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Abstract: “Odd” factor approximants of the special form suggested by Gluzman and Yukalov
(J. Math. Chem. 2006, 39, 47) are amenable to optimization by power transformation and can be
successfully applied to critical phenomena. The approach is based on the idea that the critical index
by itself should be optimized through the parameters of power transform to be calculated from the
minimal sensitivity (derivative) optimization condition. The critical index is a product of the algebraic
self-similar renormalization which contributes to the expressions the set of control parameters typical
to the algebraic self-similar renormalization, and of the power transform which corrects them even
further. The parameter of power transformation is, in a nutshell, the multiplier connecting the critical
exponent and the correction-to-scaling exponent. We mostly study the minimal model of critical
phenomena based on expansions with only two coefficients and critical points. The optimization
appears to bring quite accurate, uniquely defined results given by simple formulas. Many important
cases of critical phenomena are covered by the simple formula. For the longer series, the optimization
condition possesses multiple solutions, and additional constraints should be applied. In particular,
we constrain the sought solution by requiring it to be the best in prediction of the coefficients not
employed in its construction. In principle, the error/measure of such prediction can be optimized
by itself, with respect to the parameter of power transform. Methods of calculation based on
optimized power-transformed factors are applied and results presented for critical indices of several
key models of conductivity and viscosity of random media, swelling of polymers, permeability in
two-dimensional channels. Several quantum mechanical problems are discussed as well.

Keywords: minimal sensitivity; optimization; power transform; critical index

1. Introduction

Often, the limit-problems are characterized by power laws. Accurate analytical formu-
lae for deterministic and random systems, such as composites, suspensions, and porous
media, can be derived by employing approximants, when the low-concentration series are
supplemented with information on the high-concentration regime near divergence points
signifying the physical percolation effects [1,2].

Sometimes, the results can be improved by simple transformation to the divergent
quantities. It is often assumed that even a naive inverse transformation of the original
truncated series could be accomplished. Generally, one can introduce the so-called power
transform defined in [3]. Below, we consider application of power transform to calculation
of the critical properties and of the critical index in particular. It is possible to find the
critical index as an explicit function of the parameters defining the power transformation.
Instead of optimization of critical amplitudes as in [3–7], we express and optimize the
critical index directly. The critical index is obtained then by finding some optimal power
transformation, demanding the critical index to be minimally sensitive to the parameters
of power transform.

Indeed, as we are interested in the critical index, it seems more natural to optimize the
index directly, rather than to try to find from optimizing some other quantities, even the
critical amplitudes. Furthermore, as the critical indices are not sensitive to the fine details
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of interactions, or to the parameters imposed in the course of optimization, we apply rather
generic optimization conditions to rather short expansions.

Various power transformations are known in statistics. Most notable are the Tukey’s
ladder of powers [8] and Box-Cox transformation [9]. The Box-Cox transformation is
nothing else but the celebrated replica-trick. It is intimately related to the concept of highly
optimized tolerance (HOT) [10]. HOT is viewed as the mechanism behind the power laws.

Formally, we study the behaviour of a real function φ(x) of a real variable x ∈ [0, ∞).
This function is typically defined by a complicated problem that does not allow for an
explicit knowledge of the functional form. However, one can attempt to develop some kind
of perturbation theory. The perturbation theory yields truncated asymptotic expansions
representing the function

φ(x) ' φk(x) (x → 0) (1)

at a small variable x → 0, with k = 0, 1, . . . being perturbation order. The perturbative
series of kth order can be written as an truncated expansion in powers of x as

φk(x) = a0 +
k

∑
n=1

anxn . (2)

Unless otherwise stated, a0 = 1 is chosen. The series (2) will be subject to renormal-
ization. The most difficult region for approximating is that of the large variable. Our
main interest here will be to find the large-variable behaviour of the function, where its
asymptotic form is expected to be

φ(x) ' Bxβ (x → ∞) . (3)

The constant B will be called the critical amplitude and the power β is the critical exponent.
We have to transform the truncated series into convergent expressions with the asymp-

totic behavior (3). We are going to calculate β first, and B second, by employing the
technique of power transforms applied to factor approximants [3].

One can consider the index k as the discrete time. Then, the truncated series (2)
corresponds to the points of the trajectory of the dynamical system. The velocity which
governs the passage from one point to another is approximated from the available truncated
series. Finding the stable fixed points for such a dynamical system means to be able to find
the sum (1) as k→ ∞.

In the vicinity of the fixed point, the functional self-similarity relation between the
consecutive functional approximations can be employed constructively. Moreover, due to
the self-similarity relation, one can look for the fixed point representing the sought sum in
the analytical form, e.g., the power-transformed factor approximant can be considered as
such a representation [3]. For such approximants, one can analytically express the critical
index and amplitude, and optimize the critical index with respect to the parameters of
power transform. To define the power transform in full, we have to apply additional,
optimization conditions of rather general nature. More specifically, the program could
be accomplished by means of the power-transformed “odd” factor approximants [3].
Furthermore, the conditions on fixed points using power transform parameters as control
parameters take particularly simple form and optimization leads to some polynomial-type
equations, relatively easy to solve numerically.

The general idea of application of various optimal conditions in the space of approx-
imations is due to V.I. Yukalov [11,12]. For the particular example, minimal difference
condition was put forward in [13]. Minimal sensitivity condition was exploited in [14].
Kleinert’s variational-perturbation method also employs minimal derivative conditions [15].
However, the method is very difficult to adapt to the purpose of finding an analytical
expression for the sought quantity.

The method of coherent anomaly was suggested and developed by M. Suzuki [16,17].
He applied the ideas of the renormalization group, but specifically considered it in the
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space of approximations. The physical quantities are considered with respect to the
approximation parameter, discrete in most cases, just as in the general approach briefly
discussed above. The method allows to estimate critical indices but does not bring the
concrete approximant whatsoever. Absence of control parameters makes it necessary to
consider high-order approximations to the sought quantity in order to achieve better results.

Various self-similar techniques were applied to calculations with short series [5,6,18],
but they all appear to be designed for providing lower and upper bounds for the index.
Such methods combine at least two separate methods and are applied through optimizing
the expressions for critical amplitudes [2,5]. Such an indirect approach to the critical
indices computations can be remedied by reformulating it for the direct optimization of
the expressions for critical indices. However, to accomplish the task, it turned out to be
necessary to extend the class of approximations in order to be able to select possible stable
solutions within the bounds found by other methodologies.

Because of the limited information supplied by the short series, the problem of crit-
ical properties should be attacked by various methods, under various assumptions [2].
The method considered in the current paper does have some unique qualities, such as
incorporating both critical and sub-critical indices simultaneously, while the optimization
procedure is applied directly to the critical index. It appears to give more stable perfor-
mance than all other methods based on finding the index as a control parameter from the
critical amplitude optimization.

2. Power Transform and Minimal Sensitivity Condition for the Index

It is possible to improve the quality of approximants by employing power trans-
forms [3]. To this end, we defined the power transform of the reduced expansion (2) as

Pk(x, m) ≡ φm
k (x) . (4)

In turn, the power transform (4) can be expanded in powers of x giving

Pk(x, m) '
k

∑
n=0

bn(m)xn . (5)

After the self-similar renormalization of the expansion (5) is accomplished by means
of, say, factor approximants, we arrive at an approximant P∗k (x, m). Then, we accomplish
the inverse transformation

Fk(x, m) = [P∗k (x, m)]1/m . (6)

Thus, in distinction with the statistics, we rigidly demand the existence of a direct and
inverse transformation, eradicating an uncertainty in the matter of interpretation existing
in the statistical applications [8,9].

The powers mk = mk(x) are defined by the variational condition

∂Fk(x, m)

∂m
= 0 . (7)

Finally, the corresponding approximation for the sought function is given by

φ∗k (x) = Fk(x, mk) . (8)

Suppose that after all transformations performed explicitly one can find an explicit
expression for the critical index βk(m), in kth order. When we are interested in the power
law appearing in the large-variable limit and the critical index in particular, the condition (7)
reduces to the requirement that the critical index should not depend on the parameter of
transformation expressed in the following form:

∂βk(m)

∂m
= 0 . (9)
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The differentiation of the critical index leads to the minimal sensitivity condition on
the parameter of transformation m.

Although equation (9) is quite intuitive, it can be explained following the idea put
forward in [7]. Assume that we found the expression for the critical index

β(m) ≈ βk(m),

in kth approximation. Correspondingly, we can find the critical amplitude for the kth
approximation Bk(m) ≈ B(m). Here, we should also recognize that B(m) = B(β(m)). As
at large x

φ∗k (x) ' Bxβ,

the differentiation (7) can be performed, and the following expression obtained for large x,

∂φ∗k (x)
∂m

' xβ

(
∂B
∂β

+ B ln x
)

∂β

∂m
. (10)

Thus, as long as we are interested in large x critical properties, in order to make the
approximation Fk(x, m) minimally sensitive to the transformation parameters it is sufficient
to satisfy the equation (9).

To put the meaning into the formulas one is bound to select the self-similar approx-
imants. Following the work in [3], we consider the kth order “odd” self-similar factor
approximant

P∗k (x) = 1 +Ax
Nk−1

∏
i=1

(1 +Aix)
si , Nk =

1 + k
2

, k = 3, 5, . . . . (11)

The parameters A, Ai and si have to be defined from an odd number of k conditions.
The necessary number of conditions typically is extracted from the conditions of asymptotic
equivalence with the truncated series.

In our study, we insist only that the total number of conditions employed should be
equal to k. The approximant can be considered as “odd” [3], while factor approximants of
“even” type, recently considered as subject of optimization [6], are simply not amenable
to the optimization by power transform. They should be approached by some other
optimization techniques developed previously in [6,7].

With k = 3 we simply have

P∗3 (x) = 1 +Ax(1 +A1x)s1 . (12)

As x → ∞
F∗3 (x, m) '

(
A(m)(A1(m))s1(m)

)1/m
x(1+s1(m))/m.

Minding that A, A1 and s1 are functions of m, the critical index can be found

β ≈ β3(m) =
1 + s1(m)

m
, (13)

but only as the function of parameter m. It has to be found from the simplified minimal
sensitivity condition

∂β3(m)

∂m
= 0 . (14)

After the particular value of m3 ≡ m∗ is found, one can find the the critical index from
the formula (13), and the critical amplitude

B ≈ B3(m∗) =
(
A(m∗)A1(m∗)s1(m∗)

)1/m∗
.
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The form of approximation expressed by the formula (12) is common for all self-
similar approximants known to us, such as roots, factors, additive approximants, continued
roots [3,19,20], i.e., it is not sensitive at all to the assumptions made while constructing
the approximations in higher-orders, and includes the basic, single step of the algebraic
self-similar transformation, as explained in [20,21].

For k = 5 we have

P∗5 (x) = 1 +Ax(1 +A1x)s1(1 +A2x)s2 .

As x → ∞

F∗5 (x, m) '
(
A(m)(A1(m))s1(m∗)(A2(m))s2(m)

)1/m
x(1+s1(m)+s2(m))/m.

With

β ≈ β5(m) =
1 + s1(m) + s2(m)

m
, (15)

the parameter m5 ≡ m∗ has to be found from the minimal sensitivity condition

∂β5(m)

∂m
= 0 , (16)

One can also find the critical amplitude

B ≈ B5(m∗) =
(
A(m∗)(A1(m∗))

s1(m∗)(A2(m∗))
s2(m∗)

)1/m∗
.

In order to simplify formulas without modifying the expressions for critical index and
minimal sensitivity equations, we are going to set A2(m) = 1 (see, e.g., in [7]). However,
imposing such conditions in lower-order would not bring a solution to the optimiza-
tion problem.

The form of the expressions for critical induces (13) and (15), suggests that in special
case when the optimal value is found as m∗ = 0 (or close), one can start, or include into
consideration at par with other approximations, some logarithmic-type approximations as
discussed, e.g., in [22]. As m = 1, the formulas (13) and (15) will correspond to the results
for the critical index originating only from the factor approximants (11) per se.

In the general case of arbitrary m, the critical index is a product of the algebraic trans-
formation which contributes the set of control parameters si, and of the power transform
which corrects them in two ways. First, si are getting “dressed” becoming dependent on
the parameter of power transform m and, second, they are divided by m.

The parameter of power transformation m has a simple meaning of the multiplier
connecting the critical exponent with the correction-to-scaling exponent, to be explained
below in the Section 3.1. Both the power transform and minimal sensitivity condition are of
a non-perturbative origin, based on generic ideas on improving the quality of perturbative
calculations. The expression (15) can be with ease generalized to the kth order,

β ≈ βk(m) =
1 + s1(m) + s2(m) + . . . sk(m)

m
.

3. Critical Point at Infinity

As long as we are concerned with the low-order calculations, it makes sense to
simplify the problem even further. In order to analytically solve the minimal problem, with
only two non-trivial coefficients, a1 and a2, let us impose an additional condition on the
amplitudes, namely,

A1 = A.

This condition does not directly involve the shape of the minimization condition
imposed exclusively on the critical index. Imposing the constraint also allows to greatly
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simplify calculations and obtain a unique solution for the optimization problem in lowest
non-trivial order. Besides, it also guarantees the existence of the (approximate) solution by
guaranteeing positive amplitudes.

From the asymptotic equivalence with the truncated series, we find

A1(m) = A(m) = a1m, s1(m) =
a1

2m− a1
2 + 2a2

2a1
2m

. (17)

From the optimization condition, we find the optimal control parameter

m∗ =
2
(
a1

2 − 2a2
)

3a1
2 . (18)

It leads to the critical index

β ≈ β3 =
9a1

2

8(a1
2 − 2a2)

, (19)

and critical amplitude

B ≈ B3 =

(
2
3

) 9a1
2

8(a1
2−2a2)

(
a1 −

2a2

a1

) 9a1
2

8(a1
2−2a2) . (20)

See Section 3.4 for more general formulas (17) in the case of A1(m) 6= A(m).
For longer series, the optimization condition possesses multiple solutions and addi-

tional constraints should be applied. In particular, we require that the chosen solution
should be best in prediction of the coefficients ak not employed in its construction.

The optimization condition leads to the equation on high-order polynomials in the
parameter m, so that an exact solution cannot be found. On the other hand, the class of
solutions is significantly broadened because the complex-conjugate roots are now allowed.
In some important examples presented below they appear to give the best results when
the constraints are imposed. In principle, the error/measure of such prediction can be
optimized by itself, with respect to the parameter of power transform.

3.1. Swelling of Polymers

An important characteristic of polymer chains is their swelling factor. It is just the
ratio of the mean-square end-to-end distance of the chain, with interactions between its
segments, to the value of the mean-square end-to-end distance of the chain, without such
interactions.

Two-dimensional polymers are often met in chemistry and biology. For such polymers,
perturbation theory with respect to weak interactions can be developed [23,24]. It can be
reduced to a truncated series in a single dimensionless interaction parameter g. For the the
expansion factor Υ(g), it gives

Υ(g) ' 1 +
1
2

g− 0.12154525g2 + 0.02663136g3 − 0.13223603g4, (21)

as g→ 0.
In the strong-interaction limit [25,26], one expects the power law behavior

Υ(g) ' Bgβ (g→ ∞) , (22)

with the critical exponent β = 1/2 . One also considers the critical index ν ≡ 1
2 (1 + β) ,

which gives ν = 0.75.
Application of the formulas presented above gives m∗ = 1.31491, β = β3 = 0.570382,

B = B3 = 0.787252. Correspondingly, ν ≈ 0.785191, well within the bounds ν = 0.77525±
0.021747 calculated in [2].
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In the case of a three-dimensional polymer coil, perturbation theory [23] for the
swelling factor leads to series of the same type as (21), but with the coefficients

a1 =
4
3

, a2 = −2.075385396 , a3 = 6.296879676 ,

a4 = −25.05725072 , a5 = 116.134785 , a6 = −594.71663 .

The strong-coupling limit of the swelling factor Υ(g) can be found from [24], and

Υ(g) ' 1.531g0.3544 (g→ ∞) , (23)

By applying our approach, we obtain m∗ = 2.22321, β = β3 = 0.337351, B = B3 =
1.44279 and the critical index ν ≈ 0.584338. Complete swelling factor looks rather simple,

Υ(g) = φ∗3 (g) =
(

1 +
2.96427g

(2.96427g + 1)0.25

)0.449801
.

The result for the critical index is located within the bounds ν = 0.5814± 0.006 found
earlier in [5], based on the same input form the truncated series.

One may expect that the higher-order terms will have some effect on the results. There
are multiple solutions to the minimal sensitivity equation. The best solution to the minimal
sensitivity problem corresponds to

m∗1 = 2.31467.

The corresponding approximant reads as follows,

Υ(g) = ≺∗5(g) =
(

1 +
3.08622g

(g + 1)0.0869825(6.21143g + 1)0.0954871

)0.432028
. (24)

Asymptotically, at large g
φ∗5 (g) ' Bgβ,

and the critical indices β = 0.353196, ν = 0.588299, and the critical amplitude B = 1.50912.
Compared to all other solutions to the minimal sensitivity condition, formula (24) gives the
smallest average error in estimation of the 5th and 6th order coefficients in the expansion.
The results fit within the bounds marked by the numerical result ν = 0.5886 [24], and by
the numerical result ν = 0.5877 of [27], or even by a slightly lower value of 0.5876 obtained
in [28].

Intriguingly, the “odd” factor approximants contain also the correction-to-scaling
exponent ∆ defined in [2,24,29], as follows:

Υ(g) ' Bgβ

(
1 +

B1

B
g−∆

)
(g→ ∞). (25)

After extraction of the critical behavior, and by rewriting the transformed factor
approximants for k = 3, 5, one can see that in kth order

∆k = βk(m)m.

Note that the technique of optimization from [6], which also dwells on the factor
approximants, always brings ∆ ≡ 1. The case of k = 3 is also qualitative, always bringing
∆ = 0.75.

However, for k = 5, we simply calculate ∆5 ≈ 0.82, in a good agreement with the
numerical estimate ∆ = 0.93 from [24]. Thus the parameter m of the power transformation
is the multiplier connecting the two exponents. The connection is of general nature and
not limited to the case of polymers. Analysis of available literature does confirm that in all
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cases considered in this section, such simultaneous estimation of the two indices works
reasonably well.

3.2. Schwinger Model

The Schwinger model [30,31] represents the Euclidean quantum electrodynamics
interacting with a Dirac fermion field, defined on a lattice in (1+ 1) dimensions. The model
reflects confinement, chiral symmetry breaking, and charge shielding, sharing therefore
the key properties with quantum chromodynamics. The ground state of the model, given
as a function of the dimensionless variable x = m/g. Here, m stands for electron mass and
g is the coupling parameter. It also has the dimension of mass. The energy E = M− 2m,
corresponds to a vector boson of mass M(x).

The expansion at small-x for the ground-state energy [32–35] is known in the follow-
ing form:

E(x) ' 0.5642− 0.219x + 0.1907x2 (x → 0) . (26)

In the complementary, large-x limit [35–38], there is a power law,

E(x) ' Bxβ + O
(

x−1
)

(x → ∞) , (27)

with B = 0.6418, β = −1/3.
To standardize calculations, let us first normalize the expansion (26) to unity at x = 0.

Elementary calculations according to the formulas presented above, give m∗ = −2.32446,
β ≈ β3 = −0.322656, B3 = 1.03374. Restoring the original units, we find the critical
amplitude B = 0.583237. The result for the index fits within the bounds β = −0.311± 0.2
found in [5].

3.3. Harmonium

An N-electron harmonium atom is described by the Hamiltonian

Ĥ =
1
2

N

∑
i=1

(
−∇2

i + ω2r2
i

)
+

1
2

N

∑
i 6=j

1
rij

, (28)

where dimensionless variables are used, ω2

2 stands for the harmonic oscillator force con-
stant [39], and ri ≡ |ri| , rij ≡ |ri − rj| .

Following Cioslowski [39], we consider a two-electron harmonium atom with N = 2.
The ground-state energy for a rigid potential diverges as the power law [39] at large ω,

E(ω) = 3ω + O
(

ω1/2
)

(ω → ∞) . (29)

At a shallow harmonic potential, the energy can be expanded [39] in powers of ω
giving in low orders the following truncation:

E(ω) ' 1.19055 ω2/3 + 2.36603 ω + 0.122492 ω4/3 (ω → 0) . (30)

By introducing the new variable x ≡ ω1/3 , Equation (30) could be reduced to

E(x3) ' 1.19055x2(1 + 1.98734x + 0.102887x2) (x → 0) . (31)

Applying our method to the expression within brackets, we find m∗ = 0.631933,
β3 = 1.18684, B3 = 1.31048, and reconstruct the large ω behaviour

E(ω) ' B ωβ (ω → ∞), (32)
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with B = 3.10063, β = 1.06228. The error of 6% for the critical index should be considered
as quite satisfactory for calculations with such short truncation as (30). The critical index is
well within the bounds β = 1.049± 0.031 found in [5].

3.4. Nonlinear Schrödinger Equation

The following nonlinear Hamiltonian

ĤNLS = − 1
2

d2

dx2 +
1
2

x2 + g|ψ|2 , (33)

defines the one-dimensional stationary nonlinear Schrödinger equation for the wave func-
tion ψ of the Bose-condensed atoms in a harmonic trap. Here, g is a dimensionless cou-
pling parameter.

The energy levels E(g) for the Hamiltonian (33) can be represented in the form E(g) =(
n + 1

2

)
e(g) , where n = 0, 1, 2, . . . labels the eigenvalues. The following expansion for

function e(g) in powers of the effective coupling:

e5(g) = 1 + g− 1
8

g2 +
1

32
g3 − 1

128
g4 +

3
2048

g5, (34)

can be found in [20,40]. Moreover, for the strong-coupling limit we have

e(g) =
3
2

g2/3 + O
(

g−2/3
)

(g→ ∞) . (35)

There are multiple solutions to the minimal sensitivity equation. The best solution to
the minimal sensitivity problem corresponds to the complex-conjugate pair

m∗1 = 1.27731 + 0.320816i, m∗2 = 1.27731− 0.320816i.

The real part of the corresponding approximants gives the following approximant,

≺∗5(g) =
0.5(1 + (1.27731 + 0.320816i)g(1 + (0.437208− 0.179573i)g)−0.253536+0.0807663i×
(g + 1)0.110002+0.0795681i)0.736436−0.184967i+
0.5(1 + (1.27731− 0.320816i)g(1 + (0.437208 + 0.179573i)g)−0.253536−0.0807663i×
(g + 1)0.110002−0.0795681i)0.736436+0.184967i.

(36)

Asymptotically, at large g
φ∗5 (g) ' Bgβ,

and gives a very good critical index β = 0.660389, and critical amplitude B = 1.50916.
Compared to all other solutions to the minimal sensitivity condition, Formula (36)

gives the smallest (by order of magnitude) error in estimation of the 5th order coefficient in
the expansion.

One can also model Bose-condensate within spherically-symmetrical traps by the
following effective Hamiltonian:

Ĥr =
1
2

(
− d2

dr2 + r2
)
+

g
4πr2 χ2 , (37)

for the radial part of the condensate wave function χ(r) [41].
The ground state energy can be approximated by the expansions

E(c) ' 3
2
+

1
2

c− 3
16

c2 +
9
64

c3 − 35
256

c4 (c→ 0), (38)
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and
E(c) =

5
4

c2/5 + O
(

c−2/5
)

(c→ ∞), (39)

where c = g
(2π)3/2 .

Applying our method, we find m∗ = 13/6 ≈ 2.17, β3 ≈ 0.35, B3 = 1.34, and
reconstruct the large c behaviour

E(c) ' Bcβ,

with B = 1.34, β = 0.35. The third-order coefficient (divided by a0) could be estimated
as well, and is equal to 0.112, in a reasonable agreement with the a3/a0 ≈ 0.14 from the
expansion (38).

Avoiding restrictions on the amplitudes by keeping A1(m) 6= A(m), we reconstruct
the unrestricted approximation

F∗3 (x, m) =
(

1 +A(m) x (1 +A1(m) x)s1(m)
)1/m

.

and find
A(m) = a1m ,

A1(m) =
a1

4(−m2)+6a1
4m−5a1

4−12a1
2a2m+12a1

2a2−24a1a3+12a2
2

6a1(a1
2m−a1

2+2a2)
,

s(m) = − 3(a1
2m−a1

2+2a2)
2

a1
4m2−6a1

4m+5a1
4+12a1

2a2m−12a1
2a2+24a1a3−12a2

2 .

(40)

Optimization condition remains of the same form and brings optimal m∗ = 6.0512,
with excellent critical index β3 ≈ 0.39, and good critical amplitude B3 ≈ 1.325, while the
resulting approximant is given as follows,

φ∗3 (c) =
3
2

(
2.01707c(0.343481c + 1)1.35922 + 1

)0.165257
.

The fourth-order coefficient (divided by a0) could be estimated as well, and is equal
to 0.088, in reasonable agreement with the a4/a0 ≈ 0.091 from the expansion (38). It also
reconstructs the large c behaviour

E(c) = Bcβ + O(c−1),

with the results B = 1.325, β = 0.39.

3.5. Quartic Oscillator

To conclude our variations on the theme of perturbed harmonic oscillators, let us
discuss the very popular quantum model of quartic anharmonic oscillator [42], with
the Hamiltonian

Ĥ = − 1
2

d2

dx2 +
1
2

x2 + gx4,

with the anharmonicity parameter g ∈ [0, ∞).
One can construct the perturbation theory for the ground-state energy in the parameter

g→ 0,

e(g) ' 1
2
+

3
4

g− 21
8

g2 +
333
16

g3 − 30885
128

g4 +
916731

256
g5 − 65518401

1024
g6. (41)

The expansion in the parameter g→ 0 is divergent also in high orders.
For large g the series for e(g) have fractional powers, with the leading term from the

strong-coupling expansion of the energy given as follows,

e(g) ' Bgβ (g→ ∞),

with β = 1/3, B ≈ 0.667986.
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However, setting A2(m) = 1 does not lead to a completely satisfactory solution,
although some very reasonable estimates for the critical index and amplitude could be
found following the standard calculations, i.e., optimal complex-conjugate pair

m∗1 = 0.0810036− 5.35446i, m∗2 = 0.0810036 + 5.35446i,

with excellent critical index β5 ≈ 0.3213, and good critical amplitude B5 ≈ 0.6979. However,
an overall picture described by a complete approximant φ∗5 (g) is not so good, as we were
not able to construct an accurate expression for all coupling constants.

However, lifting the restriction on amplitudes, and finding A2(m) at par with other
parameters from the asymptotic equivalence with the truncated weak-coupling expansion,
allows to get a consistent expression for all g. Using five non-trivial conditions from the
weak-coupling expansion and expressing the approximant parameters as functions of m,
one can find m from the condition of minimal error in predicting the 6th order coefficient,
not yet employed. Along this pass we find the following approximant:

φ∗5 (g) =
1
2

(
1 +

16.7519g(1 + 1.86188g)2.42764

(1 + 25.4873g)0.0154605

)0.0895423

. (42)

with quite reasonable estimates for the critical index β ≈ 0.3055 with error of 8.3%, and
the critical amplitude B ≈ 0.7333. To achieve high accuracy, we still need considerably
more terms [22]. The approximant (42) gives good results in pure extrapolation, predicting
the ground state energy with the error remaining less than 3% up to quite large g = 50,
compared with the numerical results [43]. The self-similar approximants from [4] are also
rather accurate, giving the critical index close to 0.3.

The example below shows the value of studying such a model system as the quartic
oscillator, as the series to be studied does resemble very much the series for the quartic os-
cillator.

Let us consider also the energy gap δ(z) between the lowest and first excited states of
the vector boson for the massive Schwinger model in Hamiltonian lattice theory [30,36],
which can be represented for strong coupling constants g as follows:

δ(z) ' 1 + 2z− 10z2+
78.66667z3 − 736.2222z4 + 7572.929z5 − 82736.69z6 + 942803.4z7,

(43)

where z = x2, x = 1
g2a2 , and a is the lattice spacing. The strong increase of the coefficients

makes the series in powers of z widely divergent. They do resemble the truncated expres-
sion for the quartic oscillator. The transition from the lattice formulation to the continuous
limit requires taking the limit a→ 0, implying z→ ∞. In this limit, the gap behaves as

δ(z) ∼ zβ (z→ ∞),

with β = 1/4.
There are two good solutions to the optimization problem. The complex–conjugate pair

m∗1 = 7.13701− 1.35426i, m∗2 = 7.13701 + 1.35426,

with β5 = 0.22433, (10% error), and real solution m∗ = 10.8324, with β5 = 0.237578 (5%
error). The former solution incurs slightly smaller average error in predicting unexploited
three higher-order terms from the expansion (43). Yet, the latter solution is still preferable
as it brings a smaller maximal error of 2.7% in prediction of the remaining three coefficients
from the truncation (43). The real solution corresponds to the approximant

φ∗5 (z) =
(

1 + 21.6649z(1 + z)0.964953(1 + 6.35479z)0.608593
)0.0923153

.
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4. Finite Critical Point

Consider another ubiquitous situation when the function φ(x) of a real variable x
exhibits critical behavior,

φ(x) ' B(xc − x)β, as x → xc − 0 , (44)

with a positive or negative critical index β, and critical amplitude B at a finite critical point
xc. The approach developed for the case of a critical point located at infinity can be applied
with minor modifications when the critical point xc is finite and its position is known, in
conjunction with transformation

z =
x

xc − x
, (45)

while x = zxc
z+1 . In the low-order case of k = 3, just like in the case of critical point located

at infinity, we obtain explicit and uniquely defined expressions,

A1(m) = A(m) = a1mxc, s1(m) =
a1

2mxc − a1
2xc − 2a1 + 2a2xc

2a1
2mxc

. (46)

The optimization problem remains of the same form, and by solving it we find optimal
control parameter

m∗ =
2
3

(
1 +

2(a1 − a2xc)

a1
2xc

)
. (47)

It leads to the critical index

β ≈ β3 = − 9a1
2xc

8(a1
2xc + 2a1 − 2a2xc)

, (48)

and critical amplitude

B ≈ B3 =

(
2
3

) 9a1
2xc

8(a1
2xc+2a1−2a2xc)

(
xc

(
−2a2xc

a1
+ a1xc + 2

)) 9a1
2xc

8(a1
2xc+2a1−2a2xc)

. (49)

A number of examples considered below cover the most interesting for us physical
cases. The problems of conductivity, viscosity, and permeability arising in different contexts
can be solved based on seemingly sparse information.

4.1. 2D Ising Model

Consider spin-1/2 Ising model characterized by the Hamiltonian

Ĥ = − J
2 ∑
〈ij〉

sz
i sz

j ,

with sz
j ≡

Sz
j

S , on a square lattice, with the ferromagnetic interaction J of nearest neighbors,

for spins Sz
j = ±1/2 [44]. The dimensionless interaction parameter is defined as g ≡ J

kBT ,
where kB stands for the Boltzmann constant and T is temperature.

On the square lattice, a high-temperature expansion of the susceptibility χ in powers
of dimensionless inverse temperature g could be obtained in rather high orders [44]. The
starting terms of the expansion are given as follows,

χ(g) ' 1 + 4g + 12g2. (50)
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It is expected [45] that in the vicinity of the threshold gc = ( 2
log(1+

√
2)
)−1 ≈ 0.440687,

the 2D susceptibility diverges as

χ(g) ∼ (gc − g)−γ,

with exact γ = 7
4 .

Application of the formulas presented above gives m∗ = 0.423062, γ = β3 = −1.77279,
B3 = 0.139076. The critical index is well within the bounds γ = 1.76± 0.15, found in [46].
It is significantly better than our previous result γ = 1.923± 0.077, obtained by applying
the technique of root approximants [5].

4.2. Conductivity of Percolating Systems

The conductivity for site percolation model is explained as a transport of classical
particles through a random medium [47,48]. The minimal model of such phenomena is the
Lorenz 2D gas, which is realized on a square lattice with a fraction of sites being excluded
at random. If f stands for the concentration of conducting or not excluded sites in the
Lorenz model, then x = 1− f stands for the concentration of excluded sites. Through the
diffusion coefficient for random walkers on such a lattice one can express the macroscopic
conductivity [47]. The transport ceases to exist at the critical density of the excluded sites
xc corresponding to the site percolation threshold [49], and the conductivity behaves as

σ(x) ∝ (xc − x)t (x → xc − 0) , (51)

with xc = 0.4073, t = 1.310 . Perturbation theory in powers of the variable x = 1− f [47],
gives for the two-dimensional square lattice the expansion

σ(x) ' 1− πx + 1.28588x2 (x → 0) . (52)

In our approach, we obtain m∗ = −0.549066, t = β3 = 1.36596, B3 = 5.52404. The
estimate for the critical index is well within the bounds t = 1.291± 0.1 found in [46].

The effective conductivity for the three-dimensional site percolation is studied similarly
to the two-dimensional one. The conductivity also exhibits the critical behaviour [50–54], de-
scribed just as in the equation (51), but with xc = 0.688, t = 1.9. Perturbation theory gives

σ(x) ' 1− 2.52x + 1.52x2 (x → 0) . (53)

Using our method, we get m∗ = −0.421068, t = β3 = 1.78119, B3 = 3.40252. The
estimate for the critical index is well within the bounds t = 1.82± 0.09, calculated in [46].

4.3. Permeability of the Two-Dimensional Channels

Let us consider the case of a Darcy flow in the two-dimensional channel bounded
by the surfaces z = ±b (1 + ε cos x) , where ε is termed waviness. The permeability K(ε)
behaves critically [2,5,55]. Precisely, it tends to zero as

K(ε) ∼ (εc − ε)κ , as ε→ εc − 0 , (54)

with εc = 1, κ = 5
2 . An expression for permeability can be derived by iterative perturbation

method. It gives a truncated expansion in powers of the waviness [2,55–57].
The permeability, for b = 0.5, has the expansion

K(ε) ' 1− 3.14963 ε2 + 4.08109 ε4, as ε→ 0 , (55)

Application of the formulas presented above gives m∗ = −0.305188, κ = β3 = 2.4575,
B3 = 1.10206. The critical index is within the bounds κ = 2.372± 0.19 found in [5], but is
much closer to the upper bound and to the expected value of 5/2 than to the center.
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The permeability, for b = 0.25 [56], has the expansion

K(ε) ' 1− 3.03748 ε2 + 3.54570 ε4, as ε→ 0 . (56)

Application of the formulas presented above gives m∗ = −0.284699, κ = β3 = 2.63436,
B3 = 0.670918. The critical index is located well within the bounds κ = 2.543± 0.2 found
in [5].

4.4. Effective Viscosity

The elasticity problem of perfectly rigid spherical inclusions randomly embedded into
an incompressible matrix is analogous to the problem of high-frequency effective viscosity
of a hard-sphere suspension [58–60]. The viscosity, considered as a function of the variable
f ≡ 4π

3 r3
s ρ, (ρ ≡ N

V ), in which rs is the sphere radius and ρ is average density, exhibits the
critical behaviour

η( f ) ∝ ( fc − f )−S ( f → f − 0) , (57)

where fc = 0.637,S = 1.75 [61]. The small f -expansion form [60], reads as

η( f ) ' 1 +
5
2

f + 5.0022 f 2 ( f → 0) . (58)

Using our method, we find m∗ = 0.436789, S = −β3 = 1.71708, B3 = 0.24717. The
estimate for the critical index appears to fit within the bounds S = 1.726± 0.06, obtained
in [5]. In what follows, one should distinguish the critical index for viscosity (elasticity) S
from the critical index for superconductivity denoted as s.

4.5. Critical Index for Superconductivity in Random 3D Case

In the limiting case of a three-dimensional randomly distributed perfectly conducting
inclusions, the effective conductivity σe is expected to tend to infinity as a power law, with
critical index s, as the concentration of inclusions f tends to fc ≈ 0.637, the maximal value
in 3D, and

σe( f ) ∼ ( fc − f )−s.

The superconductivity critical index s is expected to have the value of 0.73± 0.01 [54].
There is also a slightly larger estimate, s ≈ 0.76 [62].

For sample generation, the Random Sequential Adsorption protocol was employed [1].
The consecutive objects were placed randomly in the cell, rejecting those that overlap with
the previously absorbed one. For macroscopically isotropic composites, the expansion for
scalar effective conductivity was found to be

σe = 1 + 3 f + 3 f 2 + 4.80654 f 3 + O( f
10
3 ).

Application of the formulas presented above gives m∗ = 0.919937, s = −β3 =
0.815273, B3 = 1.09667.

For the effective conductivity we find the following compact expression

σe( f ) = φ∗3 ( f ) =

1 +
1.758 f(

0.758 f+0.637
0.637− f

)0.25
(0.637− f )


1.08703

,

which can be expanded in powers of f . It does exceptionally well in estimating the
coefficient a3 ≈ 4.7963, deviating from the expected value only 0.21%. The 4th-order
coefficient can be estimated as well, a4 ≈ 6.68.

The low-order estimate appears to be self-consistent, because the estimate for the
critical index is supported by a simultaneous excellent result for a3. Of course, one can
attempt to incorporate the third-order coefficient explicitly, i.e., to devise the approximant
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P∗3 ( f ) with A 6= A1. Computations are still possible to perform in a symbolic form. In
such case the estimates become very close to the numerical results of [54], and to the results
of calculations with various approximants [2], based on the same number of terms,

σe( f ) = φ∗3 ( f ) =

1
2 ((1−

(2.55836+0.117254i) f (1+ (1.28492−0.744437i) f
0.637− f )−0.042703+0.0208865i

f−0.637 )0.745398−0.034163i+

(1 +
(2.55836−0.117254i) f (1− (1.28492+0.744437i) f

f−0.637 )−0.042703−0.0208865i

0.637− f )0.745398+0.034163i),

(59)

leading to the critical index s = 0.714, and the critical amplitude B = 1.46. The 4th order
coefficient can be estimated as a4 ≈ 6.01. But to confirm or reject the results one will have
to rely on some novel, additional information, which is not available at the moment.

4.6. Critical Index for Superconductivity of Honeycomb Array

Finally, consider a regular honeycomb array of perfectly conducting (superconducting)
disks. As their volume fraction f → fc, the effective conductivity of the array goes to infinity
as a power law similar to previous example, with critical index s, as the concentration of
disks f tends to fc =

π
3
√

3
.

It is always instructive to study the regular case by yet different methods, other than
employed in [63], and estimate the critical index s. The exact value for the index is expected
to be 1/2. The small- f polynomial has the following form,

σe ' 1 + 2 f + 2 f 2 + 2 f 3 + 4.14933 f 4 + 6.29865 f 5 + 8.44798 f 6.

There are multiple solutions to the optimization problem understood as solving
the minimal sensitivity equation. Note that we have to apply first the transformation
z( f ) = f

fc− f , as in the formula (45), and then construct the critical index β5(m) (mind the
sign!) and approximant φ∗5 (z( f )), as shown above in the Section 2.

The best solution to the minimal sensitivity problem corresponds to the complex–
conjugate pair

m∗1 = 2.46436− 0.462709i, m∗2 = 2.46436 + 0.462709i.

The real part of the corresponding approximants gives

σe( f ) = φ∗5 ( f ) =
1
2 ((1 + (3.2629 + 0.850614i) f (1 + (1.56155−0.331863i) f

0.6046− f )0.375221+0.347239i×
( 1

0.6046− f )
0.788789−0.137954i)0.391967−0.0735958i+

(1 + (3.2629− 0.850614i) f ( 1
0.6046− f )

0.788789+0.137954i×
(1 + (1.56155+0.331863i) f

0.6046− f )0.375221−0.347239i)0.391967+0.0735958i).

(60)

Asymptotically, as f → fc,

φ∗5 (g) ' B( fc − f )β,

with reasonable estimates for critical index −β = s = 0.471655, and critical amplitude
B = 0.862639. The expected value for the index is 1/2 [63], the same as for other regular
arrays of inclusions [1,64].

Consider for reassurance also the toy model represented by the function

φ(x) =

√
1+x
1−x − 1

x
,

with transition at the point xc = 1, index β = 1/2 and amplitude B =
√

2.
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As x → 0

φ(x) ' 1 +
x
2
+

x2

2
+

3x3

8
+

3x4

8
+

5x5

16
+

5x6

16
.

We find that the same conclusions as were reached above for realistic problems, apply
here. Namely, there are multiple solutions of the higher-order optimization condition and
the best result is achieved for the complex–conjugate pair

m∗1 = 2.89498− 1.37644i, m∗2 = 2.89498 + 1.37644i.

The real part of the corresponding approximants gives

φ∗5 ( f ) = 1
2×

((1− (1.44749+0.688222i)x( 1
1−x )

0.720503+0.570413i(1− (1.3549+1.04464i)x
x−1. )−0.194988−0.0166872i

x−1. )0.281736−0.133954i+

(1− (1.44749−0.688222i)x( 1
1−x )

0.720503−0.570413i×(1− (1.3549−1.04464i)x
x−1 )−0.194988+0.0166872i

x−1 )0.281736+0.133954i),

(61)

while the critical index β = −0.503966. As was already suggested above, the good result
for the index does not necessarily preclude correspondingly accurate results for the critical
amplitude B ≈ 0.451, as the optimization procedure involves the critical index, but not
the critical amplitude. The formula (61) for the effective conductivity appears to be smart,
meaning that it does more accurately (by orders of magnitude) than other solutions to the
optimization problem, predict the average error for the remaining 2 coefficients from the
expansion for conductivity.

4.7. Compressibility Factor of Hard-Disks Fluids

The state of hard-disks fluids is described by the compressibility factor

Z =
P

ρkBT
= Z( f )

(
f ≡ πρ

4
a2

s

)
, (62)

in which P is pressure, ρ is density, T is temperature, as is the disk diameter, kB stands for
Boltzmann constant, and f is called packing fraction. The compressibility factor exhibits
critical behaviour at a finite critical point. This behavior has been found from phenomeno-
logical equations as

Z( f ) ' B( fc − f )β ( f → fc − 0) , (63)

with the fitted parameters fc = 1 and β = −2 [65,66], although these are not asymptotically
exact values. For low packing fractions the compressibility factor is represented by the
virial expansion

Z( f ) ' 1 + 2 f + 3.12802 f 2 + 4.25785 f 3 + 5.3369 f 4 + 6.36296 f 5 + 7.35186 f 6

+8.3191 f 7 + 9.27215 f 8 + 10.2163 f 9 ,
(64)

from in [67,68]. Using the same optimization methods as above, we find m∗ = 0.808791,
β5 = −1.80539, B5 = 1.84906 and the approximant

φ∗5 ( f ) =

1 +
1.61758

(
1

1− f

)0.831449
f

(1− f )
(

1 + 1.23536 f
1− f

)0.371267


1.23641

, (65)

which employs the terms up to the 4th order in f and predicts the rest with maximal error
of just 0.52%. Simply setting m∗ = 1 leads to a simpler expression

φ∗5 ( f , 1) = 1 +
2 f
(

1−0.122783 f
1− f

)2.29987

(
1

1− f

)0.453479 ,
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which works with almost the same accuracy in predicting the coefficients from the truncated
series (64). The latter formula may yet have advantage in predicting the higher-order
coefficients. Such coefficients were only estimated up to 15th order (see, e.g., the book [2]
and references therein), but are not exact unlike the others.

5. Concluding Remarks

We conclude that “odd” factor approximants of the special form represented by the
Formula (11) are amenable to optimization by power transformation and can be successfully
applied to the critical phenomena of various physical nature.

The novelty of the current approach amounts to the idea that the critical index by
itself should be optimized through the parameters of power transform calculated from
the optimization condition. The critical index is a product of the algebraic transformation
which contributes to the expressions the set of control parameters si, and of the power
transform which corrects them.

The parameter of power transformation m has the simple meaning of the multiplier
connecting the critical exponent with the correction-to-scaling exponent. Both, the power
transform and minimal sensitivity conditions are of a non-perturbative nature. As we
optimize the critical index directly the results for the indices appear to be more accurate
than obtained from optimization of critical amplitudes with a subsequent determination of
the indices with optimal conditions calculated for the amplitudes.

We study mostly the minimal model of critical phenomena based on expansions with
only two coefficients and critical points. The power-transformed factor approximants of
the form (11) are asymptotically equivalent to such series. The approximants are optimized
by complementing them with natural optimization conditions. The minimal sensitivity
condition imposed on the critical index appears to bring quite accurate, uniquely defined
results given by simple formulas. Surprisingly, many important cases of critical phenomena
are being covered by the simple formulae. The knowledge of higher-order coefficients
appears to be excessive as critical indices could be estimated from only two low-order
coefficients. The multitude of the unknown higher-order coefficients can be mimicked by
optimized power-transformed factor approximations.

For the longer series, the optimization condition possesses multiple solutions and
additional constraints should be applied. In particular we require that the chosen solution
is to be best in prediction of the coefficients ak not employed in its construction. In princi-
ple, the error/measure of such prediction can be optimized by itself, with respect to the
parameter of power transform. The latter idea dwells on the requirement of independence
of the critical indices from the higher-order coefficients an. Some other approaches to long
series were discussed in the preceding work [2,22].

Methods of calculation based on optimized power-transformed factors are applied
and results presented for critical indices of several key models of conductivity and viscosity
of random media, swelling of polymers, and permeability in two-dimensional channels.
Several quantum mechanical problems based on the strongly perturbed harmonic oscillator
are discussed as well.

Accurate calculations with short truncated series are possible and accurate in quite a
few important cases, because the higher-order coefficients appear to be redundant close
to the critical point, and critical indices could be estimated just from two low-order coeffi-
cients by imposing some universal conditions of non-perturbative nature. Power transform
extends the class of approximations and brings some unique quality, such as incorporat-
ing both critical and sub-critical indices simultaneously. The optimization procedure is
developed to estimate the indices together.

Convergence is not always as fast as in the examples presented above. To improve
results one would try adding more terms from the truncation when possible, and apply
different optimized approximations, or even introducing control functions instead of
control parameters [1,22]. On the other hand, the methodology is limited to a short series
because the optimization procedure developed above is based on analytical expressions
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for the parameters of approximants. Such limitation could be overcome by resorting to
different self-similar approximants of the type described in [20].

One can think (see, e.g., in [18]) that for an approach based on optimization to be
successful, Nature by itself should be organized in such a way that certain quantities called
critical indices play a special role of stabilizing various physical phenomena in the vicinity
of their respective critical points by making them minimally sensitive to the parameters of
power transform.

Critical indices are introduced into consideration by assuming a trial power law. They
could be found from special optimization conditions of general nature selecting a unique
fixed point/sum of the asymptotic series associated with a given truncation. Such fixed
points also incorporate the critical behavior which appears to be optimal.
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