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Abstract: This paper studies rough approximation via join and meet on a complete orthomodular
lattice. Different from Boolean algebra, the distributive law of join over meet does not hold in
orthomodular lattices. Some properties of rough approximation rely on the distributive law. Further-
more, we study the relationship among the distributive law, rough approximation and orthomodular
lattice-valued relation.
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1. Introduction

In 1982, Pawlak [1] proposed rough set theory as an excellent tool for incomplete
information processing. Since then, a series of works describe rough sets relying on the
mathematical structure of the set, such as logics [2–4], algebraic and topological struc-
tures [5,6]. Rough sets over different mathematical structures have different properties.
In particular, rough sets over Boolean algebra [7,8], lattice effect algebra [9], residuated
lattices [10–16] and other lattices [17–19] have been studied.

In 1936, Birkhoff and von Neumann [20] considered the orthomodular lattice as
quantum logic for studying the algebraic structure of quantum mechanics. There are many
extensions of Pawlak’s rough set, such as fuzzy rough sets [21,22], covering based rough
sets [23–25], probabilistic rough sets [26,27], soft rough sets [28–31], Diophantine fuzzy
rough sets [32–35], multi-granulation rough sets [36–38], hesitant fuzzy rough set [39]
and so on. However, as far as I know, there is only a little literature addressing the
rough sets and quantum logics together. In 2017, Hassan [40] considered a rough set
classification method via quantum logic. In our previous work [41], we proposed rough
set via join and meet on a complete orthomodular lattice (COL). Since orthomodular
lattices are different from Boolean algebras, in particular, the distributive law not hold
in orthomodular lattices, then we find many basic properties of rough sets rely on the
distributive law. Obviously, the underlying laws of logic play an important part in the
concept of rough approximations. However, sometimes the underlying laws of logic
were taken for granted in rough approximations based on logics. In order to enhance the
importance of the underlying laws of logic in rough set theory, a useful method is set up
based on the equivalence between the underlying laws of logic and the basic properties of
rough approximations. Note that Pawlak’s rough sets also rely on the equivalence relation.
In this paper, we studied the relations among the distributive law, rough approximations
and lattice-valued relation. Moreover, some topological structures of orthomodular lattice-
valued rough approximations are investigated.

The paper is organized as follows: In Section 2, we recall definitions of orthomodular
lattices and orthomodular lattice-valued rough approximations. In Section 3, we study the
relationship among the distributive law, rough approximations and lattice-valued relations.
In Section 4 is the conclusion.
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2. Preliminaries
2.1. Orthomodular Lattices

First, we recall definitions of orthomodular lattices, for details see [42–48].
A COL L =< L,≤,∧,∨,⊥, 0, 1 > is a complete bounded lattice and unary operator ⊥

has the following properties: for all η, ξ ∈ L

(1) η⊥ ∨ η = 1, η⊥ ∧ η = 0;
(2) η⊥⊥ = η ;
(3) η ≤ ξ ⇒ ξ⊥ ≤ η⊥;
(4) η ≥ ξ ⇒ η ∧ (η⊥ ∨ ξ) = ξ.

The property (4) is the orthomodular law, denoted by (OL). It is weaker than the
distributive law, denoted by DL, which is not valid in orthomodular lattice.

An orthomodular lattice-valued set (l-valued set for short) is a mapping E : U → L,
where U is a finite universe. For any a ∈ L, â is the constant l-valued set, i.e., â(x) = a,
∀x ∈ U. Similarly, an orthomodular lattice-valued relation (l-valued relation for short) on
U is a mapping E : U ×U → L. We say R is serial, if ∨y∈U R(x, y) = 1 for all x ∈ U. We
say R is ∧−transitive, if R(α, γ) ≥ ∨β∈U R(α, β) ∧ R(β, γ) for all α, β, γ ∈ U.

2.2. Rough Approximations on a COL

Then, we recall the rough approximations on a COL [41].

Definition 1 ([41]). Let L be a COL and R be an L-valued relation on a finite universe U. With
each L-valued set E on U, the lower approximation operator (LAO) and the upper approximation
operator (UAO) of E are defined, respectively, as follows:

LR(E)(µ) =
∧

ν∈U

(
R(µ, ν)⊥ ∨ E(ν)

)
, µ ∈ U (1)

and

TR(E)(µ) =
∨

ν∈U

(
R(µ, ν) ∧ E(ν)

)
, µ ∈ U. (2)

The pair
(

LR(E), TR(E)
)

is a L−valued rough set of E relative to COL L.

Example 1. Let C be the set of complex numbers. In the complex Hilbert space
⊗2 C2, |00〉, |01〉,

|10〉 and |11〉 represent its orthonormal base. ρij = span{|ij〉} is denoted the subspace spanned by
|ij〉, i, j = 0, 1. For any closed subspace G and H of

⊗2 C2, G ≤ H if the subspace G is included
in H, ∧ is intersection of subspaces, ∨ is union of subspaces, G⊥ is the orthogonal space of G, 0 is
the zero subspace and 1 is

⊗2 C2. Then L2 =< L2,≤,∧,∨,⊥, 0, 1 > is a COL, where L2 is the
set of all closed subspaces of

⊗2 C2, more details see [43,47].
We define an COL-valued rough approximation whose truth value is a closed subspace of⊗2 C2. Let U = {p, q}, R(p, p) = R(q, q) = 1 and R(p, q) = R(q, p) = v01. Moreover, define

E : U → L2 as E(p) = v00, E(q) = v11. Then

• TR(E)(p) = (R(p, p) ∧ E(p)) ∨ (R(p, q) ∧ E(q)) = (1∧ v00) ∨ (v01 ∧ v11) = v00
• TR(E)(q) = (R(q, p) ∧ E(p)) ∨ (R(q, q) ∧ E(q)) = (v01 ∧ v00) ∨ (1∧ v11) = v11

• LR(E)(p) = (R(p, p)⊥ ∨ E(p)) ∧ (R(p, q)⊥ ∨ E(q)) = (1⊥ ∨ v00) ∧ (v⊥01 ∨ v11) = 0
• LR(E)(q) = (R(q, p)⊥ ∨ E(p)) ∧ (R(q, q)⊥ ∨ E(q)) = (v⊥01 ∨ v00) ∧ (1⊥ ∨ v11) = 0

Example 2. Consider the smallest OL which is not a Boolean algebra, called MO2 [49], as shown
in Figure 1. Let the universe U = {u1, u2, u3}. Define a L-valued set

E =
a

u1
+

a⊥

u2
+

b
u3

(3)
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and a L-valued relation R on MO2 in Table 1. Thus, we have

LR(E)(µ1) =
(

R(µ1, µ1)
⊥ ∨ E(µ1)

)∧ (
R(µ1, µ2)

⊥ ∨ E(µ2)
)∧ (

R(µ1, µ3)
⊥ ∨ E(µ3)

)
=
(
1⊥ ∨ a

)∧ (
0⊥ ∨ a⊥)

)∧ (
0⊥ ∨ b

)
= a

∧
1
∧

1 = a

LR(E)(µ2) =
(

R(µ2, µ1)
⊥ ∨ E(µ1)

)∧ (
R(µ2, µ2)

⊥ ∨ E(µ2)
)∧ (

R(µ2, µ3)
⊥ ∨ E(µ3)

)
=
(
0⊥ ∨ a

)∧ (
a⊥ ∨ a⊥)

)∧ (
0⊥ ∨ b

)
= 1

∧
a⊥
∧

1 = a⊥

LR(E)(µ3) =
(

R(µ3, µ1)
⊥ ∨ E(µ1)

)∧ (
R(µ3, µ2)

⊥ ∨ E(µ2)
)∧ (

R(µ3, µ3)
⊥ ∨ E(µ3)

)
=
(
0⊥ ∨ a

)∧ (
0⊥ ∨ a⊥)

)∧ (
b⊥ ∨ b

)
= 1

∧
1
∧

1 = 1

TR(E)(µ1) =
(

R(µ1, µ1) ∧ E(µ1)
)∨ (

R(µ1, µ2) ∨ E(µ2)
)∨ (

R(µ1, µ3) ∨ E(µ3)
)

=
(
1∧ a

)∨ (
0∧ a⊥)

)∨ (
0∧ b

)
= a

∧
0
∧

0 = a

TR(E)(µ2) =
(

R(µ2, µ1) ∧ E(µ1)
)∨ (

R(µ2, µ2) ∧ E(µ2)
)∨ (

R(µ2, µ3) ∧ E(µ3)
)

=
(
0∧ a

)∨ (
a ∧ a⊥)

)∨ (
0∧ b

)
= 0

∧
0
∧

0 = 0

TR(E)(µ3) =
(

R(µ3, µ1) ∧ E(µ1)
)∨ (

R(µ3, µ2) ∧ E(µ2)
)∨ (

R(µ3, µ3) ∧ E(µ3)
)

=
(
0∧ a

)∨ (
0∧ a⊥)

)∨ (
b ∧ b

)
= 0

∧
0
∧

b = b.

1

a a⊥ b⊥b

0

Figure 1. Orthomodular lattice MO2 [49].

Table 1. The L-valued relation R in Example 2.

R u1 u2 u3

u1 1 0 0
u2 0 a 0
u3 0 0 b
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3. Relation among the Distributive Law, Rough Approximations and
Lattice-Valued Relations

First, we give some relation between distributive law and rough approximations.

Proposition 1. The following three statements are equivalent:

(1) L satisfies DL.
(2) TR(E ∪ F) ≡ (TR(E) ∪ TR(F)).
(3) LR(E ∩ F) ≡ (LR(E) ∩ LR(F)).

Proof. (1)⇒ (2): By using the distributive law of meet over join, we have

TR(E ∨ F)(x) =
∨

y∈U
(R(x, y) ∧ (E ∨ F)(y))

=
∨

y∈U
(R(x, y) ∧ (E(y) ∨ F(y))) (4)

=
∨

y∈U
((R(x, y) ∧ E(y)) ∨ (R(x, y) ∧ F(y)))

= (TR(E) ∨ TR(F))(x).

(2) ⇒ (1): Our purpose is to show a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), ∀a, b, c ∈ L. Put
R(x, y1) = a, and R(x, y) = 0 for other y ∈ U; E(y1) = b, F(y1) = c, and E(y) = F(y) = 0
for other y ∈ U. Then, we have

TR(E ∨ F)(x) =
∨

y∈U
(R(x, y) ∧ (E ∨ F)(y))

= R(x, y1) ∧ (E ∨ F)(y1) (5)

= a ∧ (b ∨ c).

and

(TR(E) ∨ TR(F))(x) = TR(E)(x) ∨ TR(F)(x)

=
( ∨

y∈U
(R(x, y) ∧ E(y))

)
∨
( ∨

y∈U
(R(x, y) ∧ F(y))

)
(6)

=
(

R(x, y1) ∧ E(y1)
)
∨
(

R(x, y1) ∧ F(y1)
)

= (a ∧ b) ∨ (a ∧ c)

Therefore, we obtain a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) from (2).
(1)⇒ (3): By using the distributive law of join over meet,

LR(F ∧ F)(x) =
∧

y∈U

(
R(x, y)⊥ ∨ (E ∧ F)(y)

)
=

∧
y∈U

(R(x, y)⊥ ∨ (E(y) ∧ F(y))) (7)

=
∧

y∈U

(
(R(x, y)⊥ ∨ E(y)

)
∧
(

R(x, y)⊥ ∨ F(y))
)

= (LR(E) ∧ LR(F))(x).
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(3)⇒ (1): Similarly, our purpose is to show a∨ (b∧ c) = (a∨ b)∧ (a∨ c), ∀a, b, c ∈ L.
Let R(x, y1)

⊥ = a, and R(x, y)⊥ = 1 for other y ∈ U; E(y1) = b, F(y1) = c, and E(y) =
F(y) = 1 for other y ∈ U. Then,

LR(E ∧ F)(x) =
∧

y∈U
(R(x, y)⊥ ∨ (E ∧ F)(y))

= R(x, y1)
⊥ ∨ (E(y1) ∧ F(y1)) (8)

= a ∨ (b ∧ c).

and

(LR(E) ∧ LR(F))(x) = LR(E)(x) ∧ LR(F)(x)

=
( ∧

y∈U
(R(x, y)⊥ ∨ E(y))

)
∧
( ∧

y∈U
(R(x, y)⊥ ∨ F(y))

)
(9)

=
(

R(x, y1)
⊥ ∨ E(y1)

)
∧
(

R(x, y1)
⊥ ∨ F(y1)

)
= (a ∨ b) ∧ (a ∨ c)

Therefore, we obtain a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) from (3).

The following results are also based on the distributive law of join over meet.

Proposition 2. If L satisfies DL, then the following three statements are equivalent

(1) R is serial, i.e., ∨y∈U R(x, y) = 1 for all x ∈ U.
(2) TR(â) ≡ â, for any a ∈ L.
(3) LR(â) ≡ â, for any a ∈ L.

Proof. (1)⇒ (2): By using the distributive law of join over meet, we have

TR(â)(x) =
∨

y∈U

(
R(x, y) ∧ â(y)

)
=

∨
y∈U

(
R(x, y) ∧ a

)
= a ∧

∨
y∈U

R(x, y) (10)

= a ∧ 1

= a.

(2) ⇒ (1): Take a = 1; then it follows from the proof of necessity and TR(1̂)(x) = 1 for
every x ∈ X that

∨
y∈U R(x, y) = 1 holds for every x ∈ U. Hence R is serial.

Similarly, we can prove (1)⇔ (3).

Now, we study the relationship among the distributive law, rough approximation and
COL-valued relation.

Proposition 3. If two of the following statements hold, then the third statement holds:

(1) L satisfies DL.
(2) R is ∧−transitive, i.e., R(α, γ) ≥ ∨β∈U R(α, β) ∧ R(β, γ) holds for all α, β, γ ∈ U.
(3) TR(TR(E)) ⊆ TR(E).
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Proof. (1) + (2)⇒ (3): By using the distributive law of join over meet, we have

TR(TR(E))(x) =
∨

y∈U
(R(x, y) ∧ TR(E)(y))

=
∨

y∈U
(R(x, y) ∧ (

∨
z∈U

(R(y, z) ∧ E(z))))

=
∨

z∈U
(
∨

y∈U
(R(x, y) ∧ R(y, z)) ∧ E(z)) (11)

≤
∨

z∈U
(R(x, z) ∧ E(z))

= TR(E)(x).

(1) + (3) ⇒ (2): Assume that R is not ∧−transitive. It follows than that for some
x0, z0 ∈ U,

∨
y∈U(R(x0, y) ∧ R(y, z0)) ≤ R(x0, z0) is not hold.

Let E(z0) = 1 and E(y) = 0 for other y ∈ U. Then, we have

TR(TR(E))(x0) =
∨

y∈U
(R(x0, y) ∧ R(y, z0)) (12)

and

TR(E)(x0) = R(x0, z0). (13)

Therefore, it follows from (3) that
∨

y∈U(R(x0, y) ∧ R(y, z0)) ≤ R(x0, z0).
(2)+ (3)⇒ (1): Given a, b, c ∈ L, let U = x, y, z, R ∈ LU×U which R(x, y) = R(x, z) =

a, R(y, z) = R(z, z) = b, R(z, y) = R(y, y) = c and others are o, and E ∈ LU which E(y) = c,
E(z) = b, E(x) = 0. It easy to see R is ∧−transitive. Then, we have

TR(E)(x) = (R(x, y) ∧ E(y)) ∨ (R(x, z) ∧ E(z)) = (a ∧ c) ∨ (a ∧ b), (14)

TR(E)(y) = (R(y, y) ∧ E(y)) ∨ (R(y, z) ∧ E(z)) = b ∨ c, (15)

TR(E)(z) = (R(z, z) ∧ E(z)) ∨ (R(z, y) ∧ E(y)) = b ∨ c, (16)

and

TR(TR(E))(x) = (R(x, y) ∧ TR(E)(y)) ∨ (R(x, z) ∧ TR(E)(z))

= (a ∧ (b ∨ c)) ∨ (a ∧ (b ∨ c)) (17)

= a ∧ (b ∨ c).

Therefore, by TR(TR(E))(x) ≤ TR(E)(x) we obtain (a ∧ (b ∨ c)) ≤ ((a ∧ c) ∨ (a ∧ b)).
Since (a∧ (b∨ c)) ≥ ((a∧ b)∨ (a∧ c)) always holds. Thus a∧ (b∨ c) = (a∧ b)∨ (a∧ c).

Proposition 4. If two of the following statements hold, then the third statement holds:

(1) L satisfies DL.
(2) R is ∧−transitive.
(3) LR(E) ⊆ LR(LR(E)).

Proof. Similar to Proposition 3.

Propositions 3 and 4 give some basic properties of rough approximations that do not
only rely on the binary relation but also on the distributive law.

Definition 2 ([50]). Let U be a non-empty set, a function in: LU → LU is an l−valued interior
operator if and only if (iff) for all E, F ∈ LU it satisfies:

(1) in(â) = â;
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(2) in(E) ⊆ E;
(3) in(E ∩ F) = in(E) ∩ in(F);
(4) in(in(E)) = in(E);

Definition 3 ([50]). Let U be a non-empty set, a function cl: LU → LU is an l−valued closure
operator iff for all E, F ∈ LU it satisfies:

(1) cl(â) = â;
(2) E ⊆ cl(E);
(3) cl(E ∪ F) = cl(E) ∪ cl(F);
(4) cl(cl(E)) = cl(E);

Proposition 5. If two of the following statements hold, then the third statement holds:
(1) L satisfies DL.
(2) R is serial and ∧−transitive.
(3) LR is an l−valued interior operator.

Proof. Immediate from Proposition 1 of [41] and Propositions 1, 2 and 4.

Note that DL is also a condition of that lower rough approximation is an interior operator.

Proposition 6. If two of the following statements hold, then the third statement holds:
(1) L satisfies DL.
(2) R is serial and ∧−transitive.
(3) TR is an l−valued closure operator.

Proof. Immediate from Proposition 1 of [41] and Propositions 1, 2 and 3.

Similar to Propositions 3 and 4, Propositions 5 and 6 also show that some topology
properties of rough approximations that do not only rely on the binary relation but also on
the distributive law.

Example 3. Consider a L-valued relation R on MO2 in Table 2.

Table 2. The L-valued relation R in Example 3.

R u1 u2 u3

u1 1 0 0
u2 0 1 0
u3 0 0 1

Then LR and TR, respectively, are l−valued interior operator and l−valued closure operator
for any l-valued set E : U → MO2.

Moreover, if we use the following definitions of l−valued interior operator and
l−valued closure operator which are weaker than Definitions 2 and 3, respectively.

Definition 4. Let U be a non-empty set, a function in: LU → LU is an l−valued interior operator
iff for all E, F ∈ LU it satisfies:

(1) in(0̂) = 0̂;
(2) in(E) ⊆ E;
(3) in(E ∩ F) = in(E) ∩ in(F);
(4) in(in(E)) = in(E);

Definition 5. Let U be a non-empty set, a function cl: LU → LU is an l−valued closure operator
iff for all E, F ∈ LU it satisfies:
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(1) cl(1̂) = 1̂;
(2) E ⊆ cl(E);
(3) cl(E ∪ F) = cl(E) ∪ cl(F);
(4) cl(cl(E)) = cl(E);

Then, we have the following results.

Proposition 7. If two of the following statements hold, then the third statement holds:
(1) L satisfies DL.
(2) R is ∧−transitive.
(3) LR is an l−valued interior operator.

Proof. Immediate from Proposition 1 of [41] and Propositions 1 and 4.

Proposition 8. If two of the following statements hold, then the third statement holds:
(1) L satisfies DL.
(2) R is ∧−transitive.
(3) TR is an l−valued closure operator.

Proof. Immediate from Proposition 1 of [41] and Propositions 1 and 3.

Example 4. Consider a L-valued relation R on MO2 in Table 3.

Table 3. The L-valued relation R in Example 4.

R u1 u2 u3

u1 a 0 0
u2 0 a 0
u3 0 0 a

Then LR is an l−valued interior operator of Defintion 4 but is not an l−valued interior
operator of Defintion 2, and TR is an l−valued closure operator of Defintion 5 but is not an
l−valued closure operator of Defintion 3.

4. Conclusions

In this paper, we studied COL-valued rough approximation. Some properties of rough
approximations rely on DL of ∨ over ∧ and binary relation. Obviously, the distributive law
plays an important part in the operation of rough approximations. Many basic properties of
rough approximations do not only rely on the binary relation but also on the distributive law
(see Propositions 2–4). Moreover, some topology properties of rough approximations do not
only rely on the binary relation but also on the distributive law (see Propositions 5–8).

Orthomodular lattices can be viewed as a sharp quantum structure. There is another
concrete or standard quantum logic, called unsharp quantum logics which do not satisfy
the non-contradiction principle [49]. Proceeding from this angle, we can study the rough
approximations based on unsharp quantum logics as future work.

Funding: This research was funded by the National Science Foundation of China under Grant No.
62006168 and Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ21A010001.
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Abbreviations

The following abbreviations are used in this manuscript:
COL complete orthomodular lattice
OL orthomodular law
DL distributive law
LAO lower approximation operator
UAO upper approximation operator
iff if and only if
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