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Abstract: The energy of a graph is defined as the sum of the absolute values of its eigenvalues.
Recently, there has been a lot of interest in graph energy research. Previous literature has suggested
integrating energy, Laplacian energy, and signless Laplacian energy with single-valued neutrosophic
graphs (SVNGs). This integration is used to solve problems that are characterized by indeterminate
and inconsistent information. However, when the information is endowed with both positive and
negative uncertainty, then bipolar single-valued neutrosophic sets (BSVNs) constitute an appropriate
knowledge representation of this framework. A BSVNSs is a generalized bipolar fuzzy structure that
deals with positive and negative uncertainty in real-life problems with a larger domain. In contrast
to the previous study, which directly used truth and indeterminate and false membership, this paper
proposes integrating energy, Laplacian energy, and signless Laplacian energy with BSVNs to graph
structure considering the positive and negative membership degree to greatly improve decisions in
certain problems. Moreover, this paper intends to elaborate on characteristics of eigenvalues, upper
and lower bound of energy, Laplacian energy, and signless Laplacian energy. We introduced the
concept of a bipolar single-valued neutrosophic graph (BSVNG) for an energy graph and discussed
its relevant ideas with the help of examples. Furthermore, the significance of using bipolar concepts
over non-bipolar concepts is compared numerically. Finally, the application of energy, Laplacian
energy, and signless Laplacian energy in BSVNG are demonstrated in selecting renewable energy
sources, while optimal selection is suggested to illustrate the proposed method. This indicates the
usefulness and practicality of this proposed approach in real life.

Keywords: bipolar neutrosophic set; graph energy; laplacian energy; signless Laplacian energy;
renewable energy source

1. Introduction

The graph spectrum is applicable in statistical physics and mathematical combinatorial
optimization problems. Pattern recognition, modelling virus spread in computer networks,
and safeguarding personal data in databases all benefit from the spectrum of a graph. The
concept of graph energy is related to a graph’s spectrum. This concept was originally
introduced by Gutman [1] in 1978. It is defined as the sum of the absolute values of the
eigen values of the graph’s adjacency matrix. By linking the edge of a graph to the electron
energy of a type of molecule, the energy of a graph is employed in quantum theory and
many other applications in the context of energy. Later, Gutman and Zhou [2] defined the
Laplacian energy of a graph as the sum of the absolute values of the differences of average
vertex degree of G to the Laplacian eigenvalues of G. Details on the properties of graph
energy and Laplacian energy can be found in [3-11].
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Zadeh first introduced the fuzzy set theory in 1965 [12]. After the initiation of fuzzy
sets, the concept of fuzzy graphs was developed by Kaufmann [13] and Rosenfeld [14] to
deal with the fuzzy environment in graphs. Zhang [15] developed the concept of a bipolar
fuzzy set where a positive membership function and a negative membership function are
generalized from the traditional fuzzy set. Later, Smarandache [16] introduced the concept
of the neutrosophic set, which is generalized from fuzzy set theory and intuitionistic
fuzzy set.

Over the years, many researchers have studied graph energy in fuzzy and neutro-
sophic sets. Anjali and Mathew [17] defined the energy of a graph within the fuzzy set
environment. In 2014, Sharbaf and Fayazi [18] introduced the concept of Laplacian energy
of fuzzy graphs and some results on Laplacian energy bounds extended to fuzzy graphs.
In the same year, Praba et al. [19] discussed the energy in the intuitionistic fuzzy graph.
Laplacian energy in an intuitionistic fuzzy graph was defined by Basha and Kartheek [20].
Later, Akram and Naz [21] defined the energy and Laplacian energy of Pythagorean fuzzy
graphs (PFGs) and Pythagorean fuzzy digraphs (PFDGs). Moreover, the study also derived
the lower and upper bounds for the energy and Laplacian energy of PFGs. Later, Muruge-
san and Venkatesh [22] defined energy and Laplacian energy of a bipolar fuzzy graph.
Furthermore, Naz et al. [23] introduced the concept of energy of bipolar fuzzy graph (BFG)
and bipolar fuzzy digraph (BFDG). The study derived the maximal energy of BFGs and
investigated their properties. In 2020, Ramesh and Basha [24] defined the signless Laplacian
energy of an intuitionistic fuzzy graph by implementing the cosine similarity measure in
solving decision-making problems. The same author [25] also computed signless Laplacian
energy of an intuitionistic fuzzy graph with TOPSIS method using MATLAB software and
applied it in group decision-making problems.

Recently, Broumi et al. [26] proposed an interval-valued neutrosophic graph using
MATLAB to compute energy and spectrum analysis. Later, Mohsin et al. [27] extended the
energy of a fuzzy graph, intuitionistic fuzzy graph, and single-valued neutrosophic graph
concepts to a complex neutrosophic graph. Naz et al. [28] introduced the concept of energy,
Laplacian energy, and signless Laplacian energy in single-valued neutrosophic graphs and
constructed a relation between them. In 2020, Mullai et al. [29] introduced dominating en-
ergy of a neutrosophic graph, dominating neutrosophic adjacency matrix, eigen values for
the dominating energy of neutrosophic graphs, and complement of neutrosophic graphs.
Table 1 summarizes some significant influences towards energy graph, Laplacian energy
graph and signless Laplacian energy graph. Previous literature suggested integrating of
energy, Laplacian energy, and signless Laplacian energy with single-valued neutrosophic
graphs (SVNGs). This integration is used to solve problems that are characterized by inde-
terminate and inconsistent information. However, when the information is endowed with
both positive and negative uncertainty, then BSVNs constitute an appropriate knowledge
representation of this framework. Moreover, there has been no discussion concerning
energy graphs in BSVNs.

Bipolarity refers to the tendency of the human mind to analyze and take responsibility
based on positive and negative outcomes. The positive analysis is all about reasonable,
permitted, appropriate, or considered acceptable, while impossible, rejected or forbidden
represents negative analyses. Furthermore, positive thoughts correspond to the preferences
as they interpret which objects are preferable to others without rejecting those that do not
meet the preferences. Still, negative thoughts correspond to the constraints as they interpret
which values or objects must be declined. Based on these consequences, Deli et al. [30]
proposed bipolar fuzzy sets and neutrosophic sets to bipolar neutrosophic sets in which
positive membership degree, negative membership degree, and operations were studied.
Bipolar fuzzy sets have a great value in dealing with uncertainty in real-life problems and
useful in dealing with the positive and the negative membership values. Thus, in this paper,
we combined BSVNs with an energy graph and applied them to selecting renewable energy
sources. In particular, this paper aims to introduce the concepts of energy, Laplacian energy,
and signless Laplacian energy in BSVNG, to investigate the properties on characteristics of
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eigenvalues, upper and lower bound of energy, Laplacian energy and signless Laplacian
energy and to present the relationship among them.

The outline of this study is organized as follows: Section 2 gives the basic concepts
related to neutrosophic and bipolar sets. Section 3 defines the concepts of energy in BSVNG
while the concept of Laplacian energy in BSVNG is discussed in Section 4. On the other
hand, Section 5 presents the concepts of signless Laplacian energy in BSVNG and the
relation between energy, Laplacian energy, and signless Laplacian energy presented in
Section 6. Moreover, to implement our proposed study, we discuss the application of
the energy of BSVNG in the selection of renewable energy sources in Section 7, while
Section 8 provides comparative results. Finally, this study is concluded by mentioning
future potential research work in Section 9.

Table 1. Significance influences towards energy, Laplacian energy and signless Laplacian energy graph.

Author and References

Year Fuzzy/Neutrosophic Sets Significance Influences

Introduce the energy and Laplacian energy in

Akram and Naz [21] 2018 Pythagorean fuzzy sets Pythagorean fuzzy graphs and Pythagorean
fuzzy digraphs.
Rajeshwari et al. [22] 2018 Bipolar fuzzy sets Introduce Laplacian energy for a bipolar fuzzy graph.
Naz et al. [23] 2018 Bipolar fuzzy sets Introduce the concept of energy in bipolar fuzzy graph

(BFG) and bipolar fuzzy digraphs (BFDGs).

Naz et al. [28]

Introduce the concept of energy, Laplacian energy and
2018 Single-valued neutrosophic sets signless Laplacian energy in single-valued
neutrosophic graphs (SVNGs).

Broumi et al. [26]

Compute the spectrum and energy of interval-valued

2019  Interval-valued neutrosophic sets neutrosophic graph (IVNG).

Mohsin et al. [27]

Compute Laplacian energy of a complex neutrosophic

2019 Complex neutrosophic set graph in terms of its adjacency matrix.

Ramesh and Basha [24]

Solve decision-making problem by signless Laplacian
2020 Intuitionistic fuzzy sets energy of intuitionistic fuzzy graph and cosine
similarity measure.

Ramesh and Basha [25]

Solve group decision-making problem by signless

2020 Intuitionistic fuzzy sets Laplacian energy of intuitionistic fuzzy graph.

Mullai and Broumi [29]

Introduce dominating sets and dominating numbers
2020 Single-valued neutrosophic sets for energy graphs in single-valued
neutrosophic graphs.

2. Preliminaries

In this section, some concepts related to neutrosophic set and bipolar neutrosophic set
are presented. For further details, the readers are referred to [31-40].

Definition 1. [16] Let X be a universal set. The neutrosophic set (NS) A in X categorized by
membership functions T4 (x), I4(x) and F4(x) denote the true, indeterminate and false contained
in real standard and the non-standard subset of |0, 17 [, respectively, such that:

A= {(x, Ta(x), Ta(x), Fa(x))Jx € X},
There is no restriction on the sum of T(x), I4(x) and Fa(x):

“0 < supTa(x) +suply(x) + supFa(x) < 3T,
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Definition 2. [30] A bipolar neutrosophic set (BNS) A in X is defined as an object of the form:

A= {{x, (T (), I3 (%), F{ (x), T3 (x), I3 (x), F (2)))|x € X }

where T (x), I} (x),Fi(x): A= [0,1] and T, (x),I, (x),F, (x): A — [—=1,0]. The positive
membership degrees T 1, It and F denote the truth membership, indeterminate membership and
false membership. On the other hand, negative membership degrees T, , I, and F, denote the truth
membership, indeterminate membership and false membership of an element x € X to some implicit
counter-property corresponding to a bipolar neutrosophic set A.

Definition 3. [30] Let A; = (T, I, F", T, , I, Fy Yand A, = (T,5, Iy, E, T, , I, ,F, ) be
two bipolar neutrosophic numbers, then
A A A \A A - A
Loy = (1- (=15, ()Y () = (=10 = (1) = (= (1= (E) )
A A A - A \A \A
2. A= () 1-a-H) - (- =(- = ) =) = (=)
3. M+ A=(T} +Ty -1/ T, I I F S, -T, Ty ,—(—I] =1, =1, 1y ),—(=F =F, —F{ F;));
4. AMA = (T T I+ — L' B+ F —FE, (=T, -T, —T,T,), I I, —F F; );
where A > 0.

Definition 4. [30] Let Ay = (T;', I, F\, Ty, I, F; ) be a bipolar neutrosophic number. Then,
the score function s(A1), accuracy function a(Ay) and certainty function c(Aq) are defined

as follows:

L os(A)= (T +1-L'+1-F +1+T; - I; —F)/6;
2. a(A) =T —F +T —1I;

3. oA =T -F".

3. Energy of Bipolar Single-Valued Neutrosophic Graphs

In this section, we define and investigate the energy of a graph within the frameworks
of BSVNG theory and discuss its properties.

Definition 5. The adjacency matrix A(G) of a BSVNG G = (a, B) is defined as a square ma-
trix A(G) = [apg], apg = <TE (0pv9), I (0pq), Fg (0pg), Ty (vp0g), Ig (0p0g), Fy (Urﬂ’q)>

where TE (vpvy), I; (vpvq), Fg (vpq), Ty (vpv4), Iy (vpvy) and Ey (vpvy) represent the strength
of a positive relationship, the strength of a positive undecided relationship, the strength of a positive
non-relationship, the strength of a negative relationship, the strength of a negative undecided

relationship and the strength of a negative non-relationship between u, and ug, respectively.

The adjacency matrix of a BSVNG can be expressed as six matrices. The first matrix
contains the elements as positive truth-membership values; the second matrix contains
the elements as positive indeterminacy-membership values; the third matrix contains the
elements as positive falsity-membership values; the fourth matrix contains the elements
as negative truth-membership values; the fifth matrix contains the elements as negative
indeterminacy-membership values; and the sixth matrix contains the elements as negative
falsity-membership values, i.e.,

AG) = (A(Ty (0p0q) ), AL (009) ) A(FS (005) ), ATy (0500) ), A(T5 (0520) ), A (F (042) ) )-

Definition 6. The spectrum of adjacency matrix of a BSVNG A(G) is defined as (R, S, T, U, V, W),
where R, S, T, U,V and W are the sets of eigenvalues of:
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(0.3,0.4,0.1,-0.4-0.2-0.3)

ATy (op20)), A (15 (0p20) ), A (BE

A (Fﬁ_ (vpvq) ) , respectively.

(vpvq)), A (Tl;

(Upvq)>f A (IE (Upvq))f

Example 1. Consider a graph G(V, E) where V = {v1, v, 03,04, 05, V6,07 } and E = {0103, 0103,
V104, V105,010, V107, V203, V304, U405, U506, V07 } . Let G(a, B) be a BSVNG on 'V, as shown

in Figure 1, defined by Tables 2 and 3 as follows:

(0.7,0.5,0.2,-0.1,-0.3,-0.5) (0.6,0.5,0.1,-0.5,0.4,-0.3)

(0.2,04,0.6,-0.2,-0.3-0.1)

(0.2,0.5,0.3-0.2,-0.5-0.5)

Vs | (02,0.805-01-05-06) | Ve | (0.50.804-01-06-07) Ws | (0.20.7,06-02-05-05) Vs
— A _
& % S R
¢ @, 2, & a T
g Y] = » MQ_ =
9 9 2 o o ¢
— Y)-t.j '?\ ? & ’)3?‘ 1 of
= = \ﬂf (? A.‘\ %Ql A1 Py

T e b ) [\l T
i ) % o QM 0
3 -. s S
o A v
o= o, = =
= ~ —
S S

V2 (0.1,0.8,0.8-0.1,-0.6,-0.9) Vi (0.3,0.6,0.9,-0.4,-0.4,-0.8) vz

(0.5,04,0.7,-0.5,-0.2,-0.6)

Figure 1. The energy of a bipolar single-valued neutrosophic graph.

Table 2. The energy of BSVNG set on V.

(0.4,0.5,0.2-0.5,-0.3,-0.7)

o \4l Vo V3 Va V5 Ve vz
T 0.5 0.2 0.3 0.7 0.6 0.2 0.4
I 0.4 0.8 0.4 0.5 0.5 0.4 0.5
FL 0.7 0.3 0.1 0.2 0.1 0.6 0.2
Ty —0.5 —0.2 —0.4 —0.1 —0.5 —0.2 —0.5
I —0.2 —0.5 —0.2 —0.3 —0.4 —0.3 —0.3
F —0.6 —0.8 —0.3 —0.5 —0.3 —0.1 —0.7
Table 3. The energy of BSVNG relation on V.
P Viva  V1Vz  ViVqa  V1V5 ViV V1V7  VaV3  V3V4  V4Vs  V5Vp  VeV7
Tg 0.1 0.2 0.3 0.4 0.1 0.3 0.1 0.2 0.5 0.2 0.1
Ig 0.8 0.6 0.7 0.6 0.5 0.6 0.9 0.8 0.8 0.7 0.6
FE 0.8 0.9 0.8 0.7 0.9 0.9 0.5 0.5 0.4 0.6 0.7
Ty -01 -02 -01 -03 -01 -04 -01 -01 -01 —-02 -02
Iy -06 -04 -05 -06 -04 -04 -06 —-05 -06 —-05 —06
Fg -09 -07 -08 -07 -07 -08 -09 -—-06 07 —-05 05

The adjacency matrix of a BSVNG given in Figure 1 is
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0,0,0,
(oo0)
0.1,0.8,0.8,
—0.1,-0.6,—0.9
02,0.6,09,
—02,-04,-07
0.3,0.7,0.8,
—-0.1,-0.5,—0.8
04,0.6,0.7,
—0.3,-0.6,—0.7
0.1,05,0.9,
—0.1,-04,-0.7
0.3,0.6,0.9,
—04,-04,-0.8

<
<
<
<
<
<

)
)
)
)
)
)

0.1,0.8,0.8, 0.2,0.6,0.9, 0.3,0.7,0.8, 0.4,0.6,0.7, 0.1,0.5,0.9, 0.3,0.6,0.9,
—0.1,-0.6,—-0.9 -0.2,-04,-0.7 —0.1,-0.5,-0.8 -0.3,-0.6,-0.7 -0.1,-04,-0.7 —04,-04,-0.8
0,0,0, 0.1,0.9,0.5, 0,0,0, 0,0,0, 0,0,0,
(0,0,0,0,0,0)
0,0,0 -0.1,-0.6,-0.9 0,0,0 0,0,0 0,0,0
0.1,0.9,0.5, 0,0,0, 0.2,0.8,0.5, 0,0,0, 0,0,0, 0,0,0,
—0.1,-0.6,-0.9 0,0,0 —0.1,-0.5,-0.6 0,0,0 0,0,0 0,0,0
0,0,0, 0.2,0.8,0.5, 0.5,0.8,0.4, 0,0,0, 0,0,0,
(0,0,0,0,0,0)
0,0,0 —0.1,-0.5,-0.6 —0.1,-0.6,-0.7 0,0,0 0,0,0
0,0,0, 0,0,0, 0.5,0.8,0.4, 0,0,0, 0.2,0.7,0.6, 0,0,0,
0,0,0 0,0,0 -0.1,-0.6,-0.7 0,0,0 -0.2,-0.5,-0.5 0,0,0
0,0,0, 0,0,0, 0,0,0, 0.2,0.7,0.6, 0,0,0, 0.1,0.6,0.7,
0,0,0 0,0,0 0,0,0 -0.2,-0.5,-0.5 0,0,0 —0.2,-0.6,-0.5
0,0,0, 0,0,0, 0,0,0, 0,0,0, 0.1,0.6,0.7, 0,0,0,
0,0,0 0,0,0 0,0,0 0,0,0 -0.2,-0.6,-0.5 0,0,0

+
Ty

il

ApeR

(vpvy) ) JE (IE (vpvq)), E (1—",;r

The spectrum of a BSVNG G, given in Figure 1, is as follows:

Spec Tl;r (vpvq)> = {—0.6163, —0.4338, —0.1208, —0.0406, 0.1252,0.1495, 0.9369} .

Spec ;(vpvq ) = {—1.4555, —1.1839, —0.7335, —0.3342, 0.4205, 0.9179, 2.3687 } .
Spec E(vpvq = {—1.6620, —0.9839, —0.6946, —0.1998, 0.2355, 0.7439, 2.5609 } .
Spec TE (vpvq = {—0.7265, —0.1609, —0.0509, 0.0476,0.1242,0.1464, 0.6202}.
Spec I;; Uy ) {—1.7702, —0.7044, —0.3299, 0.2795, 0.5615, 0.9685,0.9950 } .
Spec F_ v,,v,,)) = {—2.5122, -0.8107, —0.4128,0.3321,0.7283, 1.1356, 1.5398 }.
Therefore,
(—0.6163, —1.4555, —1.6620, —0.7265, —1.7702, —2.5122),
(—0.4338, —1.1839, —0.9839, —0.1609, —0.7044, —0.8107),
B (—0.1208, —0.7335, —0.6946, —0.0509, —0.3299, —0.4128),
pec(G) = (—0.0406, —0.3342, —0.1998, 0.0476, 0.2795, 0.3321),

(0.1252,0.4205,0.2355,0.1242,0.5615,0.7283),
(0.1495,0.9179,0.7439, 0.1464, 0.9685, 1.1356),
(0.9369, 2.3687,2.5609, 0.6202,0.9950, 1.5398)

Definition 7. The energy of a BSVNG G (a, B) is defined as
T

(Upvq))rE( B (Upvq))fE(Iﬁ (Upvq))rE(F/;
X 'él [l

Ypew

(Upvq))>

dpes rpeT wpel Zpev

Definition 8. Two BSVNG with the same number of vertices and the same energy are called equienergetic.

Theorem 1. Let G(a, B) be a BSVNG and A(G) be its adjacency matrix. If Ay > Ay > ... >
An,61 2022 ... 20,71 2722 o 2 Y, W1 2 W2 2 .. 2wy, 81 > Go > = Gpand
P > Pp > ... > Py, are the eigenvalues of

A(T+ (z;pvq)),A (Ig (Upvq)), A (Fg (Upvq)), A(

: Ts
respectively.

(Urﬂ’q))/A(lﬁ_ (Z’p”q))rA(Fﬁ_ (Z’rﬂ’q))f



Axioms 2021, 10, 172 7 of 35

Then,
n n n n n n
L. Y Ap=0Y6=0) 7,=0Y wp=0) & =0and ) ¢, =0.
p=1 p=1 p=1 p=1 p=1 p=1
Ap€R op€eS €T wp€eU CpeV PpeW
n 2 n 2 n
— 2 _ 2 _
2. ¥ M2=2 ¥ (Ti(mm)), Lo2=2 ¥ (o), Er?=2 ¥
p=1 1<p<g<n p=1 1<p<g<n p=1 1<p<g<n
ApeR dpeR TpER
2 n 2 n 2
— — 2 _ -
(Fg’(vpvq)> ;L wpr=2 % (Tﬁ (vpvq)) , L &r=2 ¥ (Iﬁ (vpvq)) and
p=1 1<p<g<n p=1 1<p<g<n
wp€R fpeR
n
Z ll]p = 0.
p=1
PpeR
Proof.

1. Since A(G) is a symmetric matrix with zero traces, its eigenvalues are real with a sum
equal to zero.
2. By trace properties of a matrix, we have

(415 0mn)))7) = 1 42

n 2
Hence, 21 /\pz =2 Y (TE (vpvq)> . Similarly, we can show that

p= 1<p<q<n
Ap€R
n 5 i 2 n 5 X 2 n 5 _ 2
Lo =2 L (1,5 (Upvq)) P LWt =2 L (Fﬁ (vzﬂ’q)) P L owpt =2 % (T/S (vp”q)) :
p=1 1<p<q<n p=1 1<p<q<n p=1 1<p<q<n
SpeR TpeR wp€eR
n 5 _ 2 n 5 _ 2
p=1 1<p<q<n p=1 1<p<q<n
GpeR YpeR
O
Example 2. Consider a BSVNG G(a, B) on V = {vy,v,v3, 04,5, 06, 07} as shown in Figure 1.
Then

E(T; (0p0g) ) = 24231, E(If (0p0) ) = 74142, E(F{ (050,) ) = 7.0806,E(T; (0,05) ) = 1.8767,
E(1; (vp0y) ) =5.609, E(Fy (050,) ) =7.4715.

Therefore, E (é) = (2.4231,7.4142,7.0806,1.8767,5.6090, 7.4715). Also, we have

7
Z Ap = —0.6163 — 0.4338 — 0.1208 — 0.0406 + 0.1252 + 0.1495 + 0.9369 = 0,

p=1
Ap€R
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7
Y. 6p = —1.4555 — 1.1839 — 0.7335 — 0.3342 + 0.4205 + 0.9179 + 2.3687 = 0,

p=1
épes

7
Y 7vp = —1.6620 — 0.9839 — 0.6946 — 0.1998 + 0.2355 + 0.7439 + 2.5609 = 0,
p=1

7PET
7
Y. wp = —0.7265 — 0.1609 — 0.0509 + 0.0476 + 0.1242 + 0.1464 + 0.6202 = 0,
-1 4
byt
7
Y. & = —1.7702 — 0.7044 — 0.3299 + 0.2795 + 0.5615 + 0.9685 + 0.9950 = 0,
=1
bev
7
Y p = —2.5122 — 0.8107 — 0.4128 + 0.3321 + 0.7283 + 1.1356 + 1.5398 = 0.
=1
bW
7 2
£ A2 =15000 =2(07500) =2 ¥ (T (0pv5))
p=1 4 1<p<q<7
Ap€R
7 ’ L 2
¥ 02 =107999 =2(5399) =2 ¥ (If (v,2,)),
p=1 1<p<q<7
OpeS
7 2
92 =114197 =2(5709) =2 ¥ (E; (09;))",
p=1 ? 1<p<q<7
vpeT
T w? —0.9800 = 2(0.4900) =2 ¥ (75 ( ))2
w” =U. - . = Up0 7
p=1 P 1<p<q<7 pATP
wpeU
7 2
3 &2 =60600=2(30300) =2 ¥ (17 (v,2,)),
gzé 1<p<q<7
pE
7 2
L 92 =114401 =2(57200) =2 ¥ (5 (0509))
p=1 " 1<p<q<7
YpeW

We now give upper and lower bounds of energy of a BSVNG G in terms of the number
of vertices and the sum of squares of positive truth-membership, positive indeterminacy-
membership, positive falsity-membership, negative truth-membership values, negative
indeterminacy-membership values, and negative falsity-membership values of the edges.

Theorem 2. Let G(«, B) bea BSVNG on n vertices with an adjacency matrix A(G) = <A (Tﬁ+ (vpvy) ) ,
A (I; (vpvq)), A (FE (vpvq)>, A (Tﬁ_ (vpvq)>, A (Iﬁ_ (vpvq)>, A (Fﬁ_ (vpvq)) > Then

i \/2 y (Tg(vl,vq))z—kn(n—l)‘TE ; < E(Tg(vpvq)> < \/211 v (Tg(vpvq))z

1< 1<
i, \/zlgpggn(fg (opoq))” +nln —1)|1f "< (1 (o) < \/2nlgp§q§n(lg (0py))”
i, \/21<p§q<n (Ef (0p2g))” + = 1) " < E(F) (oyoy)) < \/2n1<p§q<n(Fg (opo))”
iv, \/21<p§q<n<Tﬂ (ep2n)) + nln = 1|15 |* < E(T5 (op00) ) < \/anp%q(Tﬁ (op2))’
v. \/21<p§q<n<lﬁ (wp0)) "+ nln = D|15 | < E(15 (0,09)) < \/2”1<p§q<n(1ﬁ (or0))’
vi. \/21<p§q<n (E5 (op2g) )+l — 1)[F; <k (F5 (op2y)) < ¢2n1<p§q<n(}?ﬁ (0p29))
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where ‘Tg i l;r FE Ty | 1Ig ’ and |F ’ ’are the determinant ofA( 5 (vpvq))A(Iﬁ+ (vpvq)),
A(F

E(vpvq)),A(Tl; (vpvq)),A(Iﬁ (vpvq)) and A(Fﬁ (vpvq)),respectively.

Proof.
i.  Upper bound:

7 7 7

Apply Cauchy-Schwarz inequality to the vectors (1,1,...,1) and (|A1], |A2], ..., |Axn])
with n entries, then

M

n n
Ll < i Sl

(ZA) Bz T o

1<p<q<n
By comparing the coefficients of A2 in the characteristic polynomial

n

[1(v— ) = |A(C) -

p=1

we obtain

Y. MM=— ) (TE(W%))Z- ®)

1<p<q<n 1<p<g<n

Substituting (3) in (2), we obtain

Z|/\P| =2 ) (T,;(Upvq))2~ 4)

1<p<q<n

Meanwhile, substituting (4) in (1), we obtain

Z|Apf<f Y (T m) = 20 T (T (o))

1<p<g<n 1<p<q<n

Therefore,

ii. Lower bound:

SEE )
=2 L (TE(vpvq)) + 2L AM{[ApA ).

E(Ti (o)) = 2 X (T (opwg) )+ nln — 1)GM{ A5,

1<p<q<n
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Also, since

_2 _2

n(n—1) n 1 n(n—1)
am(oal) = (11 o) = ((fiaar)
_ A T n
(Ply p|> ‘ f

E(T; (op,)) sz y (Tg(vpvq))ern(n—l)‘Tg

7

then,

2
n

1<p<q<n

Thus,

2
n

\lz > (1 (vpvq)>2 +n(n—1)|1]

1<p<q<n

§E<Tﬁ+ (vpvq)) < \/Zn Z (T;(Upvq)>2'

Similarly, we can show that

2

; < E(I; (vpvq)) < \/Zn Y (Iﬁ+ (vpvq)) ,

1<p<q<n 1<p<q<n

) )< nggq(pg (or0))
Ty (vpvq))z +n(n— 1)‘Tl; ﬁ < E(T* (Upvq)) < \/Zn Y (T/; (vpvq))z,

\/2 (1 (vpvq))2 +n(n—1)|1f

1<p<g<n )2 +n(n—1) ’Il; : = E(I* (Upv’i)) = \/2n1<p§q<n(1ﬁ (Upvq)>2,
\/21§p§q<n Fg (WW))Z +n(n— 1)’1:[; » < E(F/g (Upvq)) < \/2n1§p§q§n<1:ﬁ (Upvq))2.

Example 3. (Illustration to Theorem 2) For the BSVNG G, given in Figure 1, E (Tﬁ+ (Upvq)> =
2.4231, lower bound = 1.8670 and upper bound = 3.2400, therefore, 1.8670 < 2.4231 < 3.2400.

E (Ig (v,,v,,)) = 7.4142, lower bound = 6.5423 and upper bound = 8.6940, therefore, 6.5423 <
7.4142 < 8.6940. E(Fl;r (vpvq)) = 7.0806, lower bound = 5.7693 and upper bound = 8.9408,
therefore, 5.7693 < 7.0806 < 8.9408. E (Tl; (Upl)q)) = 1.8767, lower bound = 0.9899 and upper
bound = 2.6192, therefore, 0.9899 < 1.8767 < 2.6192. E (I* (vpvq)> = 5.6090, lower bound =

B

2.4664 and upper bound = 6.5131, therefore, 2.4664 < 5.6090 < 6.5131. E (FI; (vpvq)) = 7.4715,

lower bound = 3.4926 and upper bound = 8.9487, therefore, 3.4926 < 7.4715 < 8.9487.
4. Laplacian Energy of Bipolar Single-Valued Neutrosophic Graphs (BSVNG)

Definition 9. Let G(a, B) be a BSVNG on n vertices. Then, the degree matrix
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+
Ty

(Z’pvq))IDOE (vpvq))fD(FEr (vpvq)>fD(TE (Z’qu)>rD(15_ (Upvq)>rD<FE (Z’pvq))>

of G(a, B) is a n x n diagonal matrix defined as:

dpq _ {dG(UP> ifp=4q

0 otherwise.

Definition 10. The Laplacian matrix of a BSVNG G(a, B) is defined as:

L(G) = (LT (v,,vq))), L(1 (0p09) ) L(BS (09) ) L(T5 (2p2q) ) L (15 (2p2q) ) L (F5 (22g) ) )

D(G) - A(G

7

where D(G) is a degree matrix of a BSVNG and A(G) is an adjacency matrix.

Definition 11. The spectrum of the Laplacian matrix of a BSVNG L(G) is defined as:
(Rr, S, Tr, Ur, Vi, Wi ), where Ry, Sp, Tr, U, Vi, and Wy, are the sets of Laplacian eigenvalues of

L(Tg' (vpvq)>,L(I[;Ir (vpvq)),L(Pg (vpvq)),L(Tﬂ_(vpvq)),L(Iﬁ_(vpvq)) andL(Fﬁ_ (vpvq)),
respectively.

Example 4. Consider a BSVNG G = (a, B) ofagraph G(V, E), where V = {vy,v3,v3, 04, Us, V6, U7 }
and E = {010y, 0106, V107, U2U3, V207, V304, U307, V4Us, U4V7, U5V, UsU7, VeU7 }, as shown in

Figure 2, defined by Tables 4 and 5 as follows:

Table 4. Laplacian energy of BSVNG set on V.

x A1 %) V3 A A% Ve vy
T 0.3 0.2 0.4 0.2 0.1 0.4 0.5
I 0.6 0.7 0.8 0.5 0.5 0.3 0.5
Ff 0.4 0.6 0.3 0.7 0.8 0.5 0.8
Ty —-0.3 —04 —0.2 -0.5 —-0.1 -0.2 —0.6
I, -0.5 —0.6 —04 -0.2 -0.5 —-04 —-0.7
Fy —-0.8 —-0.7 —-0.6 —-04 -0.6 -0.5 -0.9

Table 5. Laplacian energy of BSVNG relation on V.

p Viv2  ViVe V1Vyz VpV3  VaVy  V3Vqy  V3V7  V4V5  VyuVy  V5Ve  V5V7  VeVy
Tg 0.1 0.2 0.2 0.1 0.2 0.1 0.3 0.1 0.2 0.1 0.1 0.4

I%‘ 0.8 0.7 0.7 0.9 0.8 0.9 0.8 0.6 0.7 0.5 0.7 0.6
Fg 0.6 0.8 0.9 0.7 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8
Tg -02 -01 -02 -02 -04 -02 -02 -01 -03 -01 -01 -02

Ig -07 -09 -08 —-06 -07 -05 -08 —-06 -—-08 -—-06 -—-08 —08

FB -09 -08 -09 -07 -09 -06 -09 -07 -09 -—-06 -—-09 -09
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0,0,0
<0, 0,0>
0.1,0.8,0.6,
<70.2, -07, 70.9>
0,0,0
<0, 0,0>
oo ()
0,0,0
<0, 0,0>
02,0.7,0.,
<70.1, —09, 70.8>
02,0.7,0.9,
<70.2, -058, 70.9>
05,22,2.3
<70.5, —24, 72.6>

<0,0,0>
0,0,0

<

(

(

(

(0.3,0.6,0.4,-0.3,-0.5,-0.8) (0.2,0.7,0.6,-0.4,-0.6,-0.7) (0.4,0.8,0.3-02,-0.4,-0.6)

Vi (0.1,0.8,0.6,-0.2,-0.7,-0.9) Vi (0.1,0.9,0.7,-0.2,-0.6,-0.7) | Wa
05 29
_ 2z, (0.2,0.8,0.9,-0.4,-0.7,-0.9) A AL
) & <0 o I/Q\_ =l 3
T S 5 0B T
= <9 o )
T 2 7
= of
7 Vo ?
o5 0.5,0.5,0.8,-0.6,-0.7.-0.9) &5
=1 =]
B 9 @ o
=] A -2
& Q2 %204 =
e 3> 0.1,0.7,0.9-.1,-0.8-0.9 <3 S
B ( a Ll e S LT T ) \Q.;',’ .
Ju
Vs (0.1,0.5,0.8,~0.1,0.6,-0.6) Vs (0.1,0.6,0.8,-0.1,-0.6,-0.7) Vs
(0.4,0.3,0.5,-0.2,-0.4,-0.5) (0.1,0.5,0.8,-0.1,-0.5,-0.6) (0.2,0.5,0.7,-0.5,-0.2,-0.4)

Figure 2. Laplacian energy a of bipolar single-valued neutrosophic graph.

The adjacency, degree and the Laplacian matrices of the BSVNG shown in Figure 2
are given as follows:

0.1,0.8,0.6, 0,0,0 0,0,0 0,0,0 02,0.7,0.8, 02,0.7,0.9,
~0.2,-07, 70.9> <0, 0, 0> <o, o,o> <0, 0,0> <70.1, —09, 70.8> < 02,-0.8, —0. 9>
0,0,0 0.1,0.9,0.7, 0,0,0 0,0,0 0,0,0 02,0.8,0.9,
<o,o,o> <7o.2, 70.6,70.7> <0,0,0> <o,o,o> <0,0,0> < 04,-0.7, 09>
0.1,0.9,0.7, 0,0,0 0.1,09,0.8, 0,0,0 0,0,0 0.3,0.8,0.9,
02,-0.6, 70.7> <0, 0, 0> <70.2, —05, 70.6> <0, 0,0> <0, 0,0> < 0.2,-0.8,—0. 9>
0,0,0 0.1,0.9,0.8, 0,0,0 0.1,0.6,0.8, 0,0,0 02,0.7,0.9,
<o,0,o> <70.2, 70.5,70.6> <0,o,0> <7O.1,70.6,70.7> <0,0,0> < 03,-0.8, 09>
0,0,0 0,0,0 0.1,0.6,0.8, 0,0,0 0.1,0.5,0.8, 0.1,0.7,0.9,
<o,0,o> <0,o,0> <—O.1,—0.6,—0.7> <0,o,0> <—0.1,—0.6, —O.6> < 0.1,-0.8, 09>
0,0,0 0,0,0 0,0,0 0.1,05,0., 0,0,0 0.4,0.6,0.8,
<o,o,o> <0,o,0> <o,o,o> <7O.1,—0.6,70.6> <0,0,0> < 02,-0.8, 09>
02,0.8,0.9, 0.3,0.8,0.9, 02,0.7,0.9, 0.1,0.7,0.9, 0.4,0.6,0.8, 0,0,0
04,-0.7, 70.9> <7o.2, —038, 70.9> <70.3, —038, 70.9> <70.1, -038, 70.9> <7o.2, -038, 70.9> <o, 0,o>
0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
<o,0,0> <0,o,0> <o,o,o> <o,0,o> <o,0,o> <o,o,o>
04,2.5,2.2 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
0.3, 72.0,72.5> <0,o,0> <0,o,0> <0,0,0> <0,0,0> <o,o,o>
0,0,0 05,2.6,2.4 0,0,0 0,0,0 0,0,0 0,0,0
<0,0,0> <70.6, -19, 72.2> <0,0,0 <0, 0,0> <0, 0,0> <o,0,o>
0,0,0 0,0,0 04,22,25 0,0,0 0,0,0 0,0,0
<o,o,o> <0,0,0> <70.6, ~19, 72.2> <o, 0,0 <o, 0,0> <0,0,o>
0,0,0 0,0,0 0,0,0 03,1.8,25 0,0,0 0,0,0
<o,0,o> <0,0,0> <0,o,0> <—0.3, -20, —242> <0, 0,0 <o,0,o>
0,0,0 0,0,0 0,0,0 0,0,0 0.7,1.8,2.4 0,0,0
<o,o,0> <0,o,0> <o, o,0> <0, 0,0> <7o.4, —23, 72.3> <o,0,o>
0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 14,4.3,5.3,
<o,o,o> <0,0,0> <0,o,0> <o, o,0> <o, 0,0> <71.4, —47, 75.4>
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05,22,23 —0.1,-0.8,—0.6, 0,0,0 0,0,0 0,0,0 —02,-0.7,-0.8, 0.2,-0.7,-09,
<7o.5, —24, 72.6> < 0.2,0.7,0.9 > <o, o,o> <o, 0,o> <o, 0, o> < 0.1,09,0.8 > < 0.2,0.8,09 >
—0.1,-0.8, 0.6, 0.4,25,22 —-0.1,-0.9,-0.7, 0,0,0 0,0,0 0,0,0 0.2,-0.8,-09,
< 0.2,0.7,09 > <70.s, —-20, 72.5> < 0.2,0.6,0.7 > <0, 0,0> <o, 0,o> <0, 0, 0> < 0.4,0.7,0.9 >

0,0,0 —0.1,-0.9,-0.7, 0.5,2.6,2.4 —0.1,-0.9,—0.38, 0,0,0 0,0,0 —0.3,-0.8,—0.9,
<0, 0,0> < 0.2,0.6,0.7 > <7O.6, -19, 72.z> < 0.2,05,0.6 > <o 0, o> <0, 0,0> < 0.2,0.8,09 >
L(©) = <o,0,o> <0,0,0> <—0A1,—0.9,—0.8,> < 04,22,2.5 > < —0.1,-0.6, 08> <0,0,0> < 02,—0.7,—09>
0,0,0 0,0,0 0.2,05,0.6 —0.6,—1.9,-22 0.1,0.6,0.7 0,0,0 0.3,0.8,09
0,0,0 0,0,0 0,0,0 —0.1,-0.6, —0.8, 03,1.8,25 —0.1,-0.5,—0.8, —0.1,-0.7,—-0.9,
<o,0,o> <0,o,o> <0,o,0> < 0.1,0.6,0.7 > < 0.3,-2.0,-2. 2> < 0.1,0.6,0.6 > < 0.1,0.8,09 >
—02,-0.7,-0.8, 0,0,0 0,0,0 0,0,0 0.1,-0.5,—-0.8, 0.7,1.8,2.4 0.4,—0.6,—0.8,
< 0.1,09,0.8 > <0, 0, 0> <o, o,o> <o, 0,o> < 0.1,0.6,0.6 > <7o.4, —23, 72.3> < 0.2,0.8,09 >
—-02,-0.7,-09, —02,-0.8,-09, —03,-0.8,—-0.9, —02,-0.7,-0.9, —0.1,-0.7,-0.9, —04,-0.6,—-0.8, 1.4,43,53,
< 0.2,0.8,0.9 > < 0.4,0.7,0.9 > < 0.2,0.8,09 > < 0.3,0.8,0.9 > < 0.1,0.8,0.9 > < 0.2,0.8,0.9 > < 1.4, —4.7,-5. 4>

The Laplacian spectrum of a BSVNG G, given in Figure 2 is as follows:

Laplacian Spec( Tg (vpvq)) = {—0.5438, —0.2286, —0.1241, —0.00737,0.0889, 0.1449, 0.7364 };
Laplacian Spec ;(v,,vq = {—1.5403, —1.1802, —0.7856, —0.5981, 0.6368, 0.7856, 2.6779};
Laplacian Spec ;(

Laplacian Spec(Tg (vpvy) ) = {—0.7907, —0.1534, —0.1218,0.1157,0.1516, 0.2558, 0.5428};

= {—2.6887,—0.7102, —0.5976,0.5962, 0.6587,1.3399, 1.4016 };
= {—3.0418, —0.8027, —0.6307, 0.6283,0.7733, 1.4673,1.6062 } .

VpUy g = {—1.5746, —1.4898, —0.8029, —0.6783, 0.6928, 0.8096, 3.0432};
Laplacian Spec Iﬁ UpUg )

Laplacian Spec Ff; V)
Therefore,

(—0.5438, —1.5403, —1.5746, —0.7907, —2.6887, —3.0418),
(—0.2286, —1.1802, —1.4898, —0.1534, —0.7102, —0.8027),
(—0.1241, —0.7856, —0.8029, —0.1218, —0.5976, —0.6307),
Laplacian Spec (é) = (—0.0737, —0.5981, —0.6783,0.1157,0.5962, 0.6283),
(0.0889,0.6368,0.6928,0.1516,0.6587,0.7733),
(0.1449,0.7856,0.8096, 0.2558, 1.3399, 1.4673),
(0.7364,2.6779,3.0432,0.5428, 1.4016, 1.6062)

Theorem 3. Let G = (a, B) be a BSVNG and let

L(G) = <L(TE (vpvq)),L(I; (vpvq)),L(Fg (v,,vq)),L(Tﬁ_ (vpvq)),L( (vpvy ) ( (vpvy )>
>

be the Laplacian matrix of G . If ¢1 > ¢o > ... > ¢, {1 > o >l p1 > o >
S P U1 M2 D Uy, @ > @y > ... > @n,and oy > 0p > ... > 0y are

;i;e eigenvalues of L (TB+ (vpvy) ) ,L (Il;r (vpvy) ) ,L (FE (vp4)), ( ) ( (vpvg )
and L (Fl; (vpvq)>, respectively, then,

n n n
LY ¢ = 2 ¥ Ti(ow), L& = 2 L If(vo), oo
pr=1 1<p<q<n p=1 1<p<q<n p=1
PpER] {pest PpeTL

+ ; - -
=2 Y F(ww), L =2 Y Tg(opm), 2 @ =2 Y I (0pvg)
1<p<q<n p=1 1<p<q<n = 1<p<q<n
upelr, copeVL
n
<p<q<n

TpeEW,
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2 Lgt=2 ¥ (T+(Z’qu))2+ LA (), L gt=2 % (1 (Upvq))2
= 1<p<gq<n p p=1 Tﬁ (p2q) = 1<p<q<n p
‘PPERL gPESL
n n _ i 2 n n )
+p§1d1;(v v )(Up)f E ¢ *zlgpgqq(ﬁs (Uiﬂ’q)> + Eldﬁ(v 0 )(v,,), g pp® =
epely, upelp
n 2 n
2 T + 2. , @,2 =2 I; +
e @)+ D ) @2 B (0] + 1
@p €V,
2 Lo 9 - R 72
dlg(qu)(vr’) and pgl Op :21<p§q<n(Pﬁ (vpvq)> +p§l Pg(vpvq)(vp)‘
JPEWL
Proof.

1. Since L(G) is a symmetric matrix with non-negative Laplacian eigenvalues, we have

Z ¢p = tr(L Z dT*(vpvq)(Up) =2 ) T,B (0pq)-
1<p<q<n
47p€RL

Similarly, it is easy to show that

i p=2_ ¥ I;(Uzﬂ’q)/ i pp=2 ¥ F,;r(vpvq)f il bp=2 ¥ T,;(UPULI)'

p=1 1<p<q<n p=1 1<p<q<n p= 1<p<q<n
ngSL zppeTL ypeuL
n n
Y @op=2 Y I (vpvg) and Y, 0 =2 ¥ Fg (vpvg)-
p=1 1<p<g<n p=1 1<p<g<n
@peVy apeW,

2. By definition of the Laplacian matrix, we have

dTE(ipvq)(Ul) —Tg (0102) - *Tﬁi(z’lvn)
—T3 (vpv1)  dp+ (v1) -+ —Tg (vavn)
B Ty (vpvy) B
L(TE (vpvq)) = ’ ' :
—Tg(vnvl) _T/;F(UWUZ) T dTg(vpvq)(v")

By trace properties of a matrix, we have

tr((L(T; (vpvq>))2)

I
g
=
=
\)\J

p=1
(PpERL
where
2
tr<(L(Tﬁ+(0pvq))) ) = (dzTg(vpvq)( 1)+ Tg(vlvz)z +...+ Tﬁ*(vlvn)z)
(Tg(vzm) Tg'(vpvq)(02> +...4 Tg(vzvnf)

2, ot
+...+ (Tﬁ*(vnvl) +Tg (va02)? + . +dT+(0pvq)(vn)>

=2 ¥ (T/;(vpvq)) + sz+M)(v,,).

1<p<g<n
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Therefore,

n

2
=2 TS (vpvg) ) + Y d2 Up).
Yot =2 T (Tem) 4 L 0
¢p€RL

Similarly, we can show that

n 2 n n
p§1 =2 ¥ (IE (Upvq)) +p§1 d%g(vpvq)(vp)’ p§1 Pp*=2 ¥ (FE (Urﬂ’q)> + Z dp+ vpvq)(vp)/

1<p<gq<n 1<p<q<n
tpesy, PpeTy
Somt=2 L (Tiom) v ER (), £ of=2 T (o)) + L (o)
= N 0yp0 _ 0 , « e ( - 0,0 ) - v ,
= Hp 1<pZo<n B \“P% p=1 T (0p20) p = p 1<p=g<n g \9pY% o= 1y () p
rpeUL @peVy
4% gr=2 ¥ (Fmey)) + L2 (o)
an 0yt = Y + - Up).
p=1 P 1<p<g<n pATFTE p=1 F/S (vpvg)
opeW,
O

Definition 12. The Laplacian energy of a BSVNG G(a, B) is defined as

LE(G) = (LE(T{ (op2y) ), LE (1 (050q) ), LE(FS (0,04) ), LE(T; (0p04) ), LE (15 (2p2y) ), LE(F5 (o) ) )

where
2 TS 2 I+ 5 r+
= 1sp§an p (o) _ 1§P§q§n p (o) B 1§P§ﬁlﬁn 5 (opv9)
Gp=¢p——— =l ——— =P —
2 T, 2 I > -
v, = 15”25“ p Crme) — 1Sp§q§n p (o) _ 1SP§£]Sn 5 (op00)
p=pHp— =@, ey =0,

Theorem 4. Let G = (, B) bea BSVNG and let L(G) be the Laplacian matrix of G . If ¢y > 4)2
2P, 012002 201 92> > P > U2 2y, D] > @ > >

@y, and o1 > 05 > ... > 0y are the eigenvalues ofL(Tl;r (v,l,vq)),L(Il3 (v,[,vq)>,L<Fl3 vy )
L(Tﬁ_ (vw,,)),L(Iﬁ_ (vpvq)) and L(Fﬁ_ (vpvq)>, respectively, and

2 T (vyo, 2 IF (v,o, 2 Ff (vpo
B 19%9‘5(’"'7) B K}qun/s(r’q) B 1§p§q§nﬁ(l”4)
= =y = —
2 T, (vyv 2 I, (vyo 2 F, (vyv
o _ 1§p)<:q§n;s(rfq) B 1§p§qgn5(”‘7) B K}qu”ﬁ(pq)
p=hpm— G m Oy — ey =y —

Then,

n
29,_0 zr,,fo,z v, =0, 2191,*0 zgpfo zs,,fo
; p=1 p=1 p=1 P p=1 p=1
gg%:20}',§ Tp:20+,§ vp:zw,; &,%,zzﬂT,g gf,:znl,;spzzog,
p=1 p=1 p=1 p=1 p=1 p=1
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where
o = 1<P§‘1<" (T’g (vpvq))z i %pél A1t (0,0,) (V) 21929”% vpvq)) ,
2
o = 1<p§q<n (Iﬁ (v,,w))z * épil Ig(vpvq)( r) 21<p§q<nf(vpvq)> ’
2
OF = 1<P§q<n (F (vpvq))z + zpil dFE(vpvq)(UP> 21<p§q<n;§(0pm) ’
- 2
e 1<P§q<n (Tﬁ_ (vpvq))2 i %pi:l TE(vpvq)(vP) - ZISEqsnnTﬁ (Upvq)) ,
- 2
o 1<p§‘7<n <I/5 (vpvq)>2 + %pé 15 (op0) (%) 219%9"1& wjvq)) ,
- 2
O = 1<P§q<n (Fl; (Upvq)>2 + %pé dF;S_(UpUq)( P) ZK;E[’SH? (Upvq)) .

Proof. The proof is similar to that of Theorem 1. [J

Example 5. Consider a BSVNG, G = («,B) on V. = {v1,vp,03,04,0s5,06,07}, as shown in
Figure 2. Then,

LE(T (vpvg) ) = 1.9404, LE( I (005) ) = 82045, LE(F{ (0p0) ) = 9.0912,
LE( Ty (0pvg) ) = 21318, LE( I (0pv4) ) = 7.9929, LE( Fy (0p0,) ) = 8.9503.

Therefore, LE (é) = (1.9404, 8.2045,9.0912,2.1318,7.9929, 8.9503). We also have

7
Y ¢p = —0.5438 — 0.2286 — 0.1241 — 0.0737 + 0.0889 + 0.1449 + 0.7364 = 0

p=1

il Ty = —1.5403 — 1.1802 — 0.7856 — 0.5981 + 0.6368 + 0.7856 + 2.6779 = 0
p=

il vy = —1.5746 — 1.4898 — 0.8029 — 0.6783 + 0.6928 + 0.8096 + 3.0432 = 0
p=

{‘,1 ¢y = —0.7907 — 0.1534 — 0.1218 + 0.1157 + 0.1516 + 0.2558 + 0.5428 = 0
p=

£1 ¢p = —2.6887 — 0.7102 — 0.5976 + 0.5962 + 0.6587 + 1.3399 + 1.4016 = 0
p=

7
Y. &y = —3.0418 — 0.8027 — 0.6307 +- 0.6283 +- 0.7733 + 1.4673 + 1.6062 = 0

p=1
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£1 ¢p = 093999 = 2(0.4699) = 2007
p:

fl T, = 12,9341 = 2(6.46705) = 20}
p:

fl v, = 16.2000 = 2(8.1000) = 200}
p:

fl 8, = 1.0600 = 2(0.5300) = 20
p:

fl &p = 12.6398 = 2(6.3199) = 20);
p:

fls,, — 16.0203 = 2(8.0102) = 200
p:

Theorem 5. Let G = («, B) be a BSVNG on n vertices and let

L(G) = (LT (0p00) ), L(1F (0p20) ), L(EF (0520) ), L(T5 (0p09) ) L (15 (0p9) ) L(E5 (0p99) ) )

be the Laplacian matrix of G . Then

> 2 £ 1f (o))’
i LE (TE (Uzﬂ’q)) < 2”1§p<q§n (TE (Z’rﬂ’q)) +n E (dTg(v,,v,,)(vp> - w%n) ;
ii. LE(IF (0p0) ) < m T (1 (op2) +né (dlg oy W)i
iii. LE (1—"/3+ (vpvq)) < 2nl<p<q§n (F[3 (vpvq +né (dF vpvq 21<,,<q<n:ﬁ (vpvq))zl
iv. LE (T!; (vpvq)) < 2n1<p<q§n (T/5 (vpvq +né (de3 vpvq 21<p<q<n:ﬁ (v,,vq)) ,

_ _ l<p§q<nlﬁ(”zﬂvq) ?
v LE(Iy (o)) < 21 2 (15 (o)) ¢ E I oy (09) = = |

1<p<q<n
2
2 L Fy(opvg)
Vi LE(F/; (v,,vq)) = znlﬁpgqﬁn (Ff; (Upvq)) +n E ( Upvq)(vp) - l<}<q<n> .

Proof. We apply Cauchy-Schwarz inequality to the vectors (1,1,...,1) and (|g1|, [¢2],-- -, |n])
with 7 entries, which yields

n n 2
E ep| <vm, | X gyl
p=1 p=1

LE(Tg(vr,vq)) < \/ﬁ\/ZQi: \/2nQF.
Since

2 ¥ Ty (op0)

1<p<q<n
Or= ). (TE(Z’PW> T3 2 dr (opoq) (Op) = "
1<p<q<n
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therefore,

LE(Tf (p00)) < |20 X (T (o)) 403 [ dpeogen (00)

1<p<g<n p=

Similarly, we can show that

2 n 2L I (vpvq) 2
LE(Ig(vpvq)) < |l ¥ (Ig(vpvq)) o L e k.

LE(T, < |2
( P (Upvq)) N nl<p<q§n( p=1 B
2 ¥ g (opv)
_ 2 L 1<p<q<n P
LE (Iﬁ (Upvq)) = znlgp);qgn(lﬁ (Upvq)) T gl dIE(vﬁvtﬂ( p) = n ) !
— 2 L zlgpgqgnpﬁ_(vpvq)
LE(Fy (vp0,)) < 2”1<,Eq§n(F (0py) ) 1% | B 0, (%) ;

Theorem 6. Let G = («, B) be a BSVNG on n vertices and let

L(G) = (LT (0p00) ), L (1 (0p20) ), L(Ef (0520) ), L(Ty (0p09) ) L (15 (0p9) ) L(E5 (0409) ) )

be the Laplacian matrix of G. Then

) 2 n 2 L. T (vpvq)
L. LE (TE (vpvq)) > 2 L (T§ (Upvq)) +3 % (dT+(vpvq)<vP) - LKLT ;

p=1
2
2 L 2 <p<q<n s (op21)
(Tﬁ Upvq)) + ngl (dTﬁ('upvq)( P) I n ’

_.
<
h
™
—
m’*]
—
<
<
Q
-
SN—
~—
Vv
N
_
—_
L
™ é ™
A
=

2
2 n 2 §<ﬂ I (vpvq)
(15 (@pog) ) +1 & (dlw (o) — == |

Nj—=

1<p<qg<n p=

- 2
. _ B 2 n 21<p§q<n Fg (vpvg)
V1. LE(F/S (Upvq)) 22| L (Fﬁ (Urﬂ’q)) T2l Ap=(o,0)(0p) = — 5 —— | -
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Proof. We have

2
(z w) Elol 2 5 el > 408
p=1 pP=

<p<q§n
LE(Tg 0p0) ) > 2,/0F.
Since
2
) ) . 21<p§q<n Ty (vpvq)
OFf = T (v,0 + = - ’
T 1<p<zqgn B (op q)) P;l Tg(v,,vq)( ) n
therefore,
2 L. Ty (vpy)
<p<gsn
LE<TE(0PU‘7)) =2 2 (TE_ Up0q ) ) Z T+ (vp0q) ( p) —
1<p<q<n "

Similarly, it is easy to show that

+ + 2 1 u 21<p§q<”1g(vpvq)
LE (I/S (vpvq)) 22 L (I/s (vpvq)) +32 L dlg(vpvq)@p) -,

\ 1<p<q<n

2 n 21<p<q<n Ty (vpvq)
LE<T,3 (%%)) =2 1<p<q§n<Tﬁ (Upvq)) + 2p§1 75 (opoy) (09) 0 :
2 I (v 0, )
- 2 1 1 1<p<q<n B P
LE(Iﬁ (U;ﬂ’q)) =2 1<p§q§n(lﬁ (Upz’q)) + Epgl 15 (op00) () = 0 :
2 F (v v )
2 L 1<p<q=<n B P
LE(F; (0p09) ) = 2 I (F5 (op0g)) "+ 3L | e () ;

Theorem 7. Let G = (w, B) be a BSVNG on n vertices and let

L(G) = (L(T (op0q) ), L (15 (2p00) ), L(Bf (05) ), L(Ty (0429) ) L (15 (224) ) L (F5 (2p20) ) )

be the Laplacian matrix of G. Then

; + + 2. 21§n§45nTg(v"vq) ’ 2
L. LE<T[% (Unvq)> <lel+ (n—1) Zlgp)gqgn (T;s (Upvq)) +p§1 A1t (0,0, (0p) = =5—— | ()" |3

1<p<q<n

.. 2 n 2. % 1 (vpvg 2
n. LE<I§ (Upvq)) <lml+ \l (n=1) (2 L (IE (vpvq)) +p§1 (dzg(vnvq)(vp) - pn) —(T1)2);

+ + 2 n 21<p§q<n Fﬁ‘ (v,,vq) ’ 2
1. LE(Fﬁ (%%)) <lul+ |(n=1) 21§p§q§n <F,5 (Upvq)) +p;1 et (oy0,) (Op) = =5 —— | ()" |
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2 Y T

. n <peq< (vi’vﬂ) 2
iv. LE(Ty (vp0,)) < 191+\l(n—1) (2 v <T';(v”vq))2+p§1 (dTﬂ(vpvq)(vP)_l\Kq”nﬁ> _(191)2);

1<p<q<n

_ _ 2 n 21<p§q<nl);(vpvq) ’ 2
V. LE(IIS (vpvq)> <&+ |(m—1) 2 L (I/S (vpz;q)) +p);l 1 (ayop) (09) = 22— | —(@1)" |5

. B B 2 n 21<V§q<nF§(”V”q) ? )
vi. LE(Fy (op0q)) < ler| + [(n=1) 2 L (F5 (@py)) t L ey (2) = 2 ) (e |

Proof. By using Cauchy-Schwarz inequality, we obtain

n n P

L lepl <4 /n X lcp]

p=1 p=1

n n >
Y lop] < [(n=1) & [gp]
p=2 p=2

LE(Tﬁ+ (z;pvq)) — a1l < \/(n -1 (Zqu - (91)2)
LE(Ty (0,07)) < lal +[(n - 1) (20F - (1))

Since
2 12 21<Z< Tg(vpvq) i
Qf = T+ (v,v + O P ,
T 1§p§q§n ﬁ( p ‘7)) p;l Tg(vpvq)( F’) n
therefore,

, 2 L _ T (o)
LE(TH(%%)) <lal+ =12 ¥ (Tﬁr(vpvq» + 1 | g o0 (09) = —— ~(c)* |- 6

1<p<q<n p=1

Similarly, we can show that

2 n
(i) <inls 00z £ (5om) &

2
2 Y If(vpo,
do (Z} ) _ l<p<q<n B ( 4 q) —(T )2 .
Ig (vpog) \"P n 1 ’

2
2 L FE(Z’nvq)
e (o) (0p) = = | —()* |;

2 n 21<Z< Ty (vpog) 2 )
LE(T; (0p09)) < 01+ |(n=1){2 T (T; (0p0p)) tr B oy (o) = 22— | =@ |5

LE(FS (2pvq) ) < [l + <n1>(2 » (Pg(vpvq))ﬂpi

LE(IE (Upvq)) <&+ [(n—=1) (2 )y (I/g (Upvq))2+pé

LE<F5_ (z’zﬂ’q)) <leaf+ |(n—1) (2 L (Fﬁ_ (v”v"))z +p)i:1
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Theorem 8. If the BSVNG G = (, B) is regular, then

i, LE(TE (vpvq)) < o1l + $ (n—1) (2 )3 (TE (vpvq)>2_(€l)2>;

1<p<q<n

ii. (1; (vpvq)) <|nul|+ J (n— 1)( ) <1E (Upvq))z—('fl)2>}

1<p<q=<n

<|vi| + \l (n—1) <zl<p<q<n (PE (vpvq))z(v1)2>;
Tg (vpvg) ) < [81] +\l (n—1 <21<p§q<n (TE (vpvq))z—(ﬁ1)2>}

i LE(F; (050y)

iv. LE

vi. LE

Proof. Let G = (a, B) be a regular BSVNG, then

2 Y Ty (opoy)
. 1<p<q<n

dTE(vpvq) (UP) -

n

Substituting (6) into (5), we obtain

LE(T;(vpvq)) <1+ J (n—1) (2 y (TE(UP%))Z—(Q)Z)'

1<p<q<n

Similarly, it is easy to show that

5. Signless Laplacian Energy of BSVNG

Definition 13. The signless Laplacian matrix of a BSVNG G = (a, B) is defined by

(6)
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L*(G) = (L* (T (wpog) ), L (5 (0p04) ), L* (Ff (0p20) ) L* (T (0p04) ), L (15 (0pv) ) L* (B (009) ) )

where D(G) is a degree matrix of a BSVNG and A(G) is an adjacency matrix.

Definition 14. The spectrum of signless Laplacian matrix of a BSVNG L*(G) is defined as
(Rp», Sp+, Ty, Ups, Vix, W+ ), where Ry«, Spx, Tr+, Upx, Vi« and Wi« are the sets of Laplacian

eigenvalues of L* (T (0,0,) ), L* (I (0p09) ), L7 (B (0p20) ), 17 (T (0p20) ), 1 (15 (205))
and L* (FE (vpvq)>, respectively.
Example 6. Consider a BSVNG G(«, B) of a graph G(V, E) where V = {v1, vy, 03, 04,05, Vg, 07}

and E = {v103,0103, VU3, U204, V2U5, U3Us5, V4Us, U4Us, V4U7, UsV7, V607 + as shown in Figure 3,
defined by Tables 6 and 7 as follows:

Table 6. Signless Laplacian energy of BSVNG set on V.

x A% \) V3 V4 Vs Ve vy
T 0.2 0.7 0.1 0.5 0.3 0.4 0.8
I 0.6 0.1 0.3 0.2 0.4 0.6 0.7
Fl 0.4 0.5 0.2 0.1 0.7 0.7 0.6
Ty —0.4 -0.1 -0.3 —0.4 -0.5 -0.2 -0.5
14 —0.6 -0.3 —-0.2 -0.5 -0.3 —-0.4 —0.4
F, -0.1 —-0.6 —-0.5 —0.2 —0.4 -0.1 -0.3

Table 7. Signless Laplacian energy of BSVNG relation on V.

P Viva  ViVz  VaV3  VaV4  VaVs  V3V5  V4Vs  V4Vp  V4V7  V5V7 o VeVy
TE 0.2 0.1 0.1 0.4 0.3 0.1 0.2 0.3 0.4 0.2 0.3
Ig 0.7 0.6 0.4 0.3 0.5 0.5 0.5 0.7 0.8 0.8 0.7
Fg 0.6 0.5 0.6 0.7 0.8 0.8 0.7 0.8 0.6 0.8 0.8

TE -1 -02 -01 -01 -01 -03 -03 -02 -03 -04 -01

Iy -08 -07 -04 -06 -04 -05 -06 -07 -05 -05 06

Fg -07 -05 -06 -08 -07 -05 -04 -03 -04 -05 04
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(0.2,0.6,0.4-0.4,-0.6,-0.1)
Vi

L0,
605

(0.1,0.4,0.6,-0.1,-0.4,-0.6)

~0o
0>
”0-5)

(0.7,0.1,0.5-0.1,-0.3,-0.6) V2

(0.4,0.3,0.7,-0.1,-0.6,-0.8

0.
( 3,0.5,().8,._&}504
L 57

V3 10.1,0.3,02,-0.3,-0.2,-0.5)

0.1,0.5,0.8,-0.3,-0.5,-0.5)

(0.2,0.5,0.7,-0.3,-0.6,-0.4)

(0.502,01-04-05-02) V4 Vs (0.3,0.4,0.7,-0.5-0.3,-04)
0
( '4’”-3.0_5._

=03 =
0504
(0.3,0.7,0.8-0.2,-0.7,-0.3 0.2,0.8,0.8-04,-0.5-0.5)

(03,0.7,0.8,0.1,-0.6,-0.4)

(04,0.60.7,-02,-0.4-0.1), Vs Vi (0.80.7,0.6-0.5-0.4,-03)

Figure 3. Signless Laplacian energy of a bipolar single-valued neutrosophic graph.

The adjacency, degree, and the signless Laplacian matrices of the BSVNG shown in
Figure 3 are expressed as follows:

0,0,0 0.2,0.7,0.6, 0.1,0.6,0.5, 0,0,0 0,0,0 0,0,0 0,0,0
<0,0,o> <70.1, —0.8, 70.7> <7o.2, 0.7, 70.5> <o, o,0> <0,0,0> <o, 0,0> <0, 0,o>
0.2,0.7,0.6, 0,0,0 0.1,0.4,0.6, 04,0.3,0.7, 0.3,0.5,0.8, 0,0,0 0,0,0
<—O.1,—0.8,—0.7> <o,o,o> <—o.1, —O.4,—0.6> <—0.1,—0.6, —0.8> <—0.1, —0.4,—0.7> <0,0,0> <0,0,0>
0.1,0.6,0.5, 0.1,0.4,0.6, 0,0,0 0,0,0 0.1,0.5,0.8, 0,0,0 0,0,0
<70.2,70.7,70.5> <70.1,70.4,70.6> <0,0,0> <o,o,0> <7o.3, 70.5,70.5> <o,0,0> <0,0,0>
AQ) - <0, 0,0> < 0.4,0.3,0.7, > <0, 0,0> <o, 0, 0> < 0.2,0.5,0.7, > < 0.3,0.7,0.8, > < 0.4,0.8,0.6, >
0,0,0 —0.1,-0.6,—0.8 0,0,0 0,0,0 —0.3,-0.6,—0.4 —02,-0.7,—0.3 —0.3,-0.5,—0.4
0,0,0 0.3,0.5,0.8, 0.1,0.5,0.8, 0.2,05,0.7, 0,0,0 0,0,0 0.2,0.8,0.8,
<o, 0,0> <—0.1, —04, —0.7> <—o.3, —0.5, —0.5> <—0.3, —06, —0.4> <0, 0,0> <0, o,o> <—0A4, —05, —0.5>
0,0,0 0,0,0 0,0,0 0.3,0.7,0.8, 0,0,0 0,0,0 0.3,0.7,0.8,
<0,0,0> <0, 0,0> <0,0,0> <70.2, 0.7, 70.3> <0,0,0> <0, 0,0> <70.1, —0.6, 70.4>
0,0,0 0,0,0 0,0,0 04,0.8,0.6, 0.2,0.8,0.8, 0.3,0.7,0.8, 0,0,0
<o, 0,0> <o, 0, o> <0, 0,0> <70.3, —05, 70.4> <70.4, —0.5, 70.5> <70.1, —0.6, 70.4> <0, 0, o>
03,1.3,1.1, 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
<7o.3,71.5,71.2> <o,o,o> <0,0,0> <o,0,0> <0,0,o> <0,0,0> <0,0,o>
0,0,0 1.0,1.9,2.7, 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
<0,0,0> <—0.4, 22, —2.8> <0,0,0> <o, o,0> <0,0,0> <o, 0,0> <0,0,0>
0,0,0 0,0,0 0.3,15,1.9, 0,0,0 0,0,0 0,0,0 0,0,0
<0,0,0> <o,0,0> <70.6,71.6,71.6> <o,0,0> <0,0,0> <0,0,0> <0,0,0>
D(G) = <0,0,0> <0, o,o> <0,0,0> < 1.3,2.3,2.8, > <0,0,0> <o, 0,0> <0,0,0>
0,0,0 0,0,0 0,0,0 —09,-24,-19 0,0,0 0,0,0 0,0,0
0,0,0 0,0,0 0,0,0 0,0,0 08,2.3,3.1, 0,0,0 0,0,0
<o,0,0> <o,o,o> <0,0,0> <o,o,o> <—1.1,—2.o,—2.1> <o,o,o> <0,0,0>
0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0.6,1.4,1.6, 0,0,0
<0,0,0> <0, 0,0> <0,0,0> <0, 0,0> <0,0,0> <70.3, -13, 70.7> <0, 0,o>
0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0.9,2.3,2.2,
<0,0,0> <o,o,o> <0,0,0> <o,o,0> <0,0,0> <o,0,0> <70.8,71.6,71.3>
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0.2,0.7,0.6,
-0.1,-0.8,-0.7

0.1,0.6,0.5, 0,0,0 0,0,0 0,0,0 0,0,0
<7o.2, —07, 70.5> <0,0,0> <o, 0,0> <0,o,o> <o, 0,0>

1.0,19,27, 0.1,0.4,0.6, 04,0.3,0.7, 0.3,05,0.8, 0,0,0 0,0,0
—0.4,-22,-28 <—0.1, —04, —O.6> <—o.1, —0.6, —0.8> <0,0,o> <o, o,o>

> 0.1,—0.4,—0.7
0.1,0.4,0.6, > < 0.3,1.5,1.9, > <0, 0,0> <0, 0, o> <0, 0,0>
0.1,—04,—06 —0.6,—1.6,—1.6 0,0,0 0,0,0 0,0,0

0.3,1.3,1.1,
<70.3,71.5,71.2> <
0.2,0.7,0.6,
<—O.1,—0.8,—0.7> < <— >
0.1,0.6,0.5, 0.1,0.5,0.8,
<70.2, 0.7, —0.5> < <—0.3, —0.5, —0.5>
< < 0.2,0.5,0.7, >

L (C) = <o, 0, o> 04,03,07, <0, 0, o> < 13,2.3,28, > < 0.3,0.7,0.8, > < 04,0.8,0.6, >
0,0,0 -0.1,-0.6, 0.8 0,0,0 —0.9,-2.4,-1.9 0.3,-0.6, 0.4 -02,-0.7,-0.3 ~0.3,-0.5,-04
0,0,0 03,05,08, 0.1,05,08, 02,05,07, 08,23,31, 0,0,0 02,038,038,
<o, 0, o> -0.1,-04,-07 <—0.3, —05, —o.5> <—0.3, —0.6, —0.4> 11,-2.0,-21 <o, 0,o> <—0.4, -05, —0.5>
0,0,0 0,0,0 0,0,0 03,07,08, 0,0,0 0.6,14,1.6, 03,07,08,
<o,o,o> <0,0,0> <o,o,o> <7o.2, 70.7,70.3> <o,o,0> <70.3,71.3,70.7> <7O.1,7O.6, 70.4>
0,0,0 0,0,0 0,0,0 04,0.8,0.6, 02,08,08, 03,07,08, 09,2.3,2.2,
<o,o,o> <0,0,0> <0,o,o> <—o.3, —0.5,—0.4> <—0.4,—0.5, —0.5> <—0.1,—0.6,—0.4> <—0‘8,—1.6,—1.3>

The signless Laplacian spectrum of a BSVNG G, portrayed in Figure 3 is given by:

Signless Laplacian Spec TE (vpvq)) = {0.1674, 0.3086,0.3767,0.5216,0.7583,1.1195, 1.9480},
Signless Laplacian Spec I;r (vpvq)) = {0.5469,0.8376,1.2085,1.4716,1.9603,2.8532,4.1218},
vpvy) ) = {0.6615,0.8400, 1.4262,1.7604, 2.4743,3.2099, 5.0277},
Signless Laplacian Spec| T, vpvq) = {—1.6945, —0.8956, —0.6426, —0.4507, —0.3457, —0.2192, —0.1517},
Signless Laplacian Spec( I, (vpvq)> = {—3.8701, —2.8201, —1.9006, —1.5645, —1.1885, —0.6923, —0.5640},
Signless Laplacian Spec Fl; (vpvq)) = {—4.1078, —2.2301, —1.8700, —1.2949, —0.9912, —0.6641, —0.4418}.

Signless Laplacian Spec Fg

Therefore,

(0.1674,0.5469, 0.6615, —1.6945, —3.8701, —4.1078),
(0.3086, 0.8376,0.8400, —0.8956, —2.8201, —2.2301),
(0.3767,1.2085,1.4262, —0.6426, —1.9006, —1.8700),
Signless Laplacian Spec (E) = (0.5216,1.4716,1.7604, —0.4507, —1.5645, —1.2949),
(0.7583,1.9603,2.4743, —0.3457, —1.1885, —0.9912),
(1.1195,2.8532,3.2099, —0.2192, —0.6923, —0.6641),
(1.9480,4.1218,5.0277, —0.1517, —0.5640, —0.4418)

Theorem 9. Let G(a, B) be a BSVNG and let

L*(G) = (L* (T4 (op0q) ), L* (1 (0p09) ) L (B (0920) ), 1 (T (0p20) ), L (15 (0p20) ), 17 (5 (2p24) ) )
be the signless Laplacian matrix of G. If, 7 > qu > ... > (p:,gf > Q‘ > ... > g;‘,q)f > go: >
L Z QU2 > 2, > @) > ... > @y and o) > o) > ... > orare the eigenval-
ues of L* (T;(vpvq)),L* (I;r (vpvy)), L* (PE (vpvq)),L* (Tﬁ_ (vpvq)>,L* (Iﬁ_ (vpvq)) and
L* (F . (vpvq)), respectively, then,

B
& * + 4 * + d *
1. Y ¢,=2 Y Tg (vpvg), ¥ =2 Y I (vpvg), ¥ gr=2 %
p=1 1<p<q<n p=1 1<p<q<n p=1 1<p<q<n
QD;GRL* C;;ESL* (p;f,GTL*
+ L * — L * - L *
Fy (vpvg), ¥ w=2 Y T (vpvg), L @ =2 Y I (vpvg), ¥ o=
p=1 1<p<g<n p=1 1<p<g<n p=1
y;euL* w;eMQ* ”;Emi*

2 ¥ Flg(vpvq).
1<p<q<n
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p= p=1 = 1<p<g<n
¢pERL* Ty esy
2 < )7 _ 2
(Iﬁ (vpvq)) * Z] 1§ (vpo )( ) pg (qop) _21<p§q<n(l:’g (vpvq)) " ZldFE(”F’U‘Y)
(p;ETL*
n 2 2 n n 2
* - 2 * —
(o) Pgl (ﬂp) B zlﬁpqun(Tﬁ (vpvq)) " pgldTﬁ_(”P”q)(Up), Pgl (w”) B
;«;euL* wpeVL*
2 (I‘(vpvq))2+ v a2 (vp), > (U*) =2 ¥ (F (vpvq))2+
1<p<q<n P p=1 Ig (©p2q) p=1 4 1<p<q<n p
U;EWL*
72
pgl FE(UpUq)( P)

Proof. The proof is similar to that of Theorem 3. [J

Definition 15. The signless Laplacian energy of BSVNG G (w, B) is defined as

LE*(G) = (LE* (T (0p0y) ), LE* (1] (0p2) ), LE* (Fg (0p04) ), LE* (T (0504) ), LE* (15 (00q) ), LE* (F5 (0,97) ) )

B
1 * L * 1 * L * L * L *
={ X gl X|T X vl |8 X |5 L] )
where
2 TS (v, 2 I7 (v, 2 Ff (vy0,
* * 1§P§'JS" PP 17) * * 1Sl’§‘/]§” ﬁ( ’ ﬂ) * * 1§l’§’1§” ﬁ( ’ fl)
6 :(PP n ’Tp:gn n v :(Pv n ’
14
2 Tﬁ*(vpvq) 2 Ig(vpvq) 2 F[; (v,,vq)
9 = u* 1<p<q<n é’* — ©o* 1<p<q<n e — o* 1<p<q<n
P Vp n "op P n 4 P n

PN NSNS L NI SNy Y NN NSNS X W - TP S TN OSSN ST AN N X

are the eigenvalues of L* (Tlgr (vpvq)), L* (Iﬁ+ (Upvq)), L* (Fﬁ+ (vpvq)>, L* (Tg (Upvq)),
L* (IE (vpvq)) andL* (Fl; (vpvq)), respectively, and

+ + +
% gk zlﬁpgﬂin Tﬁ (Upvq) % __ 7% 21§P§ﬂ§” I/S (Upyq) * % zlﬁﬁgﬂﬁnlsﬁ (vpvq)
G =¢,——— T, =, 0, =,
2 Y T, (v 2 Y I (vyv 2 Y Fi(vpo
OF — gy _ Asp<esn ﬁ<7p " & = @ — LSpse 2 pL) ef — gt _ Asp<asn p (oren)
P " n "op P n "Tp p n
Then,
n n n n n n
Y¢=0Y =0y v=0Y8=0YZ=0Y)Ye=0,
p=1"" p=1" p=1 " p=1 " p=1" p=1 "
- (¢3) =2(Q%)" N Z2ah), 5 (03) =200, % (82) =2(0:)7, % (&) =2(07)%, 5 (e5) = 2(05)°
pgl (gp> =2(07) ,pgl (Tp> =2(Q7) 'pgl Up) =2(0f) ,rEl( p) =2(07) ’pgl <§p> =2(Qr) E (£p> Q)"
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where
(1) = 1<p§q<n(Tﬁ (vpvq))2+ %pél TE(Upvq)(UP) 219;49:; vpvq)) ,
2
@)= 1<P§q<n (IE (Upvq))2 * %p§1 dlg(vpvq) (0p) 21<p§q<nf(vpvq)) ,
2
(Q?)* B 1<P§q<n (F/S (vpvq)>2 + %pil dPE(v,,vq)( p) 21<,,§q<n:g(vpv‘7)) /
- 2
(@7)" = 1<p§q<n(T (v,,v,,))z M 2;7%1 TE(v,,vq)(vP) Zlgpgqgn:ﬁ (vpvq)) ,
- 2
(@ - 1<P§‘7<n (15 (vpvq))z * %p§1 dlﬁ(vpv,,)( p) 219291? (Upvq)) ,
- 2
0 = _x (5em) +1E (g o) - (U”””) |

Proof. The proof is similar to that of Theorem 1. [J

6. Relation between Energy, Laplacian Energy and Signless Laplacian Energy of BSVNG

Theorem 11. Let G be a BSVNG on n vertices and let A(G), L(G) and L*(G) be the adjacency,
the Laplacian and the signless Laplacian matrices of G, respectively. Then, |LE*(G) — LE(G)| <

2E(G).
Proof.
+ +
ot 21§p§q§n Tﬁ (vpvq) + + 21§p§q§n T/S (vpvq)
L* (T (0p0y) ) - n = D(T (0p05) ) + A(T; (2p0) ) - . , @)
+ +
. zlgpgqénT (vpvg) . . 21§p§q§n Ty (vpg)
L(TF (op0y) ) — . = D(T{ (v50q) ) = A(Tf (vp0,) ) — . : ®)
From (7) and (8), we obtain
21< Y ) TE (vpvy) 21< Y ) T; (vpvy)
. <p<q<n <p<q<n
L (TE’ (vpvq)) - " - L(TléIr (vpvq)) - " = ZA(TE (vpvq))
Then,
21<p§q<n T’gr (Upvq) 21<p§q<n Tgr (Upvq)
L(Tﬁ (vpvq)) i — =|L (TléIr (vpvq)> B — —ZA(TI3 (vpvq))
Also,
2 ¥ Tg(vpg) 2 ¥ Tg(vpog)
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By the well-known property of energy of a graph, we obtain
(1 ) (L7 ) -5 ) <0 ) - 25
-i-E(—ZA(Tﬁ+ (%ﬂ’q))) )
= LE*(T; (0pv5) ) + 2E(T (0,27) ).
L (1 (o) = ( (15 ) - ”) < E(L@ () - <>)
E(24(Ty (0p0,)) ) (10)
= LE(T,f (0p09) ) +2E(T{ (v2y) ).

Combining (9) and (10), yields |LE* Ty (0,2) ) — LE(T{ (0,0y) )| < 2E(T{ (0,07) )-
Similarly, we can show that

LE*(15 (vpvq)) —LE (Iﬁr (UpUq))‘ <2E (I; (v”v"))’
LE*(Ty (vpvq)> —LE(Ty (vpvq))] < 2E(T,§ (vpvq)),

LE*(F5 (005) ) — LE(F; (0p04) )| < 2E (B (0p05) ).

*(FE (vpvq)) - LE(Fgr (vpvq))‘ < ZE(PE (Upvq))f
*(1/5— (Z,pvq)) - LE(Iﬁ‘ (v,,vq))‘ < ZE(I,s‘ (vpvq)),

Hence,

LE*(G) — LE(G)| < 2E(G).O

7. Application of Energy of BSVNG

A group decision-making problem concerning the selecting of the most compatible
renewable energy alternatives is solved to illustrate the applicability of the proposed
concepts of energy of BSVNGs in practical scenarios. However, in order to reflect the
relationship among the alternatives, we need to make pairwise comparisons for all the
alternatives in the process of decision-making. If every element in the preference relations
is a bipolar single-valued neutrosophic number (BSVNN), then the concept of the bipolar
single-valued neutrosophic preference relation (BSVNPR) can be put forth as follows:

Definition 16. A BSVNPR on the set X = {x1,X2,..., Xy} is represented by a matrix M =
(mW)nxn’ where

mpg = (xXpxg, T (xpxg), I (xpxq), F* (xpxg), T~ (xp%q), I (Xpxq), F~ (xpxq))

pa” =pq’ = pq’ ~pq’ "pq’
indicates the positive degree to which the object x,, is preferred by the object x4, F}j,'7 denotes the
positive degree to which the object x, is not preferred by the object x,, I;CJ is interpreted as an
indeterminacy-membership positive degree, with the conditions:

forall p,g = 1,2,...,n . For convenience, let m,; = <T Lt Ft T I F > where TJr

+ 1+t + S L + —1 7+ — + + _
Tog Lo Fpg € [0,1), Tyy = Fop, By = Topy, Ly + 1, = 1, T = I, = Fj, = 05.
Here, T,,, indicates the negative degree to which the object x,, is preferred by the object xg,
F,,, denotes the negative degree to which the object x), is not preferred by the object xq, and I, is
interpreted as an indeterminacy-membership negative degree, with the following conditions:

Ty Lo, Fpo € [=1,00, T,

vqr Lpgs =Fp Fpy =Tgp Ipg + 1gp = -1, T, = I, = F,, = =05,

4 P‘i qp’ qp’ ’opp

forallp,gq=1,2,...,n
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Selection of the Most Compatible Renewable Energy Source

Renewable energy sources involve biomass energy, geothermal energy, ocean energy,
solar energy, wind energy, and hydropower energy. They have an enormous potential
to meet the energy needs of the world. By doing that, the world’s energy security can
be powered by modern conversion technologies by reducing the long-term price of fuels
from conventional sources and decreasing the use of fossil fuels. Using renewable energies
does not only impact reducing air pollution, safety risks, and greenhouse gas emissions in
the atmosphere but also are recycled in nature. Furthermore, it reduces dependence on
imported fuels, creates new jobs, and provides regional employment.

We considered an issue, taken from [41], as an application for the proposed method in
the present paper. The issue given is that the managers of a municipal close to sea cost want
to invest in renewable energy technologies to self-meet their energy needs. After numerous
consultations, six renewable energy sources were considered as an alternative. These are
biomass energy plants (A;), geothermal energy plants (A;), hydro power plants (A3), solar
power plants (A4), wave power plants (A5), and wind power plants (As). To select the most
effective renewable energy source, three experts E;(i = 1,2,3) are invited to participate
in the decision analysis. These experts are from the operation management department,
the engineering management department, and the human resource department. Based
on their experience, the expert compares each pair of alternatives and gives individual

(m;lt;) (z =1,2,3). The bipolar
single-valued neutrosophic decision groups (BSVNDGs), D; corresponding to BSVNPRs,
M; given in Tables 8-10.

judgements using the following BSVNPRs, where M; =

Table 8. BSVNPR of the expert from the operation management department.

M;
A < 0.5,0.5,0.5, >< 0.4,0.6,03, > < 0.3,0.2,0.6, > < 0.7,0.3,0.4, > < 0.4,0.2,08, > < 0.9,04,0.6, >
0.5,—-0.5,-0.5 0.3,-0.1,-04 0.4,-0.6,—-0.2 0.6,—0.5,—-0.3 0.5,-0.3,-0.2 0.1,-0.6,—-0.5
A, < 0.3,04,04, >< 0.5,0.5,0.5, > < 0.8,0.3,0.2, > < 0.3,0.2,0.7, > < 04,0.2,03, > < 0.2,0.5,0.6, >
04,-09,-03 0.5,—-0.5,-0.5 0.5,-0.2,-0.6 0.2,-0.3,-05 0.2,-0.5,—-0.7 04,-0.6,—-0.7
As < 0.6,0.8,0.3, >< 0.2,0.7,0.8, > < 0.5,0.5,0.5, > < 0.8,0.2,04, > < 0.3,05,0.2, > < 0.1,04,0.7, >
0.2,—-04,-04 0.6,—0.8,-0.5 0.5,—-0.5,-0.5 0.2,-0.3,-0.6 0.5,—0.5,—-0.2 0.5,-0.2,-0.6
Ay < 0.4,0.7,0.7, >< 0.7,0.8,0.3, > < 0.4,0.8,0.8, > < 0.5,0.5,0.5, > < 0.3,0.2,0.1, > < 0.7,04,0.5, >
0.3,—-0.5,-0.6 0.5,-0.7,-0.2 0.6,—-0.7,-0.2 0.5,—0.5,-0.5 0.6,—0.3,-0.4 -0.2,-0.3
As < 0.8,0.8,0.4, >< 0.3,0.8,04, > < 0.2,05,03, > < 0.1,0.8,0.3, > < 0.5,0.5,0.5, > < 040308 >
0.2,-0.7,-0.5 0.7,-0.5,-0.2 0.2,-05,-05 04,-0.7,-0.6 0.5,—0.5,—-05 0.6,—0.3,—-0.2
Ag < 0.6,0.6,0.9, >< 0.6,0.5,0.2, > < 0.7,0.6,0.1, > < 0.5,0.6,0.7, > < 0.8,0.7,0.4, > < 0.5,0.5,0.5, >
0.5,-04,-0.1 0.7,-04,-04 —0.6,—-0.8,-0.5 0.3,—-0.8,—-0.1 0.2,-0.7,-0.6 0.5,—0.5,-0.5
Table 9. BSVNPR of the expert from the engineering management department.
M,
Ay < 0.5,0.5,0.5, >< 0.5,0.3,08, > < 0.9,0.8,0.7, > < 0.8,04,0.2, > < 0.4,0.3,0.7, > < 0.7,04,08, >
0.5,—-05,-05 04,-0.2,-0.6 04,-0.7,-03 0.7,-04,-0.2 04,-04,-04 0.2,-0.3,-05
A, < 0.8,0.7,0.5, >< 0.5,0.5,0.5, > < 0.2,0.3,04, > < 0.4,0.3,0.6, > < 0.3,0.4,0.6, > < 0.4,0.6,0.7, >
0.6,—-0.8, —0.4 0.5,—0.5,-0.5 0.6,—0.4,—-0.7 0.3,-04,-05 0.4,-0.6,—0.7 0.3,-04,-05
As < 0.7,0.2,0.9, >< 04,0.7,0.2, > < 0.5,0.5,0.5, > < 0.7,04,0.6, > < 0.7,0.6,0.3, > < 0.2,0.6,0.8, >
0.3,-0.3,-04 0.7,—-0.6,-0.6 0.5,—-0.5,-0.5 04,-0.3,-0.7 0.3,-04,—-0.6 04,-0.3,-0.7
Ay < 0.2,0.6,0.8, >< 0.6,0.7,0.4, > < 0.6,0.6,0.7, > < 0.5,0.5,0.5, > < 04,04,0.2, > < 0.6,0.4,04, >
0.2,-0.6,—-0.7 0.5,—-0.6,—-0.3 0.7,-0.7,-0.4 0.5,—-0.5,-0.5 0.3,-04,-04 0.2,-04,-0.6
As < 0.7,0.7,04, >< 0.6,0.6,0.3, > < 0.3,04,0.7, > < 0.2,0.6,04, > < 0.5,0.5,0.5, > < 0.3,0.7,0.2, >
0.4,—-0.6,—-04 0.7,-04,-04 0.6, —0.6,—0.3 04,-0.6,—-03 0.5,—0.5,—-0.5 04,-04,-0.1
A < 0.8,0.6,0.7, >< 0.7,04,04, > < 0.8,04,0.2, > < 0.4,0.6,0.6, > < 0.2,0.3,0.3, > < 0.5,0.5,0.5, >
0.5,-0.7,-0.2 0.5,—0.6,—-0.3 0.7,-0.7,-0.4 0.6,—0.6,—0.2 0.1,-0.6,-0.4 0.5,—0.5,-0.5
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Table 10. BSVNPR of the expert from the human resource department.

M;
Ay 0.5,0.5,0.5, 0.6,0.6,0.9, 0.6,0.5,0.2, 0.7,0.6,0.1, 0.5,0.6,0.7, 0.8,0.7,0.4,
-0.5,-0.5,-0.5 -0.5,-04,-0.1 -0.7,-04,-0.4 —0.6,—0.8,—-0.5 -0.3,-0.8,-0.1 -0.2,-0.7,-0.6
Ay 0.9,04,0.6, 0.5,0.5,0.5, 0.8,0.8,0.4, 0.3,0.8,0.4, 0.2,0.5,0.3, 0.1,0.8,0.3,
—0.1,-0.6,-05 —0.5,-05,-05 -0.2,-0.7,-05 -0.7,-05,-02 -0.2,-05,-05 —04,-0.7,-0.6
As 0.2,0.5,0.6, 0.4,0.2,0.8, 0.5,0.5,0.5, 0.4,0.7,0.7, 0.7,0.8,0.3, 0.4,0.8,0.8,
—04,-0.6,-0.7 -0.5,-0.3,-0.2 -0.5,-05,-05 —0.3,-0.5,-0.6 -0.5,-0.7,-0.2 —0.6,-0.7,-0.2
Ay 0.1,0.4,0.7, 0.4,0.2,0.3, 0.7,0.3,04, 0.5,0.5,0.5, 0.6,0.8,0.3, 0.2,0.7,0.8,
-0.5,-0.2,-0.6 -0.2,-05,-0.7 -0.6,—-0.5,-0.3 -0.5,-0.5,-0.5 -0.2,-04,-0.4 —0.6,-0.8,-0.5
As 0.7,0.4,0.5, 0.3,0.5,0.2, 0.3,0.2,0.7, 0.3,0.2,0.6, 0.5,0.5,0.5, 0.3,0.4,04,
0.1,-0.2,-03 —05,-05,-02 -0.2,-03,-05 —04,-0.6,-0.2 —0.5,-05,-05 -04,-09,-03
Ag 0.4,0.3,0.8, 0.3,0.2,0.1, 0.8,0.2,0.4, 0.8,0.3,0.2, 0.4,0.6,0.3, 0.5,0.5,0.5,
—0.6,-0.3,-0.2 —0.6,—-0.3,-0.4 -0.2,-0.3,-0.6 —0.5,-0.2,-0.6 -0.3,-0.1,-04 -0.5,-0.5,-05
The energy of a BSVNDG is the sum of absolute values of the real part of eigenvalues
of D. The energy of each BSVNDG D;(i = 1,2,3) is calculated as follows:
E(D;) = (3.7606, 3.0000, 3.7606, 3.0000, 3.1361, 3.0000),
E(D,) = (4.0388,3.0000, 4.0388, 3.4825, 3.0000, 3.4825),
E(D3) = (3.9621,3.0000, 3.9621, 3.3062, 3.0000, 3.3062).
Then, the weight of each expert can be determined as:
wi = ((wr+ ), (wr+ ), (Wee ), (=)0 (wr-) 5 (wg-);)
— E(( ) ) E(<Dl+)i) E((DF+>1‘) E((DT*),‘) E((DI*>1‘) E((DF*)i)
K a: - - - -
LE((ore);) LE((n);) DE((Dp)) LE((Pr-);) BE((-);) 2 E((D6-))
wherei =1,2,...,k,
w; = (0.3197,0.3333,0.3197,0.3065, 0.3433, 0.3065),
wy = (0.3434,0.3333,0.3434, 0.3558, 0.3284, 0.3558),
w3 = (0.3368, 0.3333,0.3368,0.3378, 0.3284, 0.3378).
Then, we utilize the aggregation operator to merge all the individual BSVNPRs,
M; = (m](;,;)f, 6(1' =1,2,3) into the collective BSVNPR M = (1m1,),, .. Here, we apply
X
the bipolar single-valued neutrosophic weighted averaging (BSVNWA) operator [30] to
merge all the individual BSVNPR.
BSVNWA
M\ Wi S M\ Wi S w; s )\ Wi
-1 (1-7) (f%%“) L) )
< g;)/mng)/’ ) ;(::)) _ i=1 1:1 i=1 ] = (@
—(1-11(1- (- 1- —E, 7))
(A R ) o))
We show the aggregated value for m; as follows:
3 A\ Wi .
_ +(1)\ 3 AN Wi
- (- ) T
_ +(1)) 1 +(2)\*2 +(3)) 12 w1 w2 w3
=1-[(1-13") " x (1= ) P (1= 7] (IE(D) < (152)" x (1)
=1 [(1-04)"319 (1 - 0.5)%384 x (1 — 0.6)0.3368} — (0.6)"333 5 (0.3)0333 . (0.6)0335
= 1— [(0.8493) x (0.7882) x (0.7345)] = (0.8435) x (0.6695) x (0.8435)

= 0.5083 = 0.4763
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+
F12_

wz

)" (1

)]

(o 7912)

(=12"))")

S () ~ 3 N\ i
Z-I;Il(Flz ) Ty = _‘H1<_T12( ))
1)\ @1 2)\ W2 3)\ @3 = _
ST ) )
= (0.3)%3197 5 (0.8)*33* x (0.9)03%%8 = —[(0.3)%30  (0.4) 3558
- (()06.(6)2(;5) x (0.9262) x (0.9651) _(0.6914) x (07218) x
T = —0.3949
3 (i w;

I = 7<1 -1(i- (7112())) )
=—(1-[(1- (—11*2“)))1‘” x (1= (~1,7
= (1-[(1-01)%398 5 (1 - 02)03%84 5 (1 — 0'4)0.3284]>
= —(1—[(0.9645) x (0.9293) x (0.8456)])

—0.2421
3 N @i
Fa=-(1-11(1- (-5"))")

= —(1-

= -0

Then, we obtained

myp = <_

0.3949, —0.2421, —0.4044

-El - {(1 = (Ra)) " (1= (=Ra™)) " > (1= (=) 7)

1— [ (1 0.4)°3065 5 (1 - 0.6)0%5 x (1 — 0.1)0.3373]>
[(0.8551) x (0.7218) x (0.9650)])
4044
0.5083,0.4763,0.6083,

)

Similarly, we can calculate other aggregated values using BSVNWA. Table 11 presents
overall aggregated values.

Table 11. The collective BSVNPR of all the above individual BSVNPRs.

M A A, As
A < 0.5000, 0.5000, 0.5000, > < 0.5083, 0.4763, 0.6083, > < 0.7028, 0.4309, 0.4370 >
0.5000, —0.5000, —0.5000 0.3949, —0.2421, —0.4044 —0.4832, —0.5843, —0.3078
Ay < 0.7636,0.4821,0.4951, > < 0.5000, 0.5000, 0.5000, > < 0.6780,0.4161,0.3205, >
0.2893, —0.8021, —0.4086 0.5000, —0.5000, —0.5000 —0.3915, —0.4726, —0.6107
As < 0.5423,0.4309, 0.5526, > < 0.3422,0.4611,0.4970, > < 0.5000, 0.5000, 0.5000, >
0.2919, —0.4476, —0.5253 0.5959, —0.6211, —0.4587 —0.5000, —0.5000, —0.5000
Al < 0.2407, 0.5518,0.7329, > < 0.5817,0.4821,0.3312, > < 0.5867,0.5242, 0.6051, >
0.3086, —0.4578, —0.6390 0.3669, —0.6101, —0.4523 —0.6338, —0.6452, —0.3097
As < 0.7364,0.6073,0.4313, > < 0.4224,0.6215, 0.2870, > < 0.2694, 0.3420, 0.5339, >
0.2025, —0.5450, —0.4023 0.6248, —0.4692, —0.2779 —0.2956, —0.4811, —0.4365
Ag < 0.6386,0.4763,0.7935, > < 0.5624, 0.3420,0.2009, > < 0.7723,0.3635,0.2024, >
0.5317, —0.4974, —0.1706 0.5895, —0.4476, —0.3662 —0.4373, —0.6553, —0.5053
Ay As Ag
Ay < 0.7390,0.4161,0.1977, > < 0.4357,0.3302, 0.7306, > < 0.8158,0.4821,0.5778, >
0.6338, —0.6071, —0.3448 0.3886, —0.5590, —0.2485 —0.1617, —0.5627, —0.5363
Ay < 0.3361, 0.3635, 0.5499, > < 0.3030, 0.3420, 0.3807, > < 0.2459,0.6215, 0.5009, >
0.3527, —0.4042, —0.4140 0.2559, —0.5354, —0.6435 —0.3610, —0.5843, —0.6035
As < 0.6671,0.3826,0.5552, > < 0.6066, 0.6215, 0.2636, > < 0.2460, 0.5769, 0.7666, >
0.2935, —0.3733, —0.6390 0.4169, —0.5512, —0.3749 —0.4911, —0.4452, —0.5437
A4 < 0.5000, 0.5000, 0.5000, > < 0.4501,0.4000, 0.1837, > < 0.5392, 0.4821,0.5426, >
0.5000, —0.5000, —0.5000 0.3235, —0.3674, —0.4000 —0.2344, —0.5383, —0.4880
As < 0.2058, 0.4579, 0.4183, > < 0.5000, 0.5000, 0.5000, > < 0.3336,0.4380, 0.3935, >
0.4000, —0.6376, —0.3831 0.5000, —0.5000, —0.5000 —0.4529, —0.6488, —0.2026
Ag < 0.6090, 0.4763,0.4354, > < 0.5338,0.5014, 0.3289, > < 0.5000, 0.5000, 0.5000, >
0.4562, —0.6041, —0.3437 0.1792, —0.5271, —0.4701 —0.5000, —0.5000, —0.5000
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Then, under the condition T;,g, >05(p,q=1,2,...,6), a partial diagram is drawn, as

shown in Figure 4. After that, the out-degree, out — d (Ap) (p=1,2,...,6) of all criteria in

a partial directed network are calculated as follows:

out —d(Ay) = (2.7659,2.1391,1.8008, —1.6736, —1.9962, —1.5933)
out — d(Ay) = (1.4416,0.8982,0.8156, —0.6808, —1.2747, —1.0193)
out —d(Az) = (1.8160,1.4350,1.3714, —1.0023, —1.3721, —1.5392)
out — d(Ay) = (1.7076,1.4884,1.4789, —1.2351, —1.7936, —1.2500)
out — d(As) = (0.7364,0.6073,0.4313, —0.2025, —0.5450, —0.4023)
out —d(Ag) = (3.1161,2.1595,1.9611, —2.1939, —2.7315, —1.8559)

According to positive membership degree of out-degree, out —d(A,)(p =1,2,...,6),

the ranking of the alternatives A,(p = 1,2,...,6) is written as:
Ag = A1 = Az = Ay = Ay = As.
Therefore, the best alternative is the wind power plant, Ag.

(0.5083,0 4763,0.6083,-0 3949,—02421,—04044}
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Figure 4. Partial directed network of the BSVN.

Now, the elements of the Laplacian matrices of the BSVNDGs, L(D;) correspond-
ing to BSVNPRs, MIL (i =1,2,3) is given in Tables 12-14 while Table 15 presents overall

aggregated values.

Table 12. Elements of the Laplacian matrix of the BSVNDG, Dj.

M; Ay Ay A Ay As Ag
Ay 2.7,1.7,2.7, > —04,-0.6,-0.3, —-0.3,—-0.2,-0.6, -0.7,-0.3,-04, —0.4,-0.2,-0.8, —0.9,-0.4,-0.6,
—-19,-21,-1.6 0.3,0.1,0.4 0.4,0.6,0.2 0.6,0.5,0.3 0.5,0.3,0.2 0.1,0.6,0.5

A, —0.3,—-0.4,-04, 2.0,1.6,2.2, —0.8,—0.3,-0.2, —-0.3,-0.2,-0.7, —04,-0.2,-0.3, —0.2,—-0.5,—-0.6,
0.4,0.9,0.3 -1.7,-25,-2.8 0.5,0.2,0.6 0.2,0.3,0.5 0.2,0.5,0.7 0.4,0.6,0.7

As —0.6,—-0.8,—-0.3, —-0.2,-0.7,-0.8, 2.0,2.6,2.4, —-0.8,-0.2,—-0.4, —-0.3,-0.5,-0.2, —-0.1,-0.4,-0.7,
0.2,04,0.4 0.6,0.8,0.5 —2.0,-22,-2.3 0.2,0.3,0.6 0.5,0.5,0.2 0.5,0.2,0.6

Ay —04,-0.7,-0.7, —-0.7,-0.8,—0.3, —0.4,-0.8,-0.8, 25,2.9,2.4, —-0.3,-0.2,-0.1, —-0.7,-0.4,-0.5,
0.3,0.5,0.6 0.5,0.7,0.2 0.6,0.7,0.2 —21,-24,-1.7 0.6,0.3,0.4 0.1,0.2,0.3

As —0.8,—0.8,—-0.4, —0.3,-0.8,—-04, —0.2,—0.5,-0.3, —0.1,-0.8,-0.3, < 1.8,3.2,2.2, —04,-0.3,-0.8,
0.2,0.7,0.5 0.7,0.5,0.2 0.2,0.5,0.5 0.4,0.7,0.6 —2.1,-2.7,-2.0 0.6,0.3,0.2

Ag —0.6,—-0.6,—0.9, —0.6,—-0.5,-0.2, -0.7,-0.6,—-0.1, —0.5,-0.6,-0.7, <—0.8, —-0.7, —0.4,> < 3.2,3.0,2.3, >
0.5,04,0.1 0.7,04,0.4 0.6,0.8,0.5 0.3,0.8,0.1 0.2,0.7,0.6 —23,-3.1,-1.7
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Table 13. Elements of the Laplacian matrix of the BSVNDG, D.

M, Aq Ay Az Ay As Ag
Ay 3.3,22,32, -0.5,-0.3,-0.8, -0.9,-0.8,-0.7, -0.8,-04,-0.2, -0.4,-0.3,-0.7, -0.7,-0.4,-0.8,
-2.1,-2.0,-2.0 0.4,0.2,0.6 0.4,0.7,03 0.7,04,0.2 0.4,04,04 0.2,0.3,0.5

Ay —-0.8,-0.7,-0.5, < 2.1,2.3,2.8, —0.2,-0.3,-04, —0.4,-0.3,-0.6, —0.3,-04, 0.6, —04,-0.6,-0.7,
0.6,0.8,0.4 —22,-2.6,-28 0.6,04,0.7 0.3,04,0.5 0.4,0.6,0.7 0.3,0.4,0.5

As -0.7,-0.2,-0.9, —04,-0.7,-0.2, —-04,-0.7,-0.2, -0.7,-04, -0.6, -0.7,-0.6, -0.3, —0.2,-0.6, 0.8,
0.3,0.3,0.4 0.7,0.6,0.6 0.7,0.6,0.6 0.4,0.3,0.7 0.3,0.4,0.6 0.4,0.3,0.7

Ay -0.2,-0.6,-0.8, -0.6,—-0.7,-0.4, —0.6,—-0.6,—-0.7, < 24,27,2.5, > —-0.4,-04,-0.2, —0.6,-0.4,-04,
0.2,0.6,0.7 0.5,0.6,0.3 0.7,0.7,0.4 -1.9,-27,-24 0.3,04,0.4 0.2,0.4,0.6

As -0.7,-0.7,-0.4, —0.6, —0.6, 0.3, —0.3,-04,-0.7, —0.2,-0.6,-04, 2.1,3.0,2.0, —-0.3,-0.7,-0.2,
0.4,0.6,0.4 0.7,04,0.4 0.6,0.6,0.3 0.4,0.6,0.3 —2.5,-2.6,—-15 0.4,04,0.1

Aq —0.8,-0.6,—-0.7, -0.7,-04,-04, -0.8,-04,-0.2, —0.4,-0.6,-0.6, <70.2, -0.3, 70‘3,> < 29,2.3,2.2, >
0.5,0.7,0.2 0.5,0.6,0.3 0.7,0.7,0.4 0.6,0.6,0.2 0.1,0.6,0.4 —24,-32,-15

Table 14. Elements of the Laplacian matrix of the BSVNDG, Djs.

M3 Aq Ay As Ay As A
Ay < 3.2,3.0,2.3, > <—0.6, —0.6, —0.9,> —0.6,—0.5,-0.2, —0.7,-0.6,—0.1, —0.5,—-0.6,—0.7, —0.8,-0.7,—04,
-23,-3.1,—-1.7 0.5,04,0.1 0.7,0.4,0.4 0.6,0.8,0.5 0.3,0.8,0.1 0.2,0.7,0.6

A, —09,-0.4,—-0.6, < 2.3,3.3,2.0, > —0.8,—-0.8,—04, —0.3,-0.8,—0.4, —-0.2,-0.5,—-0.3, —0.1,-0.8,-0.3,
0.1,0.6,0.5 —1.6,-3.0,—2.3 0.2,0.7,0.5 0.7,0.5,0.2 0.2,0.5,0.5 04,0.7,0.6

As —0.2,—-0.5,—-0.6, —0.4,-0.2,-0.8, 2.1,3.0,3.2, —-0.4,-0.7,-0.7, —0.7,-0.8,—-0.3, —0.4,-0.8,-0.8,
0.4,0.6,0.7 0.5,0.3,0.2 —-23,-2.8,—-19 0.3,0.5,0.6 0.5,0.7,0.2 0.6,0.7,0.2

Ay —0.1,-0.4,-0.7, —-04,-0.2,-0.3, —0.7,-0.3,-0.4, < 2.0,2.4,2.5, > —0.6,—0.8,—0.3, —0.2,-0.7,-0.8,
0.5,0.2,0.6 0.2,0.5,0.7 0.6,0.5,0.3 —21,-24,-25 0.2,0.4,04 0.6,0.8,0.5

As —-0.7,-0.4,—-0.5, —0.3,-0.5,-0.2, -0.3,-0.2,-0.7, —-0.3,-0.2,—0.6, < 1.9,1.7,24, —0.3,-0.4,—-0.4,
0.1,0.2,0.3 0.5,0.5,0.2 0.2,0.3,0.5 0.4,0.6,0.2 —1.6,—25,—-1.5 0.4,0.9,0.3

Ag —0.4,-0.3,-0.8, -0.3,-0.2,-0.1, —0.8,-0.2,—04, —-0.8,—-0.3,-0.2, <70.4, —0.6, 70.3,> < 2.7,1.6,1.8, >
0.6,0.3,0.2 0.6,0.3,0.4 0.2,0.3,0.6 0.5,0.2,0.6 0.3,0.1,0.4 -22,-12,-22

Table 15. The collective BSVNPR of all the above individual BSVNPRs.

M Aq Ay Az
Aq 0.5000, 0.5000, 0.5000, 0.5066,0.4763,0.6051, 0.7062,0.4309, 0.4440,
—0.5000, —0.5000, —0.5000 —0.3918, —0.2440, —0.4071 —0.4794, —0.5839, —0.3046
Ay 0.7603,0.4821,0.4934, 0.5000, 0.5000, 0.5000, 0.6738,034161,0.3196,
—0.2948, —0.8000, —0.4054 —0.5000, —0.5000, —0.5000 —0.3965, —0.4758, —0.6115
Az 0.5478,0.4309, 0.5533, 0.3415,0.4611,0.4903, 0.5000, 0.5000, 0.5000,
—0.2888, —0.4482, —0.5205 —0.5973, —0.6174, —0.4619 —0.5000, —0.5000, —0.5000
Ay 0.2428,0.5518,0.7338, 0.5845,0.4821,0.3320, 0.5845,0.5242,0.6098,
—0.3068, —0.4571, —0.6386 —0.3718, —0.6085, —0.4443 —0.6336, —0.6443, —0.3078
As 0.7369,0.6073,0.4299, 0.4255,0.6215,0.2887, 0.2691,0.3420,0.5322,
—0.2042, —0.5421, —0.4054 —0.6278 — 0.4686, —0.2772 —0.2948, —0.4807, —0.4369
Ag 0.6430,0.4763,0.7928, 0.5670,0.3420,0.2041, 0.7720,0.3635, 0.2000,
—0.5304, —0.4986, —0.1689 —0.5914, —0.4482, —0.3664 —0.4441, —0.6524, —0.5039
Ay As Ag
Aq 0.7400,0.4161, 0.2000, 0.4344,0.3302,0.7309, 0.8156,0.4821,0.5825,
—0.6336, —0.6085, —0.3419 —0.3918, —0.5620, —0.2491 —0.1599, —0.5620, —0.5348
Ay 0.3371,0.3635,0.5531, 0.3047,0.3420,0.3831, 0.2492,0.6215,0.5063,
—0.3461, —0.4056, —0.4179 —0.2555, —0.5358, —0.6461 —0.3614, —0.5839, —0.6057
A 0.6708,0.3826,0.5531, 0.6054,0.6215,0.2631, 0.2428,0.5769,0.7662,
—0.2913, —0.3742, —0.6386 —0.4176, —0.5518, —0.3736 —0.4902, —0.4482, —0.5477
Ay 0.5000, 0.5000, 0.5000, 0.4469,0.4000, 0.1822, 0.5440,0.4821,0.5380,
—0.5000, —0.5000, —0.5000 —0.3293, —0.3683, —0.4000 —0.2281, —0.5421, —0.4847
As 0.2041,0.4579,0.4155, 0.5000, 0.5000, 0.5000, 0.3341,0.4380,0.3918,
—0.4000, —0.6365, —0.3901 —0.5000, —0.5000, —0.5000 —0.4561, —0.6524, —0.2013
Ag 0.6036,0.4763,0.4420, 0.5345,0.5014, 0.3292, 0.5000, 0.5000, 0.5000,

—0.4520, —0.6000, —0.3359 —0.1786, —0.5237, —0.4737 —0.5000, —0.5000, —0.5000
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The Laplacian energy of each BSVNDG D; (i = 1,2, 3) is calculated as:

LE(D;) = (14.2000, 15.0000, 14.2000, 12.1000, 15.0000, 12.1000),
LE(D,) = (15.5000, 15.0000, 15.5000, 13.2000, 15.0000, 13.2000),
LE(D3) = (14.2000, 15.0000, 14.2000, 12.1000, 15.0000, 12.1000).

Then, the weight of each expert can be determined as:

w; = ((wr+ ), (wi+);, (Wr+ )y, (wr-);, (wr- ), (we-);)

[ mE@n)) () () E(0r)) (D)) E(®r))

)E LE((DT+ )]) / jé LE((DI+ )])

j=1

wherei =1,2,...,k,

wy = (0.3235,0.3333,0.3235,0.3235, 0.3333, 0.3235),
wy = (0.3531,0.3333,0.3531, 0.3529, 0.3333, 0.3529),
w3 = (0.3235,0.3333,0.3235,0.3235, 0.3333, 0.3235).

After that, the out-degree, out — d(A,)(p =1,2,...,6) of all criteria in a partial di-
rected network are calculated as follows:

out —d(Ay) = (2.7684,1.8053,1.8316, —1.6646, —1.9985, —1.5884)
out — d(Ay) = (1.4341,0.8981,0.8130, —0.6912, —1.2758, —1.0169)
out — d(Az) = (1.8241,1.4350,1.3695, —0.9976, —1.3742, —1.5327)
out —d(Ay) = (1.7130,1.4883,1.4798, —1.2334, —1.7948, —1.2368)
out — d(As) = (0.7369,0.6073,0.4299, —0.2042, —0.5421, —0.4054)
out —d(Ag) = (3.1200,2.1594, 1.9681, —2.1965, —2.7229, —1.8488)

According to the positive membership degree of out-degree, out —d(A,) (p = 1,2,...,6),
the ranking of the alternatives A,(p = 1,2,...,6) is given by

Ag = A1 = Az = Ay = Ay > As.
Therefore, the best alternative is the wind power plant, Ag.

8. Comparative Study

In this section, the proposed energy BSVNG method is compared with BNSs developed
by Deli et al. [30]. First, we construct the pair-wise comparison matrix provided by the
decision-maker in Tables 8-10. Then, we compute weighted average operators and calculate
the score function for each alternative. Lastly, we rank all the alternatives according to the
score function. Table 16 shows the score function and rank for each alternative.

Table 16. The score function and rank for each alternative adopted from Deli et al. [30].

Alternatives Weight/Score Function Rank
Biomass energy plant (A7) 0.5778 2
Geothermal energy plant (A,) 0.5056 5
Hydro power plant (A3) 0.5667 3
Solar power plant (A4) 0.5556 4
Wave power plant (As) 0.4910 6
Wind power plant (Ag) 0.5860 1

Therefore, the ranking of alternatives is given as follows: Ag >~ A; >~ Az >~ Ay >
Ay > As. As we can see, after the ranking of alternatives according to score function
in descending order, Ay is still the best alternative as in our proposed energy BSVNG
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method. Hence, this comparative method shows the availability and effectiveness of our
proposed method.

9. Conclusions

The energy of graphs has many mathematical properties that have been investigated.
Certain bounds (upper and lower) on energy had been studied by many researchers. This
paper proposed integrating bipolar single-valued neutrosophic set and the energy graph,
Laplacian energy graph and signless Laplacian energy graph. Specifically, this paper
developed the new concept of energy in BSVNG. It investigated its properties such as the
characteristics of eigenvalues, lower and upper bound of energy graph, Laplacian energy
graph and signless Laplacian energy graph. Moreover, the relation between them is also
discussed, and the proposed method was applied to renewable energy sources selection in
which the optimal solution is suggested. In this application, we suggest that a wind power
plant (Ag) is the optimal alternative. This paper has proceeded with a comparative analysis
whereing the rank of alternatives, using the proposed method, is similar to the method
of comparison. Hence, it implies that the proposed method is valid and effective. In
short, this study implies several significant contributions and modifications to the energy
graph, Laplacian energy graph, and signless Laplacian energy graph. In future work,
it is suggested to extend the graph energy to: (1) interval-bipolar neutrosophic graphs,
(2) neutrosophic vague, (3) dominating energy in neutrosophic graph, etc. Furthermore,
this paper does not evaluate the sensitivity of the experts” weights to the evaluation
outcomes. As a result, any new sensitivity analysis, particularly on the experts” weights,
could be pursued as a research topic in the future.
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