aj−1+aδj≥p≥Aj−1}

= Ee−αAj−1−βp−ϑtj−1−θ(tj−1+
1
a (p−Aj−1))1{Aj−1+aδj≥p≥Aj−1}

= e−(β+ θ
a )pEe−αAj−1−ϑtj−1−θ(tj−1− 1

a Aj−1)1{Aj−1+aδj≥p≥Aj−1}

= e−(β+ θ
a )pEe−(α− θ

a )Aj−1−(ϑ+θ)tj−11{Aj−1+aδj≥p≥Aj−1}. (48)

Next, we apply a modified Laplace transform to Φd
j (p) acting on variable p, which

bypasses all terms except those that depend on p,(
x + β +

θ

a

)
Lp

(
e−(β+ θ

a )p1{Aj−1+aδj≥p≥Aj−1}

)
(x)

=

(
x + β +

θ

a

) ∫ Aj−1+aδj

p=Aj−1

e−(β+ θ
a )pe−xp dp

= e−(x+β+ θ
a )Aj−1 − e−(x+β+ θ

a )(Aj−1+aδj)

= e−(x+β+ θ
a )Aj−1

(
1− e−(ax+aβ+θ)δj

)
. (49)

Therefore, we have

Fd
j (x) = Lp

(
Φd

j (p)
)
(x)

= Ee−(α− θ
a )Aj−1−(ϑ+θ)tj−1 e−(x+β+ θ

a )Aj−1
(

1− e−(ax+aβ+θ)δj
)

= Ee−(α+β+x)Aj−1−(ϑ+θ)tj−1
(

1− e−(aβ+ax+θ)δj
)

= γj−1(α + β + x, ϑ + θ)[1− γ(0, aβ + ax + θ)]. (50)

Then,

F d(x)

=
∞

∑
j=1

γj−1(x + α + β, ϑ + θ)[1− γ(0, ax + aβ + θ)] =
1− γ(0, ax + aβ + θ)

1− γ(x + α + β, ϑ + θ)
, (51)

which completes the proof for Formula (43).
The second expression, corresponding to the shock failure, simplifies as

Φs
j (p) = Ee−αAj−1−βSj−ϑtj−1−θτj 1{Aj−1+aδj<p≤Aj}

= Ee−αAj−1−βAj−ϑtj−1−θtj 1{Aj−1+aδj<p≤Aj}. (52)
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Next, we apply a different modified Laplace transform to Φs
j (p) acting on variable p,

which bypasses all terms except those that depend on p,

xLp

(
1{Aj−1+aδj<p≤Aj}

)
(x) = x

∫ Aj

p=Aj−1+aδj

e−xp dp

= e−x(Aj−1+aδj) − e−xAj

= e−x(Aj−1+aδj)
(

1− e−xXj
)

. (53)

Therefore, we have

Fs
j (x) = Lp

(
Φs

j (p)
)
(x)

= Ee−αAj−1−βAj−ϑtj−1−θtj e−x(Aj−1+aδj)
(

1− e−xXj
)

= Ee−(α+β+x)Aj−1−β(Xj+aδj)−(ϑ+θ)tj−1−θδj e−axδj
(

1− e−xXj
)

= Ee−(α+β+x)Aj−1−(ϑ+θ)tj−1 e−β(Xj+aδj)−(ax+θ)δj
(

1− e−xXj
)

= Ee−(α+β+x)Aj−1−(ϑ+θ)tj−1 e−β(Xj+aδj)−(ax+θ)δj

− Ee−(α+β+x)Aj−1−(ϑ+θ)tj−1 e−(β+x)(Xj+aδj)−(ax+θ)δj

= γj−1(α + β + x, ϑ + θ)[γ(β, θ + ax)− γ(β + x, θ)]. (54)

Then,

F s(x) =
∞

∑
j=1

γj−1(α + β + x, ϑ + θ)[γ(β, θ + ax)− γ(β + x, θ)]

=
γ(β, θ + ax)− γ(β + x, θ)

1− γ(α + β + x, ϑ + θ)
, (55)

as a geometric series, which establishes Formula (44).
Therefore, applying the inverse operators evaluated at the true threshold M yields

Φν(α, β, ϑ, θ) = L−1
x

(
1

x + β + θ
a
F d(x)

)
(M) + L−1

x

(
1
x
F s(x)

)
(M) (56)

as required.

In the following section, we will make some assumptions about the deterioration
process to demonstrate the previous theorem can be applied to realistic special cases to
find explicit probabilistic results about the deterioration.

3. Results for a Dual-Exponential Shock Process

To justify our claim for analytical tractability, we consider a special case under the
following assumptions. Suppose the times between each shock δk are exponentially
distributed with parameter λ and damage due to each shock Xk being independent
of each other. Using the terminology of random measures, the marked point process
S = ∑∞

k=1(Xk + aδk)εtk is with position independent marking. Then,

γ(α, θ) = Ee−α(Xk+aδk)−θδk = Ee−αXk−(aα+θ)δk = Ee−αXk Ee−(aα+θ)δk . (57)
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Suppose further that the times δk are exponentially distributed with parameter λ and
the damage due to the shocks Xk are exponentially distributed with parameter µ. Then,

γ(α, θ) =
λ

λ + α

µ

µ + aα + θ
. (58)

In this special case, we establish an explicit formula for Φν(α, β, ϑ, θ).

Proposition 1. For the marked point process S of the evolution of deterioration, let S have position
independent marking. Furthermore, if the times between shocks δk are exponentially distributed with
parameter λ and the impacts of the shocks Xk’s are exponentially distributed with parameter µ, then
the joint LST Φν(α, β, ϑ, θ) of the deterioration upon the shock before the failure, the deterioration
upon failure, the time of the shock before the failure, and the failure time satisfies

Φν(α, β, ϑ, θ) = Φd(α, β, ϑ, θ) + Φs(α, β, ϑ, θ), (59)

where

Φd(α, β, ϑ, θ)

=
f (α, ϑ, θ)

f (α, ϑ, θ)− aλµ
e−
(

β+
µ+θ

a

)
M
+

aλµ

2( f (α, ϑ, θ)− aλµ)
e−(α+β)M

×
[

2aα + aλ− µ + ϑ− θ√
D(ϑ, θ)

(
er(ϑ,θ)M − es(ϑ,θ)M

)
−
(

er(ϑ,θ)M + es(ϑ,θ)M
)]

(60)

and

Φs(α, β, ϑ, θ) =
αλµ

(λ + β)(aλ− µ− θ)

g(α, ϑ, θ)

αg(α, ϑ, θ)− λµ
e−(λ+β)M

+
λµ

(λ + β)(aλ− µ− θ)

f (α, ϑ, θ)

f (α, ϑ, θ)− aλµ
e−
(

β+
µ+θ

a

)
M

− λ2µ2

2(λ + β)

1
f (α, ϑ, θ)− aλµ

1
αg(α, ϑ, θ)− λµ

e−(α+β)M

×
[

2a2α2 + 2aλµ + 2aαϑ− aλϑ + µϑ + ϑ2 + ϑθ√
D(ϑ, θ)

(
er(ϑ,θ)M − es(ϑ,θ)M

)
− (2aα + ϑ)

(
er(ϑ,θ)M + es(ϑ,θ)M

)]
(61)

under the notation

f (α, ϑ, θ) = a2α2 + a2αλ− aαµ + aαϑ + aλϑ− µϑ− aαθ − ϑθ (62)

g(α, ϑ, θ) = aα− aλ + µ + ϑ + θ, (63)

where r(ϑ, θ) and s(ϑ, θ) are the roots of the polynomial ax2 + (aλ + µ + ϑ + θ)x + λ(ϑ + θ) and
D(ϑ, θ) is the discriminant of the polynomial, with

r(ϑ, θ) =
−(aλ + µ + ϑ + θ)−

√
D(ϑ, θ)

2a
(64)

and

s(ϑ, θ) =
−(aλ + µ + ϑ + θ) +

√
D(ϑ, θ)

2a
. (65)
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Proof. For the first term from Theorem 3, notice

1
x + β + θ

a
F d(x) =

1
x + β + θ

a

1− γ(0, aβ + ax + θ)

1− γ(α + β + x, ϑ + θ)

=
1

x + β + θ
a

1− µ
µ+aβ+ax+θ

1− λ
λ+α+β+x

µ
µ+aα+aβ+ax+ϑ+θ

. (66)

As we see, this is simply a rational function with degree 2 (in x) in the numerator and
degree 3 in the denominator, which means the inverse Laplace transform can be computed
easily with a partial fraction decomposition to find

Φd(α, β, ϑ, θ)

= L−1
x

(
1

x + β + θ
a
F d(x)

)
(M)

=
f (α, ϑ, θ)

f (α, ϑ, θ)− aλµ
e−
(

β+
µ+θ

a

)
M
+

aλµ

2( f (α, ϑ, θ)− aλµ)
e−(α+β)M

×
[

2aα + aλ− µ + ϑ− θ√
D(ϑ, θ)

(
er(ϑ,θ)M − es(ϑ,θ)M

)
−
(

er(ϑ,θ)M + es(ϑ,θ)M
)]

. (67)

Similarly,

1
x
F s(x) =

1
x

γ(β, θ + ax)− γ(β + x, θ)

1− γ(α + β + x, ϑ + θ)
=

1
x

λ
λ+β

µ
µ+aβ+ax+θ −

λ
λ+β+x

µ
µ+aβ+ax+θ

1− λ
λ+α+β+x

µ
µ+aα+aβ+ax+ϑ+θ

. (68)

This is, again, a rational expression—this time with degree 4 in the denominator, so its
inverse Laplace transform can be computed easily with a partial fraction decomposition
to find

Φs(α, β, ϑ, θ)

= L−1
x

(
1
x
F s(x)

)
(M)

=
αλµ

(λ + β)(aλ− µ− θ)

g(α, ϑ, θ)

αg(α, ϑ, θ)− λµ
e−(λ+β)M

+
λµ

(λ + β)(aλ− µ− θ)

f (α, ϑ, θ)

f (α, ϑ, θ)− aλµ
e−
(

β+
µ+θ

a

)
M (69)

− λ2µ2

2(λ + β)

1
f (α, ϑ, θ)− aλµ

1
αg(α, ϑ, θ)− λµ

e−(α+β)M

×
[

2a2α2 + 2aλµ + 2aαϑ− aλϑ + µϑ + ϑ2 + ϑθ√
D(ϑ, θ)

(
er(ϑ,θ)M − es(ϑ,θ)M

)
− (2aα + ϑ)

(
er(ϑ,θ)M + es(ϑ,θ)M

)]
.

The sum of the two inverse Laplace transforms evaluated at M, i.e., Φν(α, β, ϑ, θ), is
the sum of (67) and (70) by Theorem 3.

The result above is a very information-rich functional in this special case and can give
us expressions for many interesting probabilistic results. We outline a few such results
below. First, the probability of failure occurring between shocks and probability of failure
upon a shock.
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Corollary 1. Under the assumptions of Proposition 1, the probabilities of degradation failure and
shock failure are

P(degradation failure) =
aλ

aλ + µ
+

µ

aλ + µ
e−(λ+

µ
a )M (70)

and

P(shock failure) =
µ

aλ + µ
− µ

aλ + µ
e−(λ+

µ
a )M. (71)

Proof. For the probability of a degradation failure, simply let α = β = ϑ = θ = 0 in
Φd(α, β, ϑ, θ) to find

Φd(0, 0, 0, 0) = P(degradation failure)

=
f (0, 0, 0)

f (0, 0, 0)− aλµ
e−(

µ
a )M +

aλµ

2( f (0, 0, 0)− aλµ)

×
[

aλ− µ√
D(0, 0)

(
er(0,0)M − es(0,0)M

)
−
(

er(0,0)M + es(0,0)M
)]

=
aλ

aλ + µ
+

µ

aλ + µ
e−
(

aλ+µ
a

)
M. (72)

For the probability of shock failure, simply let α = β = ϑ = θ = 0 in Φs(α, β, ϑ, θ)
to find

Φs(0, 0, 0, 0) =
µ

(aλ− µ)

f (0, 0, 0)
f (0, 0, 0)− aλµ

e−(
µ
a )M

+
λµ2

1
1

f (0, 0, 0)− aλµ

[
a√

D(0, 0)

(
er(0,0)M − es(0,0)M

)]
=

µ

aλ + µ
− µ

aλ + µ
e−(λ+

µ
a )M. (73)

Interestingly, as the threshold M grows, the probabilities approach constants aλ
aλ+µ

and µ
aλ+µ . Of course, the sum of the probabilities is 1 since exactly one of these disjoint

events will almost surely occur.

Corollary 2. Under the assumptions of Proposition 1, the marginal LST of the failure time τν is

Φν(0, 0, 0, θ) = Ee−θτν

=
1
2

[(
er(0,θ)M + es(0,θ)M

)
+

aλ + µ− θ√
D(0, θ)

(
es(0,θ)M − er(0,θ)M

)]
. (74)

Proof. Let α = β = ϑ = 0, then

Φν(0, 0, 0, θ) = Φd(0, 0, 0, θ) + Φs(0, 0, 0, θ), (75)
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where

Φd(0, 0, 0, θ) =
f (0, 0, θ)

f (0, 0, θ)− aλµ
e−
(

µ+θ
a

)
M
+

aλµ

2( f (0, 0, θ)− aλµ)

×
[

aλ− µ− θ√
D(0, θ)

(
er(0,θ)M − es(0,θ)M

)
−
(

er(0,θ)M + es(0,θ)M
)]

= −1
2

[
aλ− µ− θ√

D(0, θ)

(
er(0,θ)M − es(0,θ)M

)
−
(

er(0,θ)M + es(0,θ)M
)]

(76)

and

Φs(0, 0, 0, θ) =
µ

(aλ− µ− θ)

f (0, 0, 0)
f (0, 0, 0)− aλµ

e−
(

µ+θ
a

)
M

+
µ

f (0, 0, 0)− aλµ

[
aλµ√
D(0, θ)

(
er(0,θ)M − es(0,θ)M

)]
=

µ√
D(0, θ)

(
es(0,θ)M − er(0,θ)M

)
. (77)

Summing expressions (76) and (77) above, we get Ee−θτν .

This LST can easily yield means and moments, as we see below.

Proposition 2. Under the assumptions of Proposition 1, the mean and variance of the failure time
τν are

Eτν =
λM

aλ + µ
+

µ

(aλ + µ)2

(
1− e−(λ+

µ
a )M

)
=

λM + P(shock failure)
aλ + µ

(78)

and

Var(τν) =
2λµM

(aλ + µ)3 +
µ(µ− 4aλ)

(aλ + µ)4 +
2µ
(
2a2λ + a2λ2M− 2µ2M

)
a(aλ + µ)4 e−(λ+

µ
a )M

− 2µ2

(aλ + µ)4 e−2(λ+
µ
a )M. (79)

Proof. The first two moments of τν can readily be found by taking the first two deriva-
tives of Ee−θτν , managing the signs appropriately and taking limits, yielding the re-
sults above.

Let us now consider the failure damage Sν of the process.

Corollary 3. Under the assumptions of Proposition 1, the marginal LST of the failure damage Sν is

Ee−βSν = Φν(0, β, 0, 0)

= e−βM
[

aλ

aλ + µ
+

µ

aλ + µ
e−(λ+

µ
a )M +

λ

λ + β

µ

aλ + µ

(
1− e−(λ+

µ
a )M

)]
. (80)

Proof. Let α = ϑ = θ = 0, then

Φν(0, β, 0, 0) = Φd(0, β, 0, 0) + Φs(0, β, 0, 0) (81)
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The first term simplifies to

Φd(0, β, 0, 0) =
f (0, 0, 0)

f (0, 0, 0)− aλµ
e−(β+

µ
a )M +

aλµ

2( f (0, 0, 0)− aλµ)
e−βM

×
[

aλ− µ√
D(0, 0)

(
er(0,0)M − es(0,0)M

)
−
(

er(0,0)M + es(0,0)M
)]

= e−βM
[

aλ

aλ + µ
+

µ

aλ + µ
e−(λ+

µ
a )M

]
(82)

and the second term simplifies to

Φs(0, β, 0, 0) = − 1
(λ + β)

e−βM
[

λµ√
D(0, 0)

(
er(0,0)M − es(0,0)M

)]
=

λ

λ + β
e−βM

[
µ

aλ + µ

(
1− e−(λ+

µ
a )M

)]
. (83)

Summing expressions (82) and (83), we obtain Formula (80) for the marginal LST of
the failure damage Sν.

Next, we use the LST of Sν to find simple explicit formulas of its mean and variance.

Corollary 4. Under the assumptions of Proposition 1, the mean and variance of the failure damage
Sν are

ESν = M +
1
λ

µ

aλ + µ

(
1− e−(λ+ µ

a )M
)
= M + Eδ1P(shock failure) (84)

and

Var(Sν) =
2aµ

λ(aλ + µ)2

(
1− e−(λ+ µ

a )M
)
+

µ2

λ2(aλ + µ)2

(
1− e−2(λ+ µ

a )M
)

. (85)

Proof. The first two moments of Sν can readily be found by taking the first two derivatives
of Ee−βSν , managing the sign appropriately and taking limits, yielding the results above.

These results reveal a number of intuitive facts. The mean of Sν makes clear the
obvious fact that the failure damage will always be at least M, but more interestingly
shows that the excess of the failure damage is precisely Eδ1P(shock failure), the mean time
between shocks multiplied by the probability of a shock failure, meaning it cannot surpass
the mean time between shocks. In addition, as M grows, the mean approaches M as shocks

become small relative to M and the variance approaches the constant 2aµλ+µ2

λ2(aλ+µ)2 .

4. Comparison with Stochastic Simulation

In this section, predictions from the formulas for probabilities, means, and variances
derived for the exponential special case in the previous section will be shown to agree with
Monte Carlo simulation of the process under numerical assumptions on the parameters:
the degradation rate a, the parameter of the exponentially distributed time between shocks
λ, the parameter of the exponentially distributed shock damage µ, and the threshold M.

Simulation code is written in the Python language with the NumPy library for nu-
merical computation. The code for simulating paths of the process has been included in
Appendix A along with diagrams and a description of the code. The experiments run in this
section have been made available publicly by the authors online: see the Data Availability
Statement of this article.

Suppose λ = 2 and µ = 1. Figure 2 below focuses on the probability of a degradation
failure (rather than a shock failure). The curves correspond to the predictions for probability
of degradation failure from Corollary 1, while the dots represent empirical probabilities
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corresponding to simulations of 10,000 paths of the process for each pair of parameters
(a, M) ∈ {0.5, 1, 5} × {0.5, 0.75, 1, . . . , 3}.

Figure 2. Predicted and empirical probabilities of degradation failures with limiting probabilities.

Notice the degradation failure probabilities have an inverse relationship with the
threshold M as a quick degradation failure become less probable and shocks become
increasingly probable causes of failures. Further, we plotted the limiting probabilities
as dotted horizontal lines of height aλ

aλ+µ and note the probabilities all approach these,
as predicted. Further, probabilities are inversely related the degradation rate a. Clearly, this
confirms the intuitive fact that a higher degradation rate should result in more degrada-
tion failures.

Suppose λ = 2 and µ = 3. Figure 3 below focuses on the mean and variance of
the failure time τν. The curves correspond to the predictions for the mean and standard
deviation from Proposition 2, while the dots represent empirical means and standard
deviations corresponding to simulations of 10,000 paths of the process for each pair of
parameters (a, M) ∈ {0, 0.01, . . . , 0.5} × {1, 5, 10, 25}.

Figure 3. Predicted and empirical values for the mean and standard deviation of the failure time.
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Note that the mean failure time shrinks as the degradation rate a grows and failures oc-
cur more quickly while the threshold M and mean failure time have a positive relationship
as failures occur more slowly. We see similar trends with the standard deviation: variability
decreases as the degradation rate grows and the deterministic part of the degradation
is more influential while variability grows as the threshold grows and more shocks will
typically occur in paths.

Suppose that λ = 2 and µ = 3. Figure 4 below focuses on the failure damage
Sν. The curves correspond to the predictions for the mean and standard deviation from
Proposition 4, while the dots represent empirical means and standard deviations corre-
sponding to simulations of 1,000,000 paths of the process for each pair of parameters
(a, M) ∈ {0, 0.01, . . . , 5} × {1, 5}. (Note we generated more paths in this case because the
empirical standard deviations took longer to converge to the true predicted values.)

Figure 4. Predicted and empirical values for the mean and standard deviation of the failure damage.

Here, as degradation rate grows, we saw that shock failures become less probable
previously, which causes the mean failure damage to decrease toward M, as degradation
failures with positions equal to M sharp are more likely. The standard deviation of failure
damage has an inverse relationship with a and a positive relationship with M for reasons
analogous to the same trends in the mean failure time.

5. Conclusions

In this paper, we studied a reliability system with linear degradation and external
shocks (cumulative shocks model with degradation) that further accelerate its deterioration
and lead to an inevitable failure (soft failure) when the overall degradation crosses or
exceeds an M, its sustainability threshold. The gradual degradation and random damages
to the system can be modeled by a random walk type process, although not in the classical
sense where a walker moves along a rectangular grid. In a more recent work, random walk
is considered on a variety of configurations, more general than rectangular, cf. Dshalalow
and White [27]. Now the random walk modeling is not just an interpretation, but it
suggested fluctuation analysis as a primary tool for dealing with this class of models,
with the benefit of obtaining a closed form distribution of targeted parameters such as
the failure time of the system and the total damage to the system at the failure time.
The latter is noteworthy information in the event the targeted component can be repaired
or completely discarded.

The time dependent status of degradation of the system can be formalized by the
marked point random measure A = ∑∞

k=1(Xk + aδk)εtk with position dependent marking.
Here, t1, t2, . . . is the arrival process of non-fatal shocks of respective magnitudes X1, X2, . . . .
The degradation is further enhanced by the random increment aδk in interval (tk−1, tk)
where a is the constant degradation rate and δk is the length of the time interval (tk−1, tk).
We allow Xk to depend on δk as well, although in some special cases we can lift this
assumption. No assumption is made about the nature of tk, Xk and thus δk. Note that
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position dependent marking refers to the sequence {(Xk, δk = tk − tk−1)} which is comprised
of independent vectors but with mutually dependent components. The system fails at some
random time τν when the continuous time parameter degradation process A(t) = A[0, t]
crosses or exceeds some M. Note that the crossing of M can occur upon one of the arriving
shocks at t1, t2, . . . , say at tν or within the interval (tν−1, tν) that we associate with a time
τν. The overall damage to the system upon its failure is measured by the quantity Sν being
M sharp or A(τν) dependent on whether τν ∈ (tν−1, tν) or τν = tν.

We targeted the joint transform Φν(α, β, ϑ, θ) = Ee−αAν−1−βSν−ϑtν−1−θtν that carries
two more quantities, Aν−1 and tν−1, giving us information about the system upon a shock
preceding the time of failure. We arrived (Section 2) at the formula

Φν(α, β, ϑ, θ) =L−1
x

(
1

x + β + θ
a

1− γ(0, aβ + ax + θ)

1− γ(α + β + x, ϑ + θ)

)
(M)

+ L−1
x

(
1
x

γ(β, θ + ax)− γ(β + x, θ)

1− γ(α + β + x, ϑ + θ)

)
(M), (86)

where

γ(α, θ) = Ee−α(Xk+aδk)−θδk , (87)

is the joint transform of Xk and δk, which is supposed to be known once we specify the
{tk} and {Xk}, and L−1

x is the inverse Laplace transform in variable x.
To support our claim that the above formula is closed form, we considered in Section 3 a

special case of position independent marking and the assumptions on δk and Xk as being
exponential. Under these assumptions, the respective transforms were inverted in a rather
compact formula, further extended by marginal distributions of the failure time τν and the
failure damage Sν, and their means and variances. In Section 4, we presented numerical
results for several concrete numbers and compared them with simulated results which
all agreed.

The overall results are explicit, general, and use fluctuation techniques different from
the mainstream literature. The approach allows us to further embellish the current system
making it a series system of two or more components applying and embellishing previously
developed techniques of stochastic games (Dshalalow [28]).
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Abbreviations
The following abbreviations are used in this manuscript:

General Acronyms
i.i.d. independent and identically distributed
LST Laplace-Stieltjes transform
PDF probability distribution function
pdf probability density function
PGF probability-generating function
r.v. random variable
Notation in the Literature Review
S = ∑∞

k=1 Xnεtn soft shocks marked point process in cumulative shock model
N = ∑∞

k=1 εtn associated support counting measure of shocks’ arrivals
S(t) = S [0, t] the number of shocks in time interval [0, t]
εa Dirac point mass (unity measure)
Xn magnitudes of soft shocks
tn the time of the nth shock
δn = tn − tn−1
Sn = ∑n

k=1 Xn
Y(t) pure degradation process
Wn magnitudes of hard shocks
W = ∑∞

j=1 Wjεtj marked point measure of hard shocks
δ lower threshold in δ-shock policy models
x failure threshold
M soft failure threshold
D hard failure threshold
ν(x) number of soft shocks until soft failure with respect to thresholdx
ξ(x) number of hard shocks until hard failure with respect to threshold x
A = [0, M) the set that process S escapes
Notation in Our Model
ν number of the first shock where degradation exceeds M
tν−1 pre-failure time
tν soft failure time (the escape from set A)
Sν−1 pre-failure cumulative damage
Sν cumulative damage to the system at the failure
Φν = EξνuSν−1 vSν e−ϑtν−1−θtν

Dk D operator
γ0(z, θ) = EzX0 e−t0θ

γ(z, θ) = EzX1 e(t1−t0)θ

I0 modified Bessel function of order zero
A = ∑∞

k=1(Xk + aδk)εtk soft shocks and degradation marked point process
A[0, t] = A(t) cumulative degradation process including shocks
An = ∑n

k=1 Xk + aδk
δk = tk − tk−1
ν = inf{n ∈ N : An ≥ M}
M failure threshold
τν failure time if it occurs upon constant degradation
tν failure time if it occurs upon a shock
γ(α, θ) = Ee−α(Xk+aδk)−θδk

Φν = Ee−αAν−1−βSν−ϑtν−1−θtν

L Laplace transform
L−1 inverse Laplace transform
p failure threshold (p > 0)
Φ(x) standard Gaussian PDF
[Exp(λ)] equivalence class of all exponential distributions with parameter λ

[Geo(p(x))] equivalence classs of all geometric random variables with parameter p(x)
[Ga(α, β)] equivalence class of all gamma distributions with parameters (α, β)

[N(µ, σ2)] equivalence class of all Gaussian distributions with parameters (µ, σ2)
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Appendix A

Appendix A.1. Simulation Code

Simulation code was written in Python using the NumPy library. First, we created
a function simulatePath that takes the parameters of the process as inputs, simulates the
process until a failure occurs, and returns the four terms in the functional Φν, i.e., the failure
index ν, damage upon the shock before the failure Aν−1, the failure damage Sν, the time of
the shock before the failure tν−1, and the failure time τν as well as a Boolean flag indicating
a degradation failure (if TRUE) or shock failure (if FALSE).

Figure A1 is a flow chart describing how the simulation proceeds.

Figure A1. The simulatePath function accepts numerical inputs for each parameter of the process:
a, λ, µ, and M. It then simulates one path of the process and returns sampled values of ν, Aν−1, Sν,
tν−1 and τν along with a flag indicating whether a degradation failure or shock failure occurred.
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Next is the full Python code for the simulatePath function.

import numpy as~np

def simulatePath(a, lam , mu, M):
# initialize outputs
failureTime = 0
failureDamage = 0
failureIndex = 0
degradationFailure = False

# simulate the process
while failureDamage < M:

# save A_j -1
oldDamage = failureDamage

# save t_j -1
oldTime = failureTime

# compute waiting time before the next shock
waitingTime = np.random.exponential (1/mu)

# add degradation between shocks
failureDamage += a * waitingTime

# if degradation causes damage to reach M...
if failureDamage >= M:

# compute tau_nu
failureTime += (M - oldDamage)/a

# set S_nu (total damage) to M
failureDamage = M

# mark degradation as the cause of the failure
degradationFailure = True

# exit the loop
break

# else , add the shock
else:

# add the waiting time
failureTime += waitingTime

# add the shock damage
failureDamage += np.random.exponential (1/lam)

# add 1 to the shock counter
failureIndex += 1

# gather the output values into a tuple
outputs = (failureIndex , oldDamage , failureDamage ,

oldTime , failureTime , degradationFailure)

# return values nu , A_nu -1, S_nu , t_nu -1, tau_nu , flag for
# failure type
return outputs

Then, a single path of the process can be simulated with the command

simulatePath(a, lam , mu, M)
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for any parameters one chooses. All empirical results in Section 4 are created by generating
many paths of the deterioration process with this function and finding means and variances
of the outputs across generated paths.

The formulas derived in Corollary 1, Proposition 2, and Proposition 4 were imple-
mented as the following Python functions to compute predicted results.

def degradationProbability(a, lam , mu , M):
term = a * lam + mu * np.exp(-(lam + mu / a) * M)
return term / (a * lam + mu)

def failureTimeMean(a, lam , mu, M):
term = lam * M + 1 - degradationProbability(a, lam , mu , M)
return term / (a * lam + mu)

def failureTimeVariance(a, lam , mu , M):
dTerm = a * lam + mu
eTerm = np.exp(-(lam + mu / a) * M)
term1 = 2 * lam * mu * M / dTerm ** 3
term2 = mu * (mu - 4 * a * lam) / dTerm ** 4
term3 = 2 * mu
term3 *= 2 * a ** 2 * lam + (a * lam) ** 2 * M - 2 * mu ** 2 * M
term3 *= eTerm / (a * dTerm ** 4)
term4 = 2 * mu ** 2 * eTerm ** 2 / dTerm ** 4
return term1 + term2 + term3 - term4

def failureDamageMean(a, lam , mu , M):
return M + (1 - degradationProbability(a, lam , mu, M)) / lam

def failureDamageVariance(a, lam , mu , M):
dTerm = a * lam + mu
eTerm = np.exp(-(lam + mu / a) * M)
term1 = 2 * a * mu * (1 - eTerm) / (lam * dTerm ** 2)
term2 = mu ** 2 * (1 - eTerm ** 2) / (lam * dTerm) ** 2
return term1 + term2
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