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Abstract: We introduce the fourth fundamental form of a Dini-type helicoidal hypersurface in the
four dimensional Euclidean space E*. We find the Gauss map of helicoidal hypersurface in E4.
We obtain the characteristic polynomial of shape operator matrix. Then, we compute the fourth
fundamental form matrix IV of the Dini-type helicoidal hypersurface. Moreover, we obtain the
Dini-type rotational hypersurface, and reveal its differential geometric objects.
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1. Introduction

Rotational and helicoidal hyper-surfaces have attracted the attention of scientists such
as architects, biologists, physicists, mathematicians, and especially geometers for almost
300 years.

Let us review some works about rotational and helicoidal characters in chronologi-
cal order.

Catenoid is a minimal rotational surface described by Euler [1] in 1744. Helicoid is a
ruled minimal surface, described by Euler in 1774 and by Meusnier [2] in 1776. Bour [3] gave
isometric deformation formulas of catenoid-helicoid. Dini [4] obtained a helicoidal surface.

Moore [5] introduced rotational surfaces in a four dimensional space [E#. Moore [6]
considered rotational surfaces of constant curvature in E*.

Do Carmo and Dajczer [7] worked on helicoidal surfaces with constant mean curva-
ture CMC. Chen [8] gave submanifolds of a finite type in his books. Hano and Nomizu [9]
considered surfaces of revolution with CMC. Roussos [10] studied helicoidal surfaces as
Bonnet surfaces. Ripoll [11] introduced helicoidal minimal surfaces in hyperbolic space.
Dillen [12] worked on ruled submanifolds of finite type. Baikoussis and Verstraelen [13] fo-
cused on the Gauss map of helicoidal surfaces. Hoffman, Wei, and Karcher [14] considered
adding handles to the helicoid. Gray [15] gave details of helicoidal-rotational surfaces in
his book. Baikoussis and Koufogiorgos [16] obtained helicoidal surfaces with prescribed
mean or Gaussian curvature. Dillen and Kiihnel [17] examined ruled Weingarten surfaces
in Minkowski 3-space.

Ikawa [18] introduced Bour’s theorem and Gauss map. Sasahara [19] worked on
spacelike helicoidal surfaces with CMC in a Minkowski 3-space. Ikawa [20] focused on
Bour’s theorem in Minkowski geometry. Choi and Kim [21] characterized the helicoid as
a ruled surface with pointwise 1-type Gauss map. Yoon [22] studied rotational surfaces
with finite type Gauss map in E*. Beneki, Kaimakamis, and Papantoniou [23] indicated the
Minkowski 3-space of helicoidal surfaces. Giiler and Vanli [24] considered Bour’s theorem
in Minkowski 3-space. Giiler and Vanli [25] classified the mean, Gaussian, 2nd Gaussian
and the 2nd mean curvatures of the helicoidal surfaces with light-like axis in Minkowski
3-space.
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Stamatakis and Al-Zoubi [26] considered surfaces of a revolution satisfying Alllx = Ax.
Ji and Kim [27] worked on helicoidal CDPC-surfaces in Minkowski 3-space. Ji and Kim
[28] introduced mean curvatures and Gauss maps of a pair of isometric helicoidal and
rotation surfaces in Minkowski 3-space. Giiler, Yayli, and Hacisalihoglu [29] used Bour’s
theorem on the Gauss map in 3-Euclidean space. Arslan et al. [30] studied rotational
embeddings with pointwise 1-type Gauss map in E*. Dursun and Turgay [31] worked
on general rotational surfaces with pointwise 1-type Gauss map in E*. Arslan et al. [32]
focused on generalized rotation surfaces in E*.

Dursun and Turgay [33] studied minimal and pseudo-umbilical rotational surfaces
in Euclidean space E*. Perdomo [34] provided helicoidal minimal surfaces in R3. Ji and
Kim [35] considered isometries between minimal helicoidal surfaces and rotation surfaces
in Minkowski space. Kim and Turgay [36] introduced surfaces with L;-pointwise 1-type
Gauss map in E*. Kim and Turgay [37] classified helicoidal surfaces with L;-pointwise
1-type Gauss map. Giiler [38] introduced a new type of helicoidal surface of value m.
Lopez and Demir [39] worked on helicoidal surfaces in Minkowski space with CMC and
CGC. Arslan, Bulca, and Milousheva [40] studied meridian surfaces with pointwise 1-type
Gauss map in E#. Ganchev and Milousheva [41] considered general rotational surfaces in
4-dimensional Minkowski space. Babaarslan and Yayl: [42] gave space-like loxodromes
on rotational surfaces in Minkowski 3-space. Giiler and Yayl [43] introduced generalized
Bour’s theorem. Senoussi and Bekkar [44] considered helicoidal surfaces with Alr = Ar
in E3.

Hoffman, Traizet, and White [45] gave helicoidal minimal surfaces of a prescribed
genus. Kim, Kim, and Kim [46] focused on the Cheng-Yau operator and Gauss map of
surfaces of revolution. Giiler, Magid, and Yayl [47] focused on the Laplace Beltrami op-
erator of a helicoidal hypersurface in four space. Hieu and Thang [48] considered Bour’s
theorem in 4-dimensional Euclidean space. Arslan, Bulca, and Kosova [49] studied gen-
eralized rotational surfaces in Euclidean spaces. Babaarslan and Kayacik [50] considered
time-like loxodromes on helicoidal surfaces in Minkowski 3-space. Giiler, Hacisalihoglu,
and Kim [51] gave the Gauss map and the third Laplace-Beltrami operator of the rotational
hypersurface in 4-space. Aleksieva, Milousheva, and Turgay worked on [52] general rota-
tional surfaces in pseudo-Euclidean 4-space with neutral metrics. Goemans [53] introduced
flat double rotational surfaces in Euclidean and Lorentz-Minkowski 4-space. Giiler and
Turgay [54] obtained a Cheng-Yau operator and Gauss map of rotational hypersurfaces in
4-space. Giiler and Kisi [55] indicated Dini-type helicoidal hypersurfaces with timelike axis
in E{. Yoon, Lee, and Lee [56] constructed helicoidal surfaces by using curvature functions
in isotropic space. Giiler [57] worked helical hypersurfaces in Ef.

Dursun [58] introduced rotational Weingarten surfaces in hyperbolic 3-space. Giiler [59]
focused on the fundamental form I'V and curvature formulas of the hypersphere. Lépez and
Pampano [60] classified rotational surfaces with constant skew curvature in 3-space forms.

In this paper, we study the fourth fundamental form of the Dini-type helicoidal
hypersurface in Euclidean 4-space E*. In Section 2, we offer some basic notions of four-
dimensional Euclidean geometry. In Section 3, we define helicoidal hypersurface. In
Section 4, we give Dini-type helicoidal hypersurface and calculate the fourth fundamental
form. In addition, we provide a conclusion in the last section.

2. Preliminaries

In the rest of this paper, we identify a vector (a,b,c,d) with its transpose (a,b,c,d)".

In this section, we will introduce the first, second, third, and fourth fundamental
form matrices, matrix of the shape operator S of hypersurface x = x(u, v, w) in the four-
dimensional Euclidean space E*.

Let x = x(u,v,w) be an isometric immersion of any hypersurface M3 in E*. Let
{e1, ez, 3,4} be the standart base vectors of [E*. The inner product of Y = (x1,x2,%3,%4),

= (Y1,Y2,Y3,Y4), and the vector product of %, Y, Z = (21,2223, 24) on E* are defined
as follows
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?7 = X1Y1 + X2Y2 + X3Y3 + X4Y4,

€1 € e3 €4

X1 Xo X3 X
PxTPxT = det| T 2 W M|

Yi Y2 Y3 VY4
21 Z2 Z3 Z4

respectively.
In 4-space, the first and the second fundamental form matrices of hypersurface

x(u, v, w) are given as follows
E F A L M P
I= F G B |, II={ M N T |,
A B C P T V

where
E=xy-xy, F=xy-xy, G=xp-Xp,

A=xy -Xpw, B=xp -xp, C=xp- Xy,
L:qu'g/ M:Xuv'g/ N:sz'g/
P=xuw-G, T=%w G V=xpuw-G,

and the Gauss map G = G(u, v, w) of x is defined as follows

Xy X Xp X Xg
X0 X Xp X Xgp|

g

Theorem 1. The shape operator matrix S of any hypersurface x(u,v,w) in 4-space is given
as follows
S1 S2 S3
S = L S4 S5 S
detI 4 55 6 |-/
57 S8 89

detI = (EG — F?)C — A%>G + 2ABF — B%E,

s1 = ABM — CFM — AGP + BFP + CGL — B?L,

sp = ABN — CFN — AGT + BFT + CGM — B*M,
s3 = ABT — CFT — AGV + BFV + CGP — B?P,

sy = ABL — CFL + AFP — BPE + CME — A?M,

s5 = ABM — CFM + AFT — BTE + CNE — A2N,
s¢ = ABP — CFP 4+ AFV — BVE + CTE — A?T,

sy = —AGL + BFL + AFM — BME + GPE — F?P,
sg = —AGM + BFM + AFN — BNE + GTE — F?T,
s9 = —AGP + BFP + AFT — BTE + GVE — F2V.

where

Proof. We compute I~1.1I, and it gives the shape operator matrix S. [
Theorem 2. The third fundamental form matrix 111 of any hypersurface x(u, v, w) in 4-space is

given as follows
1 r © Q
111 = dot] > ¥ 0 |,

QO 60 A

where T = (Gy - Gu)det], ® = (G- Gy)detl, O = (Gy-Gu)det], ¥ = (G- Gy)detl,
© = (Gy - Go)det], A = (Go - Goy) det I, and
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I = —A’M?—B?L? - F?*P? + CGL? + CEM? + GEP?
+2(ABLM — EBMP — CFLM + AFMP — GALP + BFLP),

® = ABM?—CFM?— B’LM — A’MN — F?PT + CMNE
—BNPE — BMTE + GPTE 4+ ABLN — CFLN + CGLM
+AFNP — AGMP + BEMP + AFMT — AGLT + BFLT,

Q = —AGP?>— B?LP + BFP?> — A’MT — F?PV + CMTE
—BMVE — BPTE + GPVE + ABMP + ABLT — CEFMP
+CGLP — CFLT + AFMV — AGLV + BFLV + AFPT,

Y = —A2N?-B?M? — F*T? + CGM? + CEN? + GET?
+2(ABMN + AFNT — GAMT + BEMT — EBNT — CFMN),

©® = AFT?> - B’MP — A’NT — F>*TV — BT?E + CNTE
—~BNVE + GTVE + ABNP + ABMT — CENP + CGMP
—CFMT + AFNV — AGMV + BEMV — AGPT + BFPT,

A = —A?T?>—B?*P?> — F>V? 4 CGP? + CET? + GEV?
+2(ABPT + AFTV — GAPV + BFPV — EBTV — CFPT).

Proof. We compute I1.5, and this gives the matrix of the third fundamental form I11. O

Theorem 3. Matrix of the fourth fundamental form 1V where the coefficients depends on I and 11
of a hypersurface x(u, v, w) in 4-space is given as follows

1 [
IVZ*Z B
(detI) 5

™M™
= ™ >

where

a = TIs;+ Psy+ Qsy,
B = Tsy+ Pss+ Qsg = Ds; + ¥sq + Osy,
6 = Tsz3+ Psg+ Osg = Osq1 + Osy + Asy,
e = dsy;+ ¥ss+ Osg,
¢ = Ps3+ ¥sg+ Osg = Osp + Oss + Asg,
i Qs3 + Osg + Asg,

Proof. We compute I11.5, then it gives the fourth fundamental form matrix IV. O

3. Helicoidal Hypersurface

Lety : I — I1be a curve in a plane ITin E*, and let ¢ be a straight line in I1 for an
open interval I C R. A rotational hypersurface in E* is defined as a hypersurface rotating
a curve 7 (i.e., profile curve) around a line (i.e., axis) ¢. Suppose that when a profile curve
7 rotates around the axis ¢, it simultaneously displaces parallel lines orthogonal to the axis
£, so that the speed of displacement is proportional to the speed of rotation. The resulting
hypersurface is called the helicoidal hypersurface with axis ¢ and pitches a,b € R\{0}.

We can suppose that £ is the line spanned by the vector (0,0,0,1)". The rotation matrix
is given by

cosvcosw —sinv —cosvsinw 0

Q(v, w) = sinz.fcosw cosv —sinvsinw 0
sinw 0 cos W 0 |’

0 0 0 1
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where v, w € R. The matrix Q supplies the following equations
QlL=1,0.0=00"' =14, detQ =1.

When the axis of rotation is ¢, there is an Euclidean transformation by which the axis
is ¢ transformed to the x4-axis of E*. Parametrization of the profile curve is given by
y(u) = (1,0,0, p(u)), where ¢(u) : I C R — R is a differentiable function for all u € I.
Therefore, the helicoidal hypersurface, spanned by the vector ¢ = (0,0,0,1), is given as
follows
H(u,v,w) = Q' + (av + bw).ét,
rotation translation

where u € I, v,w € [0,27], a,b € R\{0}. We can also write the helicoidal hypersurface

as follows
U COS U COS W

U sinvcosw
usinw
¢(u) +av 4+ bw

H(u,v,w) =

When the pitches a = b = 0, helicoidal hypersurface transforms into a rotational hypersur-
face in E*.

4. Dini-Type Helicoidal Hypersurface and the Fourth Fundamental Form

Next, for the sake of breviety, we use S, = sinu, C;, = cosu, T, = tanu, C, = cotu.
We consider Dini-type helicoidal hypersurface (see Figure 1) as follows

SMCUC'(U
SuSoCu
SuSw ’
Cy+1og(Ty, 2) +av+ bw

D(u,v,w) = 1)

where u,a,b € R\{0} and 0 < v,w < 271.

g
o

Sl

=

Figure 1. Projections of Dini-type hypersurface ® into (Left) x1x2x3 space, (Right) x; xox4 space.
Using the first differentials of (1) with respect to u, v, w, we get the first quantities
C%l IZCuCu b Cucu
I=| aCyC, S2C2+a® ab ,
bC,C, ab S2 4+ 12

and its determinant
det1 = ( (1 +1)C3 +a?) S22
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The Gauss map of (1) is given by
aSU - (wa - Cucw)cvcw
G— 1 aCy — (bSw — CuCuw)SuCu @)
Wi1/2 (bCuw + CuSw)Cu ’

—SuCw

where W = (b% +1)C3, + a°. Taking the second differentials of (1) with respect to u, v, w,
with (2), we have the second quantities as follows

l Cucw aCqu bCqu
= | CCo (08w —CuCu)SuCh  —aSuSu |-
bCyCy —a8,Sw —-8,C,Cy

Computing product matrix I~1.S, we obtain the shape operator matrix of (1) as follows

SuCuw aCy az(bcw+cuszu)+b(b2+1)c%
1 Cu Cu WC,
S=vm| 0 Paghle _aP+1)Se
Wl/2 Su W.
0 _aSy uz(bsw_cucw)— sz—&-l)cuci
Su WS,

Theorem 4. Let © : M® — E* be an immersion given by (1). Then, characteristic polynomial of
S is given as follows
B4 ratfsx+t=0.

where

(b +1)C2C3 — WS2Cy

' W3728,C, ’
+(W + a?) (bSw — CuCa) S2Co
—2a%bC28,Cp + a2Cy (C2C2 — S32)
. + (b 4+ 1) (C2uCop — bCSw)CuC3

W2S2C,
{ a? (83 — C2C2) 4 2a?bCySwCo } c
+ (0% +1) (bSw — CuCa)CuCS [
W5/2S,C,

Proof. Computing det(S — xZ3) =0, we getr,s,and t. [

Corollary 1. Let © : M®> — E* be an immersion given by (1). Then, ® has the following
principal curvatures

b~ SuCu
1 - WTZCM/
P P12 —2WC,Cyp + (W + a2)bS,,
2 2W3/28, ’
K = —p1/2 = 2WC,Co + (W + a?) bSy

2W3/28u
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where
W = (b2 + 1)05, +a?,
o = (4a2w +02 (W a2)2) S5+ (0 + 1)zc§cg
+2<b2 + 1) (w - a2> (CuCeo + bS)CuC3,
+(a? - w)2(cucw —2684)CuC.

Proof. Solving characteristic polynomial of S, we obtain eigenvalues k;. O

Hence, we can see the curvatures of (1), using the following formulas

¢ = 1,
e _ K +k32+k3,

o - k1k2+k13k3+k2k3,
€ = kikaks,

easily. See [59] for the formulas of the curvatures ;.

Corollary 2. Let ® : M> — E* be an immersion given by (1). Then, (1) has the third funda-
mental form matrix as follows

c2 aS,C2, bS.C2
w W W
111 = | aSuC3  (0S0u—CuCu)*Ci+a®  a(bCouw+CuSaw)
W W W
bSuCLZU a(bCoy+CuSoy)
W W X33
where
v L P 1-CBSE) ¢ (2 + 1) @2+ C)C
W .

Proof. Using II.S of (1), we have the third fundamental form matrix. [

Corollary 3. Let ® : M3 — E* be an immersion given by (1). Then, © has the fourth funda-

mental form matrix
1 [ 2 fis
V=v5m|  f2 fs |
fa1 f2 f33

where
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W= (B+1)C+d
O SuC
f11 - Cu 7
aS2c?
fio = fa= Cuw,
u
bSllez%

fiz = fa= o
{ a2 [S2C2 — (1+252)C2]Cy }
B +2a25C,, 83 4 (bSy — CuCi)>CuC?
fa = 5:C ’
2a(bSy — CuCo)C2S0Co

M _a{ 2(1? + S2) } CuSo
+ (a2 4+ C3)C3CE
+ab(—C2C2 + C58% + C2) Cy
fz = fo= 5.C, ,
{ 2(C2+1)Cach }c
+2(C3+1)C283 [
—a’b? —a?(82 +1)
+{ —b2(2C2 + 8%)C2, }cgcw
+82¢2,

b?(2b* + C2 + C2)C4
+a*bq +a?(1—-S3C2) + (P> +1)82 $CuSu
+2a%b? + S2C2C2,
_a2 a2 (SZ%) + sztczzu) CZC
+2C5Ce + (C5+2)S5 J
— (> +1)% (b2 + C2)C2CT,
f = +b?(b* +1)S2C3,
3 WS.C,,

Proof. Using product matrix II1.S of (1), we get the fourth fundamental form matrix. [J

Example 1. When a = b = 0 in hypersurface (1), we obtain Dini-type rotational hypersurface
(see Figure 2) as follows
SuCoCo
SMSUCZU
SuSuw
Cu +1og(Ty2)

Then its fundamental form matrices I, 11, Gauss map G (see Figure 3), shape operator matrix S,
fundamental form matrices 111, IV, and curvatures €; are given by as follows

R(u,v,w) =
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11

II1

v

and

ding (cﬁ, 5505,53,),

diag(Cu, ~1/2 85,C2,~1/2 SZu),
(CuCoCuw, CuuSoCu, CuSw, —Su),
diag(Ty, —Cy, —Cy,),

diag(l, c2c2, cz)

diag(Tu, —C.C2C3, —cucg,),

& = 1,

¢ = 1/3T,—2/3Cy,
& = C2-2/3872
& = Cy

where S, = sinu, C,, = cosu, T, = tanu, C, = cotu.

Figure 3. Projections of G of R into (Left) x1x3x4 space, (Right) x,x3x4 space.

5. Conclusions

In this paper, we introduce the fourth fundamental form of Dini-type helicoidal
hypersurface ® (1, v, ) in the four dimensional Euclidean space E*. We compute its Gauss
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map G. We obtain the characteristic polynomial of shape operator matrix S. We calculate
the fourth fundamental form matrix IV of hypersurface ©. Taking pitches a = b = 0 of
helicoidal hypersurface ©, we have a Dini-type rotational hypersurface %(u, v, w), and
reveal its differential geometric objects. Therefore, it can be seen that objects of © and R
supply the following relation €oIV — 3¢ 111 + 3&,1] — €31 = 0.
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