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Abstract: This work is mainly focused on improving the differential evolution algorithm with the
utilization of shadowed and general type 2 fuzzy systems to dynamically adapt one of the parameters
of the evolutionary method. Previously, we have worked with both kinds of fuzzy systems in different
types of benchmark problems and it has been found that the use of fuzzy logic in combination with
the differential evolution algorithm gives good results. In some of the studies, it is clearly shown that,
when compared to other algorithms, our methodology turns out to be statistically better. In this case,
the mutation parameter is dynamically moved during the evolution process by using shadowed and
general type-2 fuzzy systems. The main contribution of this work is the ability to determine, through
experimentation in a benchmark control problem, which of the two kinds of the used fuzzy systems
has better results when combined with the differential evolution algorithm. This is because there
are no similar works to our proposal in which shadowed and general type 2 fuzzy systems are used
and compared. Moreover, to validate the performance of both fuzzy systems, a noise level is used in
the controller, which simulates the disturbances that may exist in the real world and is thus able to
validate statistically if there are significant differences between shadowed and general type 2 fuzzy
systems.

Keywords: shadowed type-2 fuzzy sets; generalized type-2 fuzzy systems; differential evolution al-
gorithm

1. Introduction

The utilization of new strategies to improve the functioning of certain processes is
something very common today, and under this concept we have the differential evolution
(DE) algorithm, which is used in multiple disciplines to perform optimization. The main
approach for this work is the adaptation of a parameter of the DE algorithm using two
variants of fuzzy logic, which are shadowed and general type 2 fuzzy systems.

Previously, a study was carried out using the differential evolution algorithm and the
concept of shadowed type 2 fuzzy systems applied to benchmark functions and a specific
control problem [1]. In this work, we are now aiming at comparing the two concepts of
shadowed and general type 2 fuzzy systems in order to find out which method is better
for improving the performance of the DE algorithm in the process of optimizing fuzzy
controllers.

Today, the utilization of shadowed type 2 fuzzy systems has become more common
in the literature, and below we briefly mention some of these recent works in different
disciplines. For example, a shadowed set-based method and its application to large-scale
group decision making was proposed in [2], a more comprehensible perspective for interval
shadowed sets obtained from fuzzy sets was put forward in [3], an interval data driven
construction of shadowed sets with application to linguistic word modelling was outlined
in [4], and a shadowed set approximation of fuzzy sets based on nearest quota of fuzziness
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was described in [5]. In addition, an approach for parameterized shadowed type-2 fuzzy
membership functions applied in control applications was outlined in [6], a two-threshold
model for shadowed set with gradual representation of cardinality is presented in [7], a
hybrid design of shadowed type-2 fuzzy inference systems applied in diagnosis problems
was put forward in [8], shadowed sets as a way for representing and processing fuzzy sets
is presented in [9], a sparse signal recovery for ultrasonic detection and reconstruction of
shadowed flaws is shown in [10], a constrained three-way approximations of fuzzy sets:
from the perspective of minimal distance in [11]. Moreover, a method for constructing
shadowed sets and three-way approximations of fuzzy sets in [12], an entropy-based
shadowed set approximation of intuitionistic fuzzy sets in [13], a game theoretic approach
to shadowed sets is presented in [14], shadowed sets of dynamic fuzzy sets are presented
in [15], a constrained shadowed sets and fast optimization algorithm are outlined in [16],
fuzzy-entropy-based game theoretic shadowed sets are described in [17], and shadowed
sets-based linguistic term modeling and its application in multi-attribute decision-making
are studied in [18], just to mention some related papers.

In a similar fashion, the use of general type 2 fuzzy systems has become more common
in different application areas, but mainly in the control area, and this work is mainly
focused on this area. Some related works can be mentioned as follows: a dynamic general
type-2 fuzzy system with optimized secondary membership for online frequency regulation
is studied in [19], a hybridized forecasting method based on weight adjustment of neural
network using generalized type-2 fuzzy set was outlined in [20], parameter adaptation in
the imperialist competitive algorithm using generalized type-2 fuzzy logic was described
in [21], the optimization of fuzzy controller design using a differential evolution algorithm
with dynamic parameter adaptation based on type-1 and interval type-2 fuzzy systems
was put forward in [22], a comprehensive review on type 2 fuzzy logic applications was
outlined in [23], a dynamic general type-2 fuzzy system has been used with optimized
secondary membership for online frequency regulation [24], while an intelligent oversam-
pling approach based upon general type-2 fuzzy Sets was adopted to detect web spam [25].
A novel intuitionistic based interval type-2 fuzzy similarity measures with application to
clustering in [26], a dynamic event-triggered sliding mode control for interval type-2 fuzzy
systems with fading channels is shown in [27], a general type-2 fuzzy gain scheduling
PID controller with application to power-line inspection robots in [28], an online general
type-2 fuzzy classifier using evolving type-1 rules is shown in [29], input-to-state stabi-
lization of interval type-2 fuzzy systems subject to cyberattacks with an observer-based
adaptive sliding mode approach are studied in [30], general type-2 fuzzy logic systems
based on shadowed sets are presented in [31], an adaptive type-2 fuzzy system is used for
the synchronization and stabilization of chaotic non-linear fractional order systems in [32],
and general interval approach for encoding words into interval type-2 fuzzy sets based on
normal distribution and free parameter is adopted in [33].

In general, the most relevant contribution of the article is the comparison of the
performance of shadowed type-2 and general type-2 fuzzy systems in achieving dynamic
parameter adaptation in DE for improving its performance. This was achieved by making
a comparison regarding the performance of the DE in optimizing a fuzzy controller applied
to a nonlinear plant. A statistical comparison was used to verify which of the two types of
fuzzy system is better for dynamic parameter adjustment in the DE algorithm. It can be
mentioned that this has not been previously done in the current literature, so in this sense
it is a novel work.

The article contains the following sections: Section 2 summarizes the basic constructs
of shadowed type-2 fuzzy systems theory, Section 3 outlines the general type-2 fuzzy
systems theory, Section 4 explains in detail the differential evolution algorithm, Section 5
explains the method for dynamic parameter adjustment in differential evolution, and
Section 6 shows the experimentation performed with the control problem. In Section 7, a
discussion of results is presented, and in Section 8 the conclusions are offered, as well as
some possible lines of future research work.
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2. Type-2 Fuzzy Systems and Shadowed Sets

In the literature, the fuzzy set term appears for the first time in 1965 [34], which mainly
tells us that, as system complexity increases, the preciseness of its perception and our
ability to express its behavior decreases, and it is from this idea that fuzzy systems emerge.
However, today the fuzzy systems that we are now dealing with have evolved to what
we know as general type-2 fuzzy systems, which can help to solve more complex systems
or with higher uncertainty. The mathematical formulation of general type-2 fuzzy sets is
expressed in Equation (1):

˜̃A =
{(

(x, u), uÃ(x)
)∣∣∀x ∈ X, ∀u ∈ Ju

x ⊆ [0, 1]
}

(1)

The general type-2 fuzzy set (GT2 FS) is currently used in different real-world appli-
cations, and there are some options to model or approximate a GT2 FS, and one of them
can be the vertical slices or z-slices representation [35–37]. The main part of this work
focuses on the continuation of the previous work on fuzzy systems for dynamic parameter
adaptation in harmony search and differential evolution. We continue taking into account
the main idea of the previous work, which focuses on the representation of α planes, which
mainly tells us that we can discretize the secondary axis of GT2 FS in several horizontal
sections, which are called α planes. These α planes are expressed by Equation (2) and can
be calculated as an interval type-2 fuzzy system (IT2FIS) [38]. Equation (3) expresses the
modeling of a general fuzzy inference system (GT2FIS) as the union of the IT2FIS.

Ãα = {((x, u), α)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (2)

˜̃A = ∪Ãα (3)

The purpose of the shadowed type-2 FIS [39] consists on reducing the computational
cost represented by the use of α-planes, and the main idea of this proposal is to model
the GT2FIS with only two optimal α-planes, eliminating the excessive precision. The
aforementioned knowledge is based on the concepts proposed by Pedrycz, who proposed
the theory of shadowed sets in [40–42].

Equation (4) expresses in detail the shadowed set concept, which consists of perform-
ing two α-cuts on a fuzzy set, with α and β values which are based on these α-cuts.

SµA(x) =


1, i f µA(x) ≥ α
0, i f µA(x) ≤ β

[0, 1], i f α ≤ µA(x) ≥ β
(4)

There are 3 regions, which can present the following interpretations:

- The elevated region for the membership degrees with a value of 1.
- The reduced region for the membership degrees with a value of 0.
- The shaded region with degree of membership in [0, 1].

Using these regions as a reference, Pedrycz proposes that for finding the optimal α
and β values, they can be calculated using Equation (5), which expresses the calculation to
obtain the shadowed area.

elevated area(α,β)(µA) + reduced area(α,β)(µA) = shadowed area(α,β)(µA) (5)

The aforementioned is represented graphically with Figure 1.
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The optimal α and β values can then be obtained by optimizing the V(α, β) function
described by Equation (6)

V(α, β) =

∣∣∣∣∣∣
∫

x∈Ar

µA(x)dx +
∫

x∈Ae

(1− µA(x))dx−
∫

x∈S

dx

∣∣∣∣∣∣ (6)

This is how we can take advantage of shadowed type-2 fuzzy sets to combine them
into the structure of the differential evolution algorithm for dynamic parameter adaptation.

A fuzzy system can be built with a trapezoidal shadowed type-2 fuzzy set membership
function (TrapG ST2 MF) introduced in [43] and that is based on a trapezoidal general
type-2 (GT2) membership function with a Gaussian membership function as a secondary
membership function. The mathematical knowledge of the membership functions is
formulated in Equation (7) and we can appreciate its graphical form in Figure 2.

TrapG ST2 MF =



∝o


µO =

µt(x)+µ
t
(x)

2 − 1.449
∣∣∣∣ µt(x)−µ

t
(x)

10

∣∣∣∣
µ

O
=

µt(x)+µ
t
(x)

2 + 1.449
∣∣∣∣ µt(x)−µ

t
(x)

10

∣∣∣∣
∝l


µI =

µt(x)+µ
t
(x)

2 − 0.9282
∣∣∣∣ µt(x)−µ

t
(x)

10

∣∣∣∣
µ

I
=

µt(x)+µ
t
(x)

2 + 0.9282
∣∣∣∣ µt(x)−µ

t
(x)

10

∣∣∣∣
(7)
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3. General Type-2 Fuzzy Systems

Another important part of our work is the utilization of general type-2 fuzzy logic,
which works under the same concept as Type-1 and interval type-2 fuzzy logic systems,
except that their mathematical functions contemplate different concepts since GT2FSs are
well known for handling higher levels of uncertainty. There are different definitions about
the mathematical functions used in a general type-2 fuzzy logic system, and for this work
we are going to use the notation presented on [44–47]. The formulation of general type-2
fuzzy sets is presented in Equation (8).

˜̃A =
{(

(x, u), µÃ (x, u)
)
| ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}
(8)

where Jx ⊆ [0, 1], x represents a primary membership function partition, and u represents a
secondary membership function partition.

The graphical representation of a type-2 membership function is illustrated in Figure 3.
On the other hand, we can notice the concept of footprint uncertainty (FOU) in Figure 4,
which is shown in the third dimension and enables a clearer visualization of the real-world
uncertainty modeling.

There is a difference in the nomenclature of each of the fuzzy systems:
The notation µ(x) is used for type-1 and interval type-2 fuzzy systems.
The notation fx(u) is used for general type-2 fuzzy logic systems.
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The α-plane for a general type-2 fuzzy set, in this case Ã, is denoted by Ãα, and it is
the union of all primary membership functions of Ã, which secondary membership degrees
are higher or equal to α (0 ≤ α ≤ 1) [48,49]. The visual representation of an alpha plane
can be found in Figure 5, in the same way the expression of the alpha plane is given by
Equation (9).

Ãα =
{
(x, u), µÃ (x, u) ≥ α

∣∣∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]
}

(9)



Axioms 2021, 10, 194 7 of 25
Axioms 2021, 10, x FOR PEER REVIEW 7 of 25 
 

 
Figure 5. Representation of an alpha-plane corresponding to a type-2 fuzzy set. 

4. Differential Evolution Algorithm 
Differential evolution is a metaheuristic with which we have previously worked, and 

it has always provided good results in the different experiments that we have performed 
for different applications. This is an algorithm that is mainly composed of the following 
operations: 

Equations (10)–(15) define the initialization of the population structure, Equation (16) 
represents the initialization of the algorithm, Equation (17) represents the mutation per-
formed by the algorithm, Equation (18) shows the crossover process, and finally Equation 
(19) expresses the last step, which is the selection operator. 

A more detailed explanation of the equations can be found in previous works [50–
54]. 

Structure of the Population 

, = , , = 0,1, … , − 1, = 0,1, … , , (10)

, = , , , = 0,1, … , − 1 (11)

, =  , , = 0,1, … , − 1, = 0,1, … , , (12)

, = , , , = 0,1, … , − 1 (13)

, =  , , = 0,1, … , − 1, = 0,1, … , , (14)

, = , , , = 0,1, … , − 1 (15)

Initialization 

, , = (0,1) ·  , − , + ,  (16)

Mutation 

, =  , + · , − ,  (17)

Crossover 

, =  , , , ,   (0,1) ≤   =, ,          (18)

Figure 5. Representation of an alpha-plane corresponding to a type-2 fuzzy set.

4. Differential Evolution Algorithm

Differential evolution is a metaheuristic with which we have previously worked, and
it has always provided good results in the different experiments that we have performed
for different applications. This is an algorithm that is mainly composed of the following
operations:

Equations (10)–(15) define the initialization of the population structure, Equation (16)
represents the initialization of the algorithm, Equation (17) represents the mutation per-
formed by the algorithm, Equation (18) shows the crossover process, and finally Equation
(19) expresses the last step, which is the selection operator.

A more detailed explanation of the equations can be found in previous works [50–54].
Structure of the Population

Px,g =
(

xi,g
)
, i = 0, 1, . . . , Np− 1, g = 0, 1, . . . , gmax, (10)

xi,g =
(
xj,i,g

)
, j = 0, 1, . . . , D− 1 (11)

Pv,g =
(
vi,g
)
, i = 0, 1, . . . , Np− 1, g = 0, 1, . . . , gmax, (12)

vi,g =
(
vj,i,g

)
, j = 0, 1, . . . , D− 1 (13)

Pu,g =
(
ui,g
)
, i = 0, 1, . . . , Np− 1, g = 0, 1, . . . , gmax, (14)

ui,g =
(
uj,i,g

)
, j = 0, 1, . . . , D− 1 (15)

Initialization
xj,i,0 = randj(0, 1)·

(
bj,U − bj,L

)
+ bj,L (16)

Mutation
vi,g = xr0,g + F·

(
xr1,g − xr2,g

)
(17)

Crossover

ui,g = uj,i,g

{
vj,i,g i f

(
randj(0, 1) ≤ Cr or j = jrand

)
xj,i,g otherwise

(18)

Selection

xi,g+1 =

{
ui,g i f f

(
ui,g
)
≤ f

(
xi,g
)

xi,g otherwise
(19)
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5. Differential Evolution Algorithm with Dynamic Parameter Adaptation

The structure of each of the fuzzy systems created for experimentation is explained
in more detail below. We consider shadowed and general type-2 fuzzy systems, which
contain one input and one output. As input variable we consider the “generations”,
which is represented in Equation (20), the experiment refers to generations for the Fuzzy
DE. In this case, the current experiment represents the current generation number, and
the maximum of experiments represents the maximum number of generations. For the
output parameter, we are using the variable F representing the mutation parameter of the
differential evolution algorithm.

Generations =
Current generation

Maximun of generation
(20)

Equation (21) represents the mutation parameter, and this parameter is the output of
the fuzzy system. In other words, F is the fuzzy parameter, which changes dynamically in
the DE.

F =
∑rF

i=1 µF
i (F1i)

∑rF
i=1 µF

i
(21)

where F is the output and the mutation parameter; rhmr is the number of rules of the fuzzy
systems corresponding to F; F1i is the output result for rule i; µF

i is the membership function
of rule i.

The inputs and outputs of both fuzzy systems are granulated into three membership
functions, and they are called low, medium, and high.

The rules that make both systems are based on previous experimentation experience,
and these rules can be observed in Table 1.

Table 1. Rules of the ST2FDE fuzzy system.

Generation
F

Low Medium High

Low − − Low

Medium − Medium −
High High − −

â Shadowed Type 2 fuzzy systems

At first instance, we have a fuzzy system, which we called ST2FDE since it represents
the fuzzy system using shadowed type-2 fuzzy sets. This fuzzy system is composed
of an input called generations and an output called F that represents mutation in the
differential evolution algorithm. Another characteristic of the system is that it corresponds
to a Mamdani type, the Figure 6 shows the structure of the Shadowed Type-2 fuzzy system.
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â General Type 2 fuzzy systems

The second fuzzy system used in this paper is of general type-2 fuzzy form, just
like our ST2FDE system contains an input called generations and an output called F that
corresponds to the mutation. The type of membership functions that the system contains
are triangular and their mathematical knowledge is expressed in Equation (22). We denote
the general type-2 fuzzy system as GT2FDE.

µ(x, u) = trigausstype2(x, u[a1, b1, c1, a2, b2, c2, ρ])

µ(x, u) = exp
[
− 1

2

(
u−PX

σu

)]
where

µ1(x) = max
(

min
(

x−a1
b1−a1

, c1−x
c1−b1

)
, 0
)

and

µ2(x) = max
(

min
(

x−a2
b2−a2

, c2−x
c2−b2

)
, 0
)

µ(x) =
{

max(µ1(x), µ2 (x)) ∀x /∈ (b1, b2 )
1 ∀x ∈ (b1, b2)
µ(x) = min(µ1(x), µ2 (x))

ρx = max
(

min
(

x−ax
bx−ax

)
,
(

cx−x
cx−bx

)
, 0
)

, where

ax = a1+a2
2 , bx = b1+b2

2 , cx = c1+c2
2 ,

δ = µ(x)− µ (x)
σu = 1+ρ

2√3 δ + ε

(22)

where a1, b1, and c1 are the upper membership function parameters and a2, b2, and c2
are the lower membership function parameters, respectively. In addition, ρ is the fraction
of uncertainty of the secondary membership function support, the Figure 7 shows the
Structure of the General Type-2 fuzzy logic system.
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Table 2 shows the mathematical expression used by the GT2FDE fuzzy system. This
table summarizes the parameterized knowledge of the fuzzy system.

Table 2. Parameters of the General Type-2 fuzzy sets.

Generalized Type-2 Fuzzy Logic Sets

Low

µ1(x) = max
(

min
(

x−0.5
−0.08+0.5 , 0.4−x

0.4+0.08

)
, 0
)

and

µ2(x) = max
(

min
(

x+0.4
0.08+0.4 , 0.5−x

0.5−0.08

)
, 0
)

µ(x) =
{

max(µ1(x), µ2 (x)) ∀x /∈ (−0.08, 0.08)
1 ∀x ∈ (−0.08, 0.08)

µ(x) = min(µ1(x), µ2 (x))

ρx = max
(

min
(

x−ax
bx−ax

)
,
(

cx−x
cx−bx

)
, 0
)

, where

ax = −0.5−0.4
2 , bx = −0.8−0.08

2 , cx = −0.4−0.5
2 ,

δ = µ(x)− µ (x)

σu =
1+ρ
2√3 δ + ε

Where ρ = 0.5

Medium

µ1(x) = max
(

min
(

x+0.084
0.4+0.084 , 0.92−x

0.92−0.4

)
, 0
)

and

µ2(x) = max
(

min
(

x−0.084
0.5−0.084 , 1.07−x

1.07−0.5

)
, 0
)

µ(x) =
{

max(µ1(x), µ2 (x)) ∀x /∈ (0.4, 0.5)
1 ∀x ∈ (0.4, 0.5)
µ(x) = min(µ1(x), µ2 (x))

ρx = max
(

min
(

x−ax
bx−ax

)
,
(

cx−x
cx−bx

)
, 0
)

, where

ax = −0.084+0.084
2 , bx = 0.4−0.5

2 , cx = 0.92−1.09
2 ,

δ = µ(x)− µ (x)

σu =
1+ρ
2√3 δ + ε

Where ρ = 0.5
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Table 2. Cont.

Generalized Type-2 Fuzzy Logic Sets

High

µ1(x) = max
(

min
(

x−0.4
0.92−0.4 , 1.4−x

1.4−0.92

)
, 0
)

and

µ2(x) = max
(

min
(

x−0.5
1.07−0.5 , 1.5−x

1.5−1.07

)
, 0
)

µ(x) =
{

max(µ1(x), µ2 (x)) ∀x /∈ (0.92, 1.07)
1 ∀x ∈ (0.92, 1.07)
µ(x) = min( µ1(x), µ2 (x))

ρx = max
(

min
(

x−ax
bx−ax

)
,
(

cx−x
cx−bx

)
, 0
)

, where

ax = 0.4+0.5
2 , bx = 0.92−1.07

2 , cx = 1.4−1.5
2 ,

δ = µ(x)− µ (x)

σu =
1+ρ
2√3 δ + ε

Where ρ = 0.5

6. Experiments Whit the D.C. Motor Speed Controller

For the experimentation, it was decided to use a benchmark control problem, which
is used in real applications in industry. We decided to use the direct current (D.C.) motor
speed control problem [55], and the purpose of the experimentation is to improve the
response capacity of the motor by using the two proposals for fuzzy systems, namely
GT2FDE and ST2FDE.

The structure of the controller with respect to the fuzzy system is of two inputs, which
are the error and the error change, and the output that corresponds to the voltage. The
controller is of the Mamdani type, and the aforementioned description can be appreciated
in Figure 8. Another important aspect of the controller is its rules, which are represented in
Table 3, and they form a rule base of 15 fuzzy rules.
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Table 3. Fuzzy Rules for Motor Control.

No.
Inputs Output

Error Change in Error Voltage

1 NegV ErrNeg Dis

2 NegV SinErr Dis

3 NegV ErrMax Dis_m

4 ZeroV ErrNeg Aum_m

5 ZeroV ErrMax Dis_m

6 PosV ErrNeg Aum_m

7 PosV SinErr Aum

8 PosV ErrMax Aum

9 ZeroV SinErr Man

10 NegV ErrNeg_M Dis

11 ZeroV ErrNeg_M Aum_m

12 PosV ErrNeg_M Aum

13 PosV ErrMax_M Aum

14 ZeroV ErrMax_M Dis_m

15 NegV ErrMax_M Dis

The main characteristic of the controller is to achieve moving from a resting state to
a desired reference, which is a speed of 40 m/s. Figure 9 illustrates the reference for the
speed of the controller with respect to time.
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Figure 9. Speed response without optimization.

The experimentation of this work is mainly based on separately using the two fuzzy
systems to optimize membership function parameters of the fuzzy system of the controller.
The fuzzy controller is formed by 45 parameters that represent the sum of the points that
make up each of the membership functions.

Figure 10 expresses the composition of the complete vector formed by all the fuzzy
system parameters, and based on these parameters the evolutionary algorithm combined
with the fuzzy system searches for the best architecture for the fuzzy controller.
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Figure 10. Chromosome for the fuzzy controller (membership functions parameters).

Figure 11 illustrates the workflow with which the experimentation was carried out.
The differential evolution algorithm is initialized, which uses a fuzzy system to optimize
the parameters of the controller’s membership functions, and this process is repeated until
the criterion of stop established in the DE.
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Figure 11. Structure of the experimentation process.

The experimentation was performed using the parameters shown in Table 4, and to
validate which of the two proposed fuzzy systems has better performance, we decided to
add a noise level to the controller. The different noise levels applied to this controller are:
0.5, 0.7, and 0.9 (Gaussian random number).



Axioms 2021, 10, 194 14 of 25

Table 4. Parameters of the algorithm.

Parameters ST2FDE and GT2FDE

Population 50

Dimensions 45

Generations 30

Number of experiments 30

F Dynamic

Cr 0.3

In this case, the objective function is defined by the root mean square error (RMSE)
of the real values with respect to the reference speed for the motor, as illustrated in
Equation (23):

RMSE =

√√√√ 1
N

N

∑
t=1

(xt − x̂t)
2 (23)

The 30 experiments were carried out applying each of the fuzzy systems varying the
level of noise (0.5, 0.7, and 0.9). From these, the best results, the worst results, averages,
and standard deviations were obtained.

Table 5 summarizes the aforementioned information from the experimentation using
the shadowed type-2 fuzzy system (ST2FDE).

Table 5. Comparison of results using ST2FDE optimization of the fuzzy controller.

ST2FDE

Method ST2FDE without
Noise FLC

ST2FDE with
Noise 0.5 FLC

ST2FDE with
Noise 0.7 FLC

ST2FDE with
Noise 0.9 FLC

Best 9.66×10−01 9.41×10−01 5.59×10−01 4.52×10−01

Worst 9.98×10−01 9.96×10−01 6.11×10−01 6.56×10−01

Average 9.84×10−01 9.73×10−01 5.86×10−01 5.81×10−01

Std. 8.45×10−03 1.17×10−02 1.40×10−02 6.13×10−02

The visual representation of the best results obtained by the performed experimenta-
tion with the fuzzy ST2FDE system is presented in Figures 12–15. These figures show the
controller simulation with the different variants that we used. In these figures, the x-axis is
the time measured in seconds and the y-axis is the speed measured in radians per second.

Figure 12 represents the simulation of the best result, 9.66×10−01. This value can be
seen in Table 5 and the simulation represents the simulation without noise in the controller
using ST2FDE.
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Figure 13 represents the simulation of the best result, 9.41×10−01 This value can
be seen in Table 5 and the simulation represents the simulation with noise of 0.5 in the
controller using ST2FDE.
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Figure 14 represents the simulation of the best result, 5.59×10−01 This value can
be seen in Table 5, and the simulation represents the simulation with noise of 0.7 in the
controller using ST2FDE.
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Figure 15 represents the simulation of the best result, 4.52×10−01 This value can
be seen in Table 5, and the simulation represents the simulation with noise of 0.9 in the
controller using ST2FDE.
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Figure 15. Simulation of the best result for ST2FDE with noise 0.9 FLC.

Figure 16 shows the convergence for each of the cases by utilizing the shadowed
type-2 fuzzy system. This figure includes the experimentation of the controller without
noise, with noise levels of 0.5, 0.7, and 0.9, and the figure clearly shows that when there is
more noise the fuzzy system produces better results.
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Figure 16. Graphical representation of the error using ST2FDE without noise and with different noise
levels.

Table 6 shows the results obtained from the experimentation using the general type-2
fuzzy system, without noise in the controller, and with noise levels of 0.5, 0.7, and 0.9,
respectively. This table shows the best, the worst, the mean, and the standard deviation
results for each case.

Table 6. Comparison of results using the GT2FDE optimization of the fuzzy controller.

GT2FDE

Method GT2FDE without
Noise FLC

GT2FDE with
Noise 0.5 FLC

GT2FDE with
Noise 0.7 FLC

GT2FDE with
Noise 0.9 FLC

Best 9.73×10−01 9.38×10−01 5.48×10−01 4.35×10−02

Worst 9.95×10−01 9.91×10−01 6.08×10−01 6.53×10−01

Average 9.85×10−01 9.75×10−01 5.79×10−01 5.51×10−01

Std. 5.88×10−03 1.25×10−02 1.70×10−02 7.46×10−02

The visual representation of the best results obtained by experimentation with the
fuzzy GT2FDE system is presented in Figures 17–20, which show us the simulation of the
controller with the different variants that we have used. In this case, the x-axis is the time
measured in seconds and the y-axis is the speed measured in radians per second, and this
is for all the aforementioned figures.

The simulation of the best result obtained in the experimentation is illustrated in
Figure 17. The simulation result is 9.73×10−01 and represents the use of the controller
without noise using GT2FDE.
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The simulation of the best result obtained in the experimentation is illustrated in
Figure 18. The simulation result is 9.38×10−01 and represents the use of the controller with
a noise level 0.5 using GT2FDE.
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Figure 18. Simulation of the best result obtained in the experimentation with GT2FDE with noise of
0.5 in the FLC.

The simulation of the best result obtained in the experimentation is illustrated in
Figure 19. The simulation result is 5.48×10−01 and represents the use of the controller with
a noise level 0.7 using GT2FDE.
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of 0.7 in the FLC.

The simulation of the best result obtained in the experimentation is illustrated in
Figure 20. The simulation result is 5.48×10−01 and represents the use of the controller with
a noise level 0.9 using GT2FDE.
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Figure 20. Simulation of the best result obtained in the experimentation with GT2FDE with a noise
of 0.9 in the FLC.

Figure 21 shows the convergence of each of the cases when using the general type-2
fuzzy alternative. This figure shows the different variants used in the experimentation,
and as in the experimentation with the ST2FDE, we can appreciate that with a higher noise
level in the controller better results can be obtained.
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Figure 22 shows a comparison of the best results achieved by each of the variants
with noise and without noise using for two fuzzy systems ST2FDE and GT2FDE. We can
appreciate that the GT2FDE fuzzy system is slightly better for most of the variants.
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Figure 22. Comparison of the best results between ST2FDE and GT2FDE without noise and with different noise levels.

In order to make a decision on which of the used systems has the best result, i.e.,
which of the two kinds of fuzzy systems is better depending on the achieved error, we
carry out a z test.

The parameters used to perform the statistical test are summarized in Table 7.
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Table 7. Summary of parameters for the z-test.

Parameter Value

Level of Confidence 95%

Alpha 0.05%

Ha µ1 < µ2

H0 µ1 ≥ µ2

Critical Value −1.645

In this case, µ1 represents the variants using GT2FDE and µ2 represents the variants
using ST2FDE.

The null and alternative hypotheses that we propose for the statistical test are the
following:

Ho: The results of the GT2FDE methodology without noise and with noise are higher than
the methodology ST2FDE without noise and with noise.

Ha: The results of the GT2FDE methodology without noise and with noise are lower than
the methodology ST2FDE without noise and with noise.

Based on the values shown in Table 7, the rejection zone is for values that are lower
than −1.64. Equation (24) for calculating the z value of the z-test is presented below:

Z =

(
X1 − X2

)
− (µ1 − µ2)

σX1−X2

(24)

Table 8 shows the z values obtained for the different statistical tests to compare the
performance of the two fuzzy systems.

Table 8. Summary of results of the statistical z-tests.

Statistical Tests

Case Study µ1 µ2 Z Value Evidence

Speed control
in a D.C. Motor

GT2FDE without
FCL noise

ST2FDE without
FCL noise 0.5321 Not Significant

GT2FDE with
FCL 0.5 noise

ST2FDE without
FCL 0.5 noise 0.6398 Not Significant

GT2FDE with
FCL 0.7 noise

ST2FDE without
FCL 0.7 noise −1.7410 Significant

GT2FDE with
FCL 0.9 noise

ST2FDE without
FCL 0.9 noise −1.7018 Significant

Statistical tests show us that when there is a higher noise level, then the general type-2
fuzzy system obtains better results, and the shadowed type-2 fuzzy system is better for
lower noise levels.

To verify the efficiency of the GT2FDE fuzzy system, which is statistically better than
ST2FDE, we also performed a comparison with the best results obtained in [36]. This
previous work used a structure of the fuzzy system that is similar to the one we use here,
with one input and one output, where we used the differential evolution algorithm and
harmony search (HS).

Table 9 summarizes a comparison of the best results obtained using a high-speed
interval Type-2 fuzzy system for parameter adjustment in the DE and HS algorithms [56]
and the GT2FDE methodology proposed in this work.
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Table 9. Comparison between the GT2FDE and other methods.

D.C. Motor
Speed Controller RMSE

Method Best

Original DE 4.72×10−01

DEFIS 1 4.57×10−01

DEFIS 2 4.80×10−01

DEFIS 3 2.36×10−01

Original HS 4.72×10−01

HSFIS 1 4.57×10−01

HSFIS 2 4.80×10−01

HSFIS 3 2.36×10−01

GT2FDE with noise 0.9 FLC 4.35 × 10−02

It is relevant to mention that the comparison is only with the best results since the
reference does not provide means and standard deviations to be able to perform a sound
statistical test. However, based on the information summarized in Table 9, we can state
the proposed method in this paper outperforms the methods presented in [36], which is
highlighted in bold.

7. Discussion of Results

In this section, the simulation results of the previous section are summarized and
discussed with respect to the goals of this article mentioned at the beginning. We first
discuss the results of the methods with respect to different levels of noise in the controllers
of the motor.

In the case of the simulations carried out with the two kinds of fuzzy systems in DE
for a noise level of 0.5, the best results obtained were 9.41×10−01 and 9.38×10−01. We
can notice that the difference between both is very small, the averages obtained from the
experimentation were 9.73×10−01 and 9.75×10−01. In the same way, the difference between
both averages is minimal, however the statistical test shows that ST2FDE is better than
GT2FDE.

The experimentation for the noise level of 0.7 shows the following results 5.59×10−01

and 5.48×10−01. However, the averages between both e × periments were 5.86×10−01

and 5.79×10−01. Although the difference between the best results is minimal, we can note
that, in terms of the averages, there is a significant difference. The statistical test shows
that GT2FDE is better than ST2FDE. Finally, in the experimentation with a noise level of
0.9, where the best results were of 4.52×10−01 and 4.35×10−02, we can note that there
is a difference between these results, for the comparison of the averages obtained, it is
6.13×10−02 and 7.46×10−02. It can be observed that there is a difference between both e ×
periments and finally the statistical test shows that GT2FDE is better than ST2FDE. These
results are in accordance with what the literature affirms in most of the works, meaning
that general type-2 fuzzy systems are better whenever the noise levels or disturbances are
higher, which is what actually occurs in real world problems.

Another way to check the proper functioning of the proposed methodology is the
comparison made in Table 9 between high-speed interval type-2 fuzzy system for parameter
adjustment in the DE and HS algorithms and the methodology proposed in this work
GT2FD. A sample of the best results obtained for comparison are 2.36×10−01, 2.36×10−01

and 4.35×10−02, respectively, where it can be seen that the best result is the one obtained
by the methodology proposed in this paper. It is important to mention that the comparison
is only with the best result, since the reference does not provide means and standard
deviations to perform a statistical test.
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8. Conclusions

The conclusions for the work presented in this article are summarized below. First of
all, we can highlight and affirm that the utilization of general type-2 fuzzy logic is better
for higher levels of uncertainty. An analysis of the results between the two kinds of fuzzy
systems, ST2FDE and GT2FDE, is as follows. Firstly, the best simulations without noise
were of 9.66 × 10−01 and 9.73 × 10−01, respectively, which are very similar. The same can
be observed with the average of the e × periments where the results were 9.84 × 10−01 and
9.85 ×10−01, respectively. We can say that the difference between the two is small and the
statistical test shows that ST2FDE is better than GT2FDE.

In general, the work carried out shows good results when comparing the two kinds
of fuzzy systems and regarding the comparison with the high-speed interval type 2 fuzzy
systems combined with the DE and HS algorithms. We can appreciate that we achieved
better results with our proposed GT2FDE methodology because the general type-2 fuzzy
systems help the differential evolution algorithm a lot in terms of achieving a better
performance.

We can affirm that the main contribution of this work is summarized in that we
have achieved what has not been done in the previous literature, namely a proposal of
the differential evolution combined with shadowed and general type 2 fuzzy systems to
dynamically move a parameter of the DE algorithm. The experimentation carried out
can help other researchers by providing a guide of the good results obtained when using
general type 2 fuzzy systems under high levels of noise.

As future work, we envision that the proposed method could be also applied in other
problems in areas such as pattern recognition, time series prediction, and medical diagnosis
among others [50–56]. Another important idea is to be able to perform experimentation
using the two kinds of fuzzy systems to dynamically adapt the CR (crossover) parameter in
some other control problems, to be able to validate with which parameter of the differential
evolution algorithm the best results are obtained. In the same way, the experimentation for
both parameters to dynamically move (fuzzy system of two outputs) is a task that would
be interesting, in order to apply it to control problems, e.g., in robot trajectory tracking.
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