
axioms

Article

A Novel Numerical Method for Solving Fractional
Diffusion-Wave and Nonlinear Fredholm and Volterra Integral
Equations with Zero Absolute Error

Mutaz Mohammad 1,* , Alexandre Trounev 2 and Mohammed Alshbool 1,3,*

����������
�������

Citation: Mohammad, M.; Trounev,

A.; Alshbool, M. A Novel Numerical

Method for Solving Fractional

Diffusion-Wave and Nonlinear

Fredholm and Volterra Integral

Equations with Zero Absolute Error.

Axioms 2021, 10, 165. https://

doi.org/10.3390/axioms10030165

Academic Editor: Jorge E.

Macías Díaz

Received: 19 April 2021

Accepted: 8 June 2021

Published: 28 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics & Statistics, Zayed University, Abu Dhabi 144543, United Arab Emirates
2 Department of Computer Technology and Systems, Kuban State Agrarian University,

350044 Krasnodar, Russia; trounev.a@edu.kubsau.ru
3 Department of Applied Mathematics, Abu Dhabi University,

Abu Dhabi P.O. Box 59911, United Arab Emirates
* Correspondence: Mutaz.Mohammad@zu.ac.ae (M.M.); alshbool.mohammed@gmail.com (M.A.)

Abstract: In this work, a new numerical method for the fractional diffusion-wave equation and
nonlinear Fredholm and Volterra integro-differential equations is proposed. The method is based on
Euler wavelet approximation and matrix inversion of an M ×M collocation points. The proposed
equations are presented based on Caputo fractional derivative where we reduce the resulting system
to a system of algebraic equations by implementing the Gaussian quadrature discretization. The
reduced system is generated via the truncated Euler wavelet expansion. Several examples with
known exact solutions have been solved with zero absolute error. This method is also applied to
the Fredholm and Volterra nonlinear integral equations and achieves the desired absolute error of
0.× 10−31 for all tested examples. The new numerical scheme is exceptional in terms of its novelty,
efficiency and accuracy in the field of numerical approximation.

Keywords: time-fractional diffusion-wave equations; Euler wavelets; integral equations; numerical
approximation

MSC: 26A33, 35R11, 45B05

1. Introduction

Fractional calculus is very useful and widely used in many applications in science,
numerical computations and engineering, where the mathematical modeling of several real
world problems is presented in terms of fractional differential equations, see, e.g., [1–8].
For example, the authors in [8] approximated the Caputo fractional derivative by quadratic
segmentary interpolation. That raised a new approach of approximating fractional deriva-
tives and provides some insights for a new applications where the numerical resolution of
ordinary fractional differential equations is achieved.

The definition of such fractional order involves an integration represented as a non-
local operator. This important feature allows to capture the previous history (memory)
when calculating, for example, the time-fractional diffusion wave derivative value of a
given function within certain period of time. This could not be achieved based on the
classical (integer) derivative order.

The fractional diffusion-wave equation and some types of integral equations, as
a mathematical models, are widely used in many physical phenomena, where the exact
solution usually is difficult to obtain. Note that the authors of [9] introduced a mathematical
model that intermediates between the wave, heat, and transport equations, both time and
spatial variations of the corresponding dynamical law are expressed in fractional form
(Caputo derivative for the time-variable and Riesz pseudo-differential operator for the
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spatial one), so that pure wavelike propagation is connected with pure diffusion and
transport processes in unified form.

Several authors have reported the higher precision numerical solution with absolute
error of 10−16−10−20 for nonlinear Volterra integral equation as in [10] and for fractional
diffusion wave equation in [11]. They used the popular collocation method based on some
wavelet systems to solve the nontrivial mathematical problems.

Since the number of collocation points is limited by 16 for 1−dimensional or 4 × 4 for
2−dimensional problems, we have noticed kind of a numerical phenomenon for each case
and specifically for the absolute error. In this paper, we propose a novel numerical method
to solve the fractional diffusion-wave equations and nonlinear Fredholm and Volterra
integro-differential problems with zero absolute error. We also discuss the proposed
method in [10] and proposed a new one to solve the nonlinear Volterra integral equation
with absolute error of 0 × 10−31. As it has been shown, in every case, there is a numerical
phenomenon of error cancellation.

2. Fractional Diffusion-Wave Equation

We consider the following fractional diffusion-wave equation involved by the Caputo
fractional derivative of order α > 0:

Dα
c u + µut − uxx = Q(x, t), 0 ≤ x, t ≤ 1, (1)

where u = u(x, t), µ is a damping parameter, and the Caputo fractional derivative for this
work is defined as

Dα
c u = 1

Γ(2− α) ∫
t

0

uττ(x, τ)
(t − τ)2−α

dτ, 1 < α ≤ 2. (2)

The initial and boundary conditions for Equation (1) is given as follows

u(x, 0) = f0(x), ut(x, 0) = f1(x), u(0, t) = g0(t), u(1, t) = g1(t), (3)

where α, f0, f1, g0, g1, Q are known functions.
We simulate the problem defined in Equations (1)–(3) based on these given functions.

We propose a new numerical method based on Euler wavelets with different sets of
collocation points. Surprisingly, the numerical scheme used in this paper achieved zero
absolute error. The absolute error of the numerical algorithm is defined on the grid
only, which is why we were able to estimate zero absolute error. All examples in the
manuscript are not trivial, which is why we believe that this method can be interesting to
the international community.

3. The New Numerical Scheme

Wavelets are basis set, very well localized functions, and known as a useful tool
for solving various types of differential and integral equations. In particular, orthogonal
wavelets are used extensively to approximate different types of fractional differential
equations in the literature. To solve the proposed problem in Equations (1)–(3), we use
wavelets based on Euler polynomials. We define the Euler polynomials E1(x), E2(x) and
the needed functions for our novel numerical algorithm as follows:
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E1(x) = −1
2
+ x, E2(x) = −x + x2, (4)

I1
1 = ∫

x

0
E1(t)dt = −x

2
+ x2

2
, (5)

I1
2 = ∫

x

0
E2(t)dt = −x2

2
+ x3

3
, (6)

I2
1 = ∫

x

0
I1
1(t)dt = −x2

4
+ x3

6
, (7)

I2
2 = ∫

x

0
I1
2(t)dt = −x3

6
+ x4

12
, (8)

Iα
1 = ∫

x

0

E1(ξ)
(x − ξ)2−α

dξ = x2−α(−3+ α + 2x)
2(−2+ α)(−3+ α) (9)

Iα
2 = ∫

x

0

E2(ξ)
(x − ξ)2−α

dξ = − x3−α(−4+ α + 2x)
−6+ 11(α − 1)− 6(α − 1)2 + (α − 1)3 . (10)

Define Ψ to be the set of all functions given in Equations (4)–(10). For any function
f ∈ Ψ, we define the function ψ(x) as follows

ψ(x) = f (x), on [0, 1],
= 0, otherwise.

Now, assume that

ψ1 = E1, ψ2 = E2, ψ1,1 = I1
1 , ψ2,1 = I1

2 , ψ1,2 = I2
1 , ψ2,2 = I2

2 , ψ1,α = Iα
1 , ψ2,α = Iα

2 ,

we define the following set of functions (wavelets) depending on j, k ∈ Z as

ψ1(j, k, x) = ψ1(2jx − k),

ψ2(j, k, x) = ψ2(2jx − k, ),

ψ(j, k, x) = (ψ1(j, k, x)+ψ2(j, k, x)),

ψ1,1(j, k, x) = ψ1,1(2jx − k),

ψ1,2(j, k, x) = ψ1,2(2jx − k),

ψ2,1(j, k, x) = ψ2,1(2jx − k),

ψ2,2(j, k, x) = ψ2,2(2jx − k),

ψ1(j, k, x) = (ψ1,1(j, k, x)+ψ2,1(j, k, x))/j,

ψ2(j, k, x) = (ψ2,1(j, k, x)+ψ2,2(j, k, x))/j2,

ψ1,α(j, k, x) = ψ1,α(2jx − k),

ψ2,α(j, k, x) = ψ2,α(2jx − k),

ψα(j, k, x) = (ψ1,α(j, k, x)+ψ2,α(j, k, x))/jα−2.

Recall that, see, e.g., [12], a function f ∈ L2(R) can be expanded using the following series,

f (x) =
2
∑
`=1

∞
∑

j,k∈Z
d`(j, k)ψ`(j, k, x), (11)

where,
d`(j, k) = ⟨ f , ψ`(j, k, x)⟩ = ∫R f (x)ψ`(j, k, x)w(x)dx,
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for which ⟨⋅, ⋅⟩ denotes the usual inner product over the space L2(R) and w is a proper
weight function. One may truncate Equation (11) by fn,M as

fn,M =
2
∑
`=1

n
∑
j=0

M−1
∑
k=0

d`(j, k)ψ`(j, k, x). (12)

In order to solve the proposed problem, we construct a vector Ψ f of length M =
2n+1, n ∈ N, such that

Ψ f = (ψ f , σρ(1, 0, x), . . . , σρ(2j, k, x), . . . , σρ(2n, 2n−1, x)), j = 0, 1, 2, . . . , n; k = 0, 1, 2, . . . , 2j−1, (13)

where,
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψ f = 1, σρ = ψ i f f = E1, E2, ρ = 1,
ψ f = x, σρ = ψ1 i f f = I1

1 , I1
2 , ρ = j,

ψ f = x2/2, σρ = ψ2 i f f = I2
1 , I2

2 , ρ = j2,
ψ f = Iα

1 (x), σρ = ψα i f f = Iα
1 , Iα

2 , ρ = jα−2.

For example, for n = 2, α = 3/2, we have the following:

• When ψ f = 1, ρ = 1, we have

Ψ f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0, 0, 0, 0, 0, 0, 0) x ≥ 1 or x < 0
(1, x2 − 1

2 , 0, (2x − 1)2 − 1
2 , 0, 0, 0, (4x − 3)2 − 1

2)
3
4 ≤ x < 1

(1, x2 − 1
2 , 0, (2x − 1)2 − 1

2 , 0, 0, (4x − 2)2 − 1
2 , 0) 1

2 ≤ x < 3
4

(1, x2 − 1
2 , 4x2 − 1

2 , 0, 0, (4x − 1)2 − 1
2 , 0, 0) 1

4 ≤ x < 1
2

(1, x2 − 1
2 , 4x2 − 1

2 , 0, 16x2 − 1
2 , 0, 0, 0) True

• When ψ f = x, ρ = j, we have

Ψ f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, 0, 0, 0, 0, 0, 0, 0) x ≥ 1 or x < 0
(x, 1

6 x(2x2 − 3), 0, 1
12(16x3 − 24x2 + 6x + 1), 0, 0, 0, 1

12(4x − 3)3 + 1
8(3− 4x)) 3

4 ≤ x < 1
(x, 1

6 x(2x2 − 3), 0, 1
12(16x3 − 24x2 + 6x + 1), 0, 0, 1

12(64x3 − 96x2 + 42x − 5), 0) 1
2 ≤ x < 3

4

(x, 1
6 x(2x2 − 3), 1

6 x(8x2 − 3), 0, 0, 16x3

3 − 4x2 + x
2 +

1
24 , 0, 0) 1

4 ≤ x < 1
2

(x, 1
6 x(2x2 − 3), 1

6 x(8x2 − 3), 0, 1
6 x(32x2 − 3), 0, 0, 0) True

• When ψ f = x2/2, ρ = j2, we have

Ψ f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( x2

2 , 0, 0, 0, 0, 0, 0, 0) x ≥ 1 or x < 0

( x2

2 , 1
12 x2(x2 − 3), 0, 1

24(1− 2x)2(2x2 − 2x − 1), 0, 0, 0, 1
96(3− 4x)2(8x2 − 12x + 3)) 3

4 ≤ x < 1

( x2

2 , 1
12 x2(x2 − 3), 0, 1

24(1− 2x)2(2x2 − 2x − 1), 0, 0, 1
48(1− 2x)2(16x2 − 16x + 1), 0) 1

2 ≤ x < 3
4

( x2

2 , 1
12 x2(x2 − 3), 1

12 x2(4x2 − 3), 0, 0, 1
96(1− 4x)2(8x2 − 4x − 1), 0, 0) 1

4 ≤ x < 1
2

( x2

2 , 1
12 x2(x2 − 3), 1

12 x2(4x2 − 3), 0, 4x4

3 −
x2

4 , 0, 0, 0) True

• When ψ f = Iα
1 , ρ = jα−2, we have

Ψ f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2
√

x, 0, 0, 0, 0, 0, 0, 0) x ≥ 1 or x < 0

(2
√

x, x2 − 1
2 , 0, 8x2−8x+1√

2
, 0, 0, 0, 32x2 − 48x + 17) 3

4 ≤ x < 1

(2
√

x, x2 − 1
2 , 0, 8x2−8x+1√

2
, 0, 0, 32x2 − 32x + 7, 0) 1

2 ≤ x < 3
4

(2
√

x, x2 − 1
2 , 8x2−1√

2
, 0, 0, 32x2 − 16x + 1, 0, 0) 1

4 ≤ x < 1
2

(2
√

x, x2 − 1
2 , 8x2−1√

2
, 0, 32x2 − 1, 0, 0, 0) True
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Now, define the solution of the proposed system given in Equations (1)–(3) in the form
of a matrix system by the following equation,

uxxtt ≈ ΨT
E(x) ⋅U ⋅ΨE(t), (14)

where U is a matrix of order M ×M that should be determined using some collocation
points, ΨT

E is the transpose of the vector ΨE and E denotes the set of both functions E1 and
E1 that are defined earlier.

Integrating Equation (14) step by step two times with respect to t yields:

uxxt(x, t) ≈ ΨT
E(x) ⋅U ⋅ΨI1(t)+ F

′′

1 (x),

uxx(x, t) ≈ ΨT
E(x) ⋅U ⋅ΨI2(t)+ tF

′′

1 (x)+ F
′′

2 (x),

Now, integrating Equation (14) step by step two times for x, reveals the following:

ux(x, t) ≈ ΨT
I1(x) ⋅U ⋅ΨI2(t)+ t(F

′

1(x)− F
′

1(0))+ F
′

2(x)− F
′

2(0)+ F3(t),

u(x, t) ≈ ΨT
I2(x) ⋅U ⋅ΨI2(t)+ t(F1(x)− F1(0)− xF

′

1(0))+ F2(x)− F2(0)− xF
′

2(0)+ xF3(t)+ F4(t),

where
I1 = {I1

1 , I1
2}, I2 = {I2

1 , I2
2},

and F1(x), F2(x), F3(t), F4(t) are arbitrary functions that can be determined using the initial
and boundary conditions given in Equation (3).

Hence, we have

u(x, t) ≈ ΨT
I2(x) ⋅U ⋅ΨI2(t)+ t( f1(x)− (xF

′

3(0)+ F
′

4(0)))+ f0(x)− xF3(0)− F4(0)+ xF3(t)+ g0(t),

ut(x, t) ≈ ΨT
I2(x) ⋅U ⋅ΨI1(t)+ f1(x)− xF

′

3(0)− F4
′(0)+ xF

′

3(t)+ g
′

0(t),

uxx(x, t) ≈ ΨT
E(x) ⋅U ⋅ΨI2(t)+ t f

′′

1 (x)+ f
′′

0 (x),

utt(x, t) ≈ ΨT
I2(x) ⋅U ⋅ΨE(t)+ xF

′′

3 (t)+ g
′′

0 (t),

Dα
c u(x, t) ≈ 1

Γ(2− α)
(−xΨT

I2(x) ⋅U ⋅ΨIα(t)+ΨT
I2(x) ⋅U ⋅ΨIα(t)+ F5(t)+ xF6(t)),

where
Iα = {Iα

1 , Iα
2 }.

Here, we define the functions Fi as follows

F4(t) = g0(t),

F3(t) = g1(t)− g0(t)−ΨT
I2(t) ⋅U ⋅ΨI2(t)+ tc1 + c2,

F5(t) = ∫
t

0

g
′′

0 (τ)
(t − τ)2−α

dτ,

F6(t) = ∫
t

0

g
′′

1 (τ)− g
′′

0 (τ)
(t − τ)2−α

dτ,

c0 = g1(0)− 2g0(0)+ f0(1),

c1 = − f1(1)+ c0/2+ g0(0),

c2 = − f0(1)+ c0/2+ g0(0).

Now, we have all functions needed for the numerical simulation. Let us define
M = 21+n, n = 1, 2, .. as a collocation points and

∆x = 1/M, s0 = 0, si = si−1 +∆x, i = 1, 2, .., M; xi = ti =
1
2
(si−1 + si), i = 1, 2, ..., M.
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Then, we substitute the above equations into the propose system and calculate
Equation (1) for each pair of the collocation points as follows

Dα
c u(xi, tj)+ µut(xi, tj)− uxx(xi, tj) = Q(xi, tj), i, j = 1, 2, ..., M. (15)

Therefore,

1
Γ(2− α)

(−xiΨ
T
I2(xi) ⋅U ⋅ΨIα(tj)+ΨT

I2(xi) ⋅U ⋅ΨIα(tj)+ F5(tj)+ xiF6(tj))+ (16)

µ(ΨT
I2(xi) ⋅U ⋅ΨI1(tj)+ f1(xi)− xiF

′

3(0)− F4
′(0)+ xiF

′

3(tj)+ g
′

0(ti))− (17)

(ΨT
E(x) ⋅U ⋅ΨI2(t)+ t f

′′

1 (x)+ f
′′

0 (x)) = Q(xi, tj) (18)

Note that Equations (16)–(18) generates an M ×M system of algebraic equations in
order to produce our matrix U.

4. Numerical Performance

In this section, we present some examples of the problem proposed in Equations
(1)–(3). The numerical solution demonstrated here achieved a zero absolute error and
that was independent from the number of collocation points, damping parameter µ and
fractional value α. We noticed that there is a numerical phenomenon behind the error
cancellation in this method.

The generated system of algebraic equations given in Equation (15) is not so simple
and it is also a matrix; however, for all examples that we consider, the numerical solution is
not different from the exact solution in all collocation points and that makes this technique
a special and powerful tool capable of achieving such an excellent order of accuracy.

Example 1. Consider the equation

Dα
c u(x, t)+ µut(x, t)− uxx(x, t) = Q(x, t), (19)

where,

Q(x, t) = 1
Γ(2− α) ∫

t

0

uττ(x, τ)
(t − τ)2−α

dτ, 1 < α ≤ 2,

with the following initial and boundary condition given as

u(x, 0) = x, ut(x, 0) = 0, u(0, t) = (2− α)t2, u(1, t) = 1+ (2− α)t2. (20)

The exact solution for this formulation is

ue(x, t) = x + (2− α)t2.

Applying our algorithm, Figure 1 presents the exact solution (left) and exact solution with
numerical solution (middle and right) computed at M = 8, µ = 1, α = 3/2. The maximum absolute
error for the numerical solution is calculated by Mathematica as zero and so it is less than the
minimal machine number 2.22507× 10−308, which means

max∣u(xi, tj)− ue(xi, tj)∣ < 2.22507× 10−308, i, j = 1, 2, ..., M.

Figure 2 shows the visual representation of the values of elements in the matrix generated
during solving the related system of algebraic equations for this example.
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t = 0.0625

t = 0.1875

t = 0.3125

t = 0.4375

t = 0.5625

t = 0.6875

t = 0.8125

t = 0.9375

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

u

Figure 1. The exact solution (left) and numerical solution (points) with exact solution (middle and right) computed for
Example 1 when M = 8, µ = 1, α = 3/2.

1 20 40 64

1

20

40

64

1 20 40 64

1

20

40

Figure 2. The visual representation of the matrix coefficient computed for Example 1 when M = 8,
µ = 1, α = 3/2.

Example 2. Consider the equation

Dα
c u(x, t)+ µut(x, t)− uxx(x, t) = 0. (21)

with the following initial and boundary condition given as

u(x, 0) = x2

2
, ut(x, 0) = 1

µ
, u(0, t) = t

µ
, u(1, t) = 1

2
+ t

µ
. (22)

The exact solution for this formulation is

ue(x, t) = x2

2
+ t

µ
.

In Figure 3, we show the exact solution (left) and exact solution with numerical solution
(middle and right) computed at M = 16, µ = 1, α = 19/10. Again, the maximum absolute error
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for the numerical solution is recognized by Mathematica as zero. Thus, it is less than the minimal
machine number 2.22507× 10−308.

t = 0.03125

t = 0.09375

t = 0.15625

t = 0.21875

t = 0.28125

t = 0.34375

t = 0.40625

t = 0.46875

t = 0.53125

t = 0.59375

t = 0.65625

t = 0.71875

t = 0.78125

t = 0.84375

t = 0.90625

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

Figure 3. The numerical solution (points) with exact solution computed for Example 2 when M = 16, µ = 1, α = 19/10.

Figure 4 shows the visual representation of the values of elements in the matrix
generated during solving the related system of algebraic equations.

1 100 200 256

1

100

200

256

1 100 200 256

1

100

200

256

Figure 4. The visual representation of the matrix coefficient computed for Example 2 when M = 16,
µ = 1, α = 19/10.

Example 3. The numerical phenomenon of the error cancellation also occurs for the wave equation.
In this case, we have α = 2, and so Equation (1) turns to the common form of the wave equation
given by

utt(x, t)+ µut(x, t)− uxx(x, t) = Q(x, t), (23)

where,
Q(x, t) = µ.
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The initial and boundary conditions are given as

u(x, 0) = x, ut(x, 0) = 1, u(0, t) = t, u(1, t) = 1+ t. (24)

The exact solution of this problem is ue(x, t) = x + t. In Figure 5, we present the exact solution
(left) and exact solution with numerical solution (middle and right) computed at M = 8, µ = 1, α = 2.
The maximum absolute error for the numerical solution is zero for this case as well.

t = 0.0625

t = 0.1875

t = 0.3125

t = 0.4375

t = 0.5625

t = 0.6875

t = 0.8125

t = 0.9375

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

x

u

α

Figure 5. The exact solution (left) and numerical solution (points) with exact solution (middle and right) computed for
Example 3 with M = 8, µ = 1, α = 2.

Example 4. The numerical phenomenon of the error cancellation also occurs for the wave equation.
In this case, we choose α = 3/2, and so Equation (1) turns to the common form of the wave equation
given by

Dα
c u(x, t)+ µut(x, t)− uxx(x, t) = Q(x, t), (25)

where,
Q(x, t) = µx.

The initial and boundary conditions are given as

u(x, 0) = 0, ut(x, 0) = x, u(0, t) = 0, u(1, t) = t. (26)

The exact solution of this problem is ue(x, t) = xt. In Figure 6, we present the exact solution
(left) and exact solution with numerical solution (middle and right) computed at M = 8, µ = 1, α = 2.
The maximal absolute error for the numerical solution is zero. This result does not depend on the
number of collocation points, nor the fractional parameters α and µ.
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t = 0.0625

t = 0.1875

t = 0.3125

t = 0.4375

t = 0.5625

t = 0.6875

t = 0.8125

t = 0.9375

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

x

u

Figure 6. The exact solution (left) and numerical solution (points) with exact solution (middle and right) computed for
Example 4 with M = 8, µ = 1, α = 3/2.

Example 5. Let us consider another example by involving the fractional parameter α in the function
Q as follows

Dα
c u(x, t)+ µut(x, t)− uxx(x, t) = 2x(1− x)t2−α

(2− α)Γ(2− α) + 2tx(1− x)+ 2t2. (27)

The initial and boundary conditions are given as

u(x, 0) = 0, ut(x, 0) = 0, u(0, t) = 0, u(1, t) = 0. (28)

This example has been considered and discussed for µ = 1 by many authors, see, e.g., [11,13,14].
The exact solution for this case has the following form ue = t2x(1− x). Using our technique, we
are able to solve it with a proper setting of precision of the numerical technique. For instance, in
Figure 7, we provide the exact solution and numerical solution (points) computed with machine
precision of 1.11022× 10−16 ( shown in Figure 8, left). Increasing precision up to 10−30, we get the
numerical solution with zero absolute error (as it shown in Figure 8, right).

t = 0.0625

t = 0.1875

t = 0.3125

t = 0.4375

t = 0.5625

t = 0.6875

t = 0.8125

t = 0.9375

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

0.20

x

u

Figure 7. The exact solution (left) and numerical solution (points) with exact solution (middle and right) computed for
Example 7 for M = 8, µ = 1, α = 3/2.
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t = 0.5625

t = 0.6875
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6.×10
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x

Δ
u

t = 0.0625

t = 0.1875

t = 0.3125

t = 0.4375

t = 0.5625

t = 0.6875

t = 0.8125

t = 0.9375

0.0 0.2 0.4 0.6 0.8
0

2.×10
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4.×10
-301

6.×10
-301

8.×10
-301

1.×10
-300

Figure 8. The absolute error computed for Example 5 given that M = 8, µ = 1, α = 3/2 with machine precision (left sub-figure)
and with double precision (right sub-figure).

5. Numerical Technique for Nonlinear Fredholm and Volterra Integral Equation

Let us now consider the following form of Volterra integral equation of the second kind

u(x) = g(x)+∫
x

0
K(x, t, u(t))dt, 0 ≤ x ≤ 1, (29)

where g and K (the kernel) are known functions. It is well known that Equation (29) has a
unique solution under following conditions [15]:

(1) g(x) is continues and bounded on 0 ≤ x ≤ 1;
(2) The kernel K(x, t, u) is bounded and uniformly continuous in both x and t, for all

finite u where 0 ≤ t ≤ x ≤ 1;
(3) The kernel K(x, t, u) satisfies the uniform Lipschitz condition

∣K(x, t, u1)−K(x, t, u2)∣ ≤ L∣u1 − u2∣, (30)

for all finite u1,2 and 0 ≤ t ≤ x ≤ 1.

To solve Equation (29), we use Euler wavelets in the form of vector ΨE that we defined
earlier. Then, we proposed that the numerical solution has the following setting:

u(x) = A ⋅ΨE(x), (31)

where the vector A = (a1, a2, ..., aM) can be computed using the collocation technique
such that

M = 21+n, n = 1, 2, ...,

and ΨE(x) is defined considering ρ(j) = 2.
To do this, we first transform the integral in Equation (29) by substituting

t = x
2
(s + 1),−1 ≤ s ≤ 1.
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Then, this integral turns to the fixed limit integral, and so it can be approximated by a
finite sum using the Gauss quadrature rule as follows:

∫
x

0
K(x, t, u(t))dt = x

2 ∫
1

−1
K(x, x(s + 1)/2, u(x(s + 1)/2))ds (32)

= x
2

2M
∑
i=1

wiK(x, x(si + 1)/2, u(x(si + 1)/2))+∆, (33)

where wi are weights, si are points of the Gauss quadrature rule defined on (−1, 1), and
∆ is the error of approximation. Substituted Equations (31) and (32) in Equation (29) and
using the assumed collocation points, we get a system of algebraic equations:

A ⋅ΨE(xj) = g(xj)+
xj

2

2M
∑
i=1

wiK(xj, xj(si + 1)/2, A ⋅ΨE(xj(si + 1)/2)), (34)

for j = 1, 2, ..., M and ∆ = 0.
The system of nonlinear algebraic equations given in Equation (34) can be solved by

using several method. In this work, we use Newton’s iterative technique.

6. Numerical Examples

The parameters of the Gauss quadrature rule are not exact; however, it can be calcu-
lated with high precision of 10−60, it is possible to solve the system in Equation (34) with
absolute error of 0.× 10−31. We can consider this solution as a numerical solution with zero
absolute error without future estimation. For the examples in this section, the numerical
solution has absolute error as of 0.× 10−31. Furthermore, we consider some intermediate
results computed with machine precision as of 1.11022× 10−16.

Example 6. This example has been discussed by many authors, see for example [16–18]:

u(x) = x2

2
(1+ cos x2)+∫

x

0
tx2 sin(u(t))dt (35)

The exact solution of this equation is given by u = x2. Using an iterative multistep kernel
method [16] it is possible to get the numerical solution of Equation (35) with absolute error of
7.8974× 10−10, and using the method proposed in [17], the best result has absolute error of 10−6.
Using our method, we get numerical solution with maximum absolute error of 2.77556 × 10−17

computed with the machine precision (Figure 9, left and middle) and of 0 × 10−31 computed with
double precision and with precision of 10−60 for the Gauss quadrature rule parameters wi, si (Figure
9, right). Note that, we have used ρ(j) = 2 for this case.

Exact

Numeric

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8

5.×10-18

1.×10-17

1.5×10-17

2.×10-17

2.5×10-17

0.0 0.2 0.4 0.6 0.8

2.×10-32

4.×10-32

6.×10-32

8.×10-32

1.×10-31

Figure 9. The numerical solution (points) with exact solution (left) and the absolute error computed for Example 6 with
machine precision (middle), and with double precision (right).
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Example 7. Now, we consider the following nonlinear Fredholm integral Equation [19,20]:

u(x) = −x2 − x
3
(2

√
2− 1)+ 2+∫

1

0
xt

√
u(t)dt (36)

The exact solution for this problem is u(x) = 2− x2. This problem can be solved by the Haar
wavelets method as in [19,20] with absolute error of 3.1× 10−5, 4.2× 10−6, respectively, where they
used 128 collocation points to get into these bounds. With our method, with only 16 collocation
points, we have achieved a numerical solution with absolute error of 6.64685 × 10−20 computed
using the machine precision, and as of 0 × 10−31 computed using a double precision as shown in
Figure 10.

Exact

Numeric

0.2 0.4 0.6 0.8 1.0
x

1.2

1.4

1.6

1.8

2.0

0.2 0.4 0.6 0.8

1.×10
-20

2.×10
-20

3.×10
-20

4.×10
-20

5.×10
-20

6.×10
-20

7.×10
-20

0.0 0.2 0.4 0.6 0.8

2.×10
-32

4.×10
-32

6.×10
-32

8.×10
-32

1.×10
-31

Figure 10. The numerical solution (points) with exact solution (left) and the absolute error computed for Example 7 with
machine precision (middle), and with double precision (right).

Example 8. We consider now the following nonlinear Volterra integral equation based on two
parameters such that

u(x) = x2 − x5+β+γ

5+ γ
+∫

x

0
xβtγu2(t)dt. (37)

The exact solution of this equation is u = x2. Numerical experiments with different β, γ
shown that for any integer β, γ = 0, 1, 2, ..., 27 the numerical solution has zero absolute error for all
collocation points and for n = 3. For integer γ = 0, 1, 2, ..., 27 and for some 1 ≤ β ≤ 27 including
π and e the numerical solution has zero absolute error. For non integer β, γ > 1 there is absolute
error that varies from zero up to 10−15. However, we cannot check every β, γ due to numerical
limitations. The graphs of the exact, numerical and error results are depicted in Figure 11.
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Exact

Numeric

0.2 0.4 0.6 0.8 1.0
x
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4.×10-201

6.×10-201

8.×10-201

1.×10-200
Absolute error

Figure 11. The numerical solution (points) with exact solution (left) and the absolute error computed for Example 8 (right).

Example 9. Finally, we consider the generalized form of Equation (35) based on two parameters as

u(x) = x2 − 1F2( 3+γ
4 ; 3

2 , 7+γ
4 ;− x4

4 )
3+ γ

x3+β+γ +∫
x

0
xβtγ sin(u(t))dt, (38)

where 1F2(a; b; z) is the generalized hyper-geometric function. The exact solution of this formulation
is u = x2. Note that, Equation (35) is a special case of Equation (38) when β = 2, γ = 1. The
numerical experiments for any integer β, γ = 0, 1, 2, ..., 80 demonstrate a numerical solution with
zero absolute error up to β = 30, γ = 30, and then maximum absolute error increases from 9× 10−50

for β = 31, γ = 31 to 1.01 × 10−28 for β = 80, γ = 80. For any integer γ = 0, 1, 2, ..., 30 and real
0 ≤ β ≤ 30, the numerical solution has zero absolute error for all tested points including π and e.
We present the exact, numerical and error results in Figure 12.
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x
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0.4

0.6

0.8
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Figure 12. The numerical solution (points) with exact solution (left) and the absolute error computed for Example 9 (right).
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7. Conclusions

In this work, a novel numerical method based on a proper wavelet systems generated
via Euler functions is proposed. The collocation algorithm based on Euler wavelets has
been applied to the time-fractional diffusion wave and nonlinear Fredholm and Volterra
integral equations. We used some truncated representations based on Euler wavelets
to convert the proposed equations to a system of algebraic equations based on specific
discretization. The reduced system was converted to a matrix form and simulated using
Mathematica software.

We numerically solved a series of examples related to the proposed equations, where
the numerical results achieved an exceptional absolute error among other numerical
schemes in the literature. We provided some graphical illustrations to show the efficiency
of the method.
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