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Abstract: Predicting the popularity of online content is an important task for content recommen-
dation, social influence prediction and so on. Recent deep learning models generally utilize graph
neural networks to model the complex relationship between information cascade graph and future
popularity, and have shown better prediction results compared with traditional methods. However,
existing models adopt simple graph pooling strategies, e.g., summation or average, which prone
to generate inefficient cascade graph representation and lead to unsatisfactory prediction results.
Meanwhile, they often overlook the temporal information in the diffusion process which has been
proved to be a salient predictor for popularity prediction. To focus attention on the important users
and exclude noises caused by other less relevant users when generating cascade graph representation,
we learn the importance coefficient of users and adopt sample mechanism in graph pooling process.
In order to capture the temporal features in the diffusion process, we incorporate the inter-infection
duration time information into our model by using LSTM neural network. The results show that
temporal information rather than cascade graph information is a better predictor for popularity. The
experimental results on real datasets show that our model significantly improves the prediction
accuracy compared with other state-of-the-art methods.

Keywords: popularity prediction; information cascade; deep learning; social network analysis

1. Introduction

Online social platforms such as Facebook, Twitter, Sina Weibo and Tiktok, promote
and widen the spread of online contents by attracting an increasing number of active
users. A cascade of information diffusion is formed when an online content (e.g., a tweet,
a microblog, or a video) is retweeted and propagated among users. The popularity of an
online content is usually measured by the number of users participating in its spreading
process, i.e., the number of users in the cascade graph. Predicting the future popularity of
online content is greatly valuable and practically meaningful in many fields. For example,
predicting the occurrence of large cascades as early as possible can create great commercial
value in the field of commodity promotion and prevent the wide spread of fake news in
the field of social security. Therefore, the popularity prediction task has been a hot research
topic and widely used in many real-world applications, e.g., campaign strategy [1], social
media recommendation [2] and viral marketing [3].

However, predicting the future popularity of online content is a challenging task since
the information diffusion process is affected by many complicated factors and fraught with
uncertainty. Researchers [4,5] have demonstrated that popularity prediction can be made
with higher accuracy with the observation of early spread of online content, thus existing
popularity prediction methods generally try to seek out the predictive features in the early
state of information cascades and model the relationship between these predictive features
and future popularity.
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Inspired by recent successful application of deep learning in many fields, some re-
searchers try to predict popularity through end-to-end deep learning methods. Compared
with traditional approaches, deep learning based approaches for popularity prediction
task [6,7] can automatically learn the complex factors affecting information diffusion with-
out time consuming feature engineering and strong assumptions of underlying diffusion
mechanism, and have achieved significant improvement of prediction accuracy. As a
powerful approach for representation learning on graph data, graph neural networks [8]
have been successfully applied to the field of social network analysis [9-11]. Early users
involved in the cascade graph and early popularity have been proven to be highly related to
future popularity [4,5,12]. Therefore, the efficient modeling of cascade graph characteristics
is crucial to popularity prediction task. Recent approaches generally utilize graph neural
networks to obtain low dimensional representation of information cascade graph, and
model the non-linear relationship between the learned low dimensional representation and
future popularity. However, existing graph neural network based popularity prediction
methods confront some critical shortcomings:

Firstly, existing simple graph pooling strategies, e.g., average or summation operations
treat all users in the information cascade graph equally [7,13,14], but in reality, some users
in the information diffusion process are more important than others, while some users
are less relevant and have little effect on further cascade propagation. Therefore, existing
graph pooling strategies normally generate inefficient cascade graph representation which
have limited ability to express the information spread process, and lead to poor accuracy
for popularity prediction.

Secondly, existing graph neural network based methods [7,13-16] generally overlook
the temporal information such as the time interval between two infections or reshares
in the propagation process. However, temporal information [5,12,17] is a key predictive
feature for popularity prediction task. Intuitively, a smaller mean time interval between
two reshare event usually means that the information item itself is more popular in nature.

To address the aforementioned questions, we propose a novel framework integrating
the cascade graph information and temporal information to predict the future popularity
of online contents. We generate an effective cascade graph representation by integrating
graph neural network with a novel graph pooling strategy. We focus on the top k important
users and exclude the noise caused by other irrelevant users during graph pooling process.
Meanwhile, we incorporate the inter-infection duration time information into our model by
using Long Short Term Memory (LSTM) network [18]. By comparison of model variants,
we come to a conclusion that temporal information is a better predictor for popularity
prediction than cascade graph information. Our main contributions are listed as follows:

e  We integrate the graph neural network framework—GraphSage [19] with a novel
graph pooling methods—top-K pooling [20,21], and obtained a more effective cascade
graph representation which improve the general capabilities of our model to capture
the underlying diffusion characteristic.

e We incorporate the inter-infection duration time information into our model by using
Long Short Term Memory (LSTM) network, and make up for the deficiencies of
existing graph neural network based approaches.

e The experimental results on two publicly available real-world datasets show that our
proposed method can significantly improve the cascade prediction accuracy compared
to several state-of-the-art competitive baselines.

2. Background and Related Works

Predicting the popularity of online content is a hot research topic in recent years.
Lots of researchers have studied the changing popularity of online content, such as short
texts [22], photos [23], videos [24,25], etc. Traditional popularity prediction methods mainly
include feature-based approaches and generative approaches. Feature-based approaches
identify and extract hand-crafted features, including content features [26,27], structural
features [22,28], temporal features [12,29], etc., and use machine learning algorithms to
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make predictions. This type of approaches usually require heavy feature-engineering and
their performance strongly depends on the effectiveness of extracted features. Generative
approaches devote to model the diffusion process by probabilistic statistical generative ap-
proaches, e.g., epidemic models [30,31] and point processes [17,32-34], but the performance
is normally limited by its strong assumptions of underlying diffusion mechanisms.

With the rapid development of deep learning and its successful applications in
many fields, many researchers have applied deep learning technology to social net-
work analysis [35-37], such as rumor detection, spam detection, popularity prediction,
etc. Cao [38] uses coupled graph neural networks to model the global social network
which refers to friendship graph and the sequence of early infected users, while assuming
that information propagation usually occurs along the social network structure between
users. However, in many scenarios, due to the privacy protection policies of social network
platforms, it is difficult for us to obtain the global social network. Meanwhile, affected
by the recommendation mechanism of the platform, users may also participate in the
dissemination of information that is not posted by their friends. Therefore, some recent
deep learning based popularity prediction works [6,7,14] resort to the observed early social
responses, i.e., early cascade graph characteristics and early temporal information in the
diffusion process, in order to improve the prediction accuracy. Information cascade graph
is formed in the process of information diffusion, in which nodes represent users partic-
ipating in the propagation and edges represent the propagation relations among users.
Cascade graph reflects the diffusion status under the influence of many complicated factors,
and it is important to model the cascade graph characteristics in popularity prediction
task. Below we introduce the recent deep learning based approaches which utilize cascade
graph and temporal information to make popularity prediction respectively.

2.1. Cascade Graph Representation

Compared with traditional methods, deep learning based approaches can learn the
complicated underlying diffusion patterns in an automatic way without heavy feature
engineering and strong assumption of underlying diffusion mechanisms. As a pioneer of
deep learning based approaches in popularity prediction, DeepCas [39] is an end-to-end
deep learning method which utilize random walk method to sample paths from cascade
graph in the context of global graph structure. It also use attention mechanism to integrate
the cascade path embedding into cascade graph embedding for the cascade size prediction
task. DeepHawkes [6] improves the performance of popularity prediction by taking time
decay effect into account when integrating the cascade path embedding into cascade
embedding. Liu [40] adopts random walk processes similar with DeepCas, and generates
cascade graph representation from propagation path embedding. This kind of approaches
learn the cascade graph representation based on the level of propagation paths rather
than the cascade graph level. Due to inefficient local structural embedding, they can not
generate the effective cascade graph embedding which lead to poor prediction accuracy.

Recent studies [7,13-16] focus on learning the cascade graph level representation
using graph neural networks. Recurrent cascades convolutional network—CasCN [7]
propose to model the cascade graph with Graph Convolutional Network [41] and use
LSTM neural network to model the dynamic changing characteristic from the sequence of
cascade graph snapshots. Similarly, Cascade2vec [13] use Graph Residual block to learn the
cascade graph representation and employ recurrent neural network to learn the temporal
dependencies between cascade graph snapshots. Graph Attention Network (GAT) [42] is
used in DMT-LIC [15] which makes micro and macro prediction simultaneously, DMT-LIC
captures both the information of cascade graph and infected user sequence in the diffusion
process. However, cascade graph representation in these graph neural network based
methods is usually generated by a simple graph pooling strategy such as average or sum
operation, which cannot distinguish user importance and results in inefficient cascade
graph representation.
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2.2. Temporal Representation

Existing deep learning based approaches often focus on learning the changing rep-
resentation of cascade which grows over time but overlook the time series information
such as the time interval between two infections during propagation. In DeepHawkes [6],
temporal information is implicitly taken into account when integrating the cascade path
embedding into cascade embedding by taking consideration of time decay effect. Re-
searches [7,13] focus on modeling the dynamic changing characteristic from the sequence
of cascade graph snapshots while neglecting the temporal information. Zhou [14] utilizes
the inter-infection duration as the edge weight of cascade graph to incorporate temporal
information with structural information simultaneously, but it is an artificially formulated
manner with an implication that shorter infection time means closer relationship between
users, but in reality, the infection-time duration does not only depend on the strength of
the relationship between users but also may be caused by random factors. The methods
mentioned above ignore the innate temporal pattern in the diffusion process which is
a key predictive feature for popularity prediction tasks. Consequently, we exploit the
explicitly temporal information in our model and demonstrate the importance of temporal
information experimentally.

3. Materials and Methods
3.1. Problem Definition

We formulate the cascade prediction task as a regression problem which aims at
predicting the number of users who will participate in the propagation of an online content,
i.e., the size of information cascade. For an online content such as a tweet ¢;, we denote
its cascade graph at observation time f, as: gf 0 = {Vit", 5;” }. Vit" is the user set who have
taken part in the cascade (e.g., retweet the tweet), Sl.t” denotes the interact relationship

(e.g., retweet, comment) between users. We use 7?” = {tl,...,tl ‘} to represent the

Vi
temporal information when users take part in the cascade, |Vl-t” | represents the number of
users who have taken part in the cascade at observation time ¢,.

Given cascade graph information G ita and temporal information 7?" of cascade c; at
observation time ¢, (e.g., 1 h), our goal is to make prediction of the incremental popularity
P; after a fixed time interval At (e.g., 1 day), where P; = |Vlt oA _ |Vl-t" |. Figure 1 shows
a simple illustration of our problem, given early diffusion information including cascade
graph and temporal information, we want to learn a regression function that maps the
early diffusion information to its incremental popularity:
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Figure 1. A simple illustration of problem definition.

3.2. Methods

In this section, we demonstrate the details of our model and explain the way we utilize
the cascade graph information and temporal information to make popularity prediction.
Existing studies [7,13] generally generate cascade graph representation by taking the
average or summation value of all node representations, which fails to discriminate between
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different users. We adopt a novel graph pooling strategy to distinguish the importance of
users in the graph pooling process and improve the ability to represent the characteristic
of cascade graph. Besides, we model the temporal information in the early stage of
information diffusion which is often neglected by existing deep learning methods.

Figure 2 gives the overall framework of our proposed model. Our model consists
of three main components: (a) Cascade graph representation: we incorporate the graph
neural network GraphSage [19] with a novel graph pooling method to get the integrated
cascade graph representation. In the graph pooling process, we emphasize the important
users and exclude the noise brought by less relevant users by supervised learning the
importance coefficient for each user. (b) Temporal representation: we use the widely
adopted LSTM model and sample mechanism to generate the temporal representation
from the inter-infection duration time information. (c) Predictor: as a regression problem,
we concatenate the cascade graph representation and temporal representation, and feed
the embedding into multi-layer perceptrons (MLPs) to make the popularity prediction.

- ' : (c) Predictor ;
Sampl Graph . i i i
m| B ' 1
A —> ———| GraphSage > ? pe,. Pooling, > —|— —f—» . ;
> || | ! !
53 N P

Figure 2. An overview of our proposed model. (a) Cascade graph representation: converts cascade
graph information into low dimensional representation, i.e., cascade graph representation; (b) Tem-
poral representation: learns temporal information based on LSTM neural network; (c) Predictor:
maps cascade graph representation and temporal representation to popularity.

3.2.1. Cascade Graph Representation

Given an online information item ¢;, and its cascade graph gfu = {Vit”, & l.t“ }, we want
to learn an effective cascade graph representation which reflect the actual characteristics of
information diffusion. Graph neural networks are an effective deep learning framework for
representation learning of graph data, we utilize the graph neural network—GraphSage as
the graph convolutional layer to learn the representation of each node and a novel graph
pooling method to generate cascade graph representation from node representation.

Each node v in cascade graph is initially represented as a one-hot vector §, € RV,
where N is the total number of users in the dataset. Then all nodes are converted to
a low-dimensional dense representation by a randomly initialized embedding matrix
E € RP*N:

hy = Eg, 2)
D is an adjustable dimension. Note the node embedding is supervised learned during the
training of the model.

The node embedding learning process in GraphSage has two steps: aggregate infor-
mation from neighborhood and update its own embedding. Firstly, each node v € Vl-t"
aggregates the representation of its immediate neighborhood. We employ the max pooling
aggregation strategy which can effectively capture different aspects from its neighborhood,

(o) = max({o(WERE ™ +55), Yu € N'(0)}), @)
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N (v) is the neighborhood set of node v, I_ilf,_l refers to the embedding of node u at the k — 1
graph convolutional step, W’;, BI;J are learnable parameters of neural networks which define
how to agrregate information from neighborhood in the k-th convolutional layer, o refers
to the sigmoid function. In the original work of GraphSage, the author uniformly samples
a fixed-size set of neighbors instead of using all neighbors in order to keep the training
batch size fixed. However, in our scenario, the number of node’s neighbor generally obey
power-law distribution. Using fixed-size set of neighbors is not a rational choice which
might lead to severe information loss. Thus we use the full set of neighborhood by taking
advantage of an effective GNN framework pytorch-geometric [43].
Then, we update the node embedding h¥ using equation below:

h’; = O’(Wk . Concat(hlé*l,h’/(\/(v)))r )

Concat() means the concatenation of embeddings, W¥ is the weight matrix used to update
node embedding in the k-th convolutional layer.

Figure 3 shows us a simple example of graph pooling process. Cascade graph repre-
sentation are usually generated from node representation through graph pooling process
such as average or summation pooling operations. Existing graph pooling strategies for
popularity prediction treat all users in the information cascade graph equally and cannot
distinguish user importance. Some users are more important than others in the information
diffusion process, this reality motivates us to adopt a different graph pooling strategy for
the generation of cascade graph representation. Top-K pooling is one of the graph pooling
strategy [20,21] which has been demonstrated to be effective on many graph classification
benchmarks. The downsampling method proposed in top-K pooling within the pipeline
of graph neural network is analogous to image downsampling used in CNNs, helps us
emphasize the important users and excludes the noise brought by irrelevant users. In order
to decide which nodes should be dropped, a learnable vector p is introduced in and an
importance coefficient is calculated across the node set by the equation:

sy = 5P ©)
171l
L B
graph pool
‘ me

Cascade Graph

Figure 3. An example of graph pooling process. Cascade graph representation /, is generated from
node representation by graph pooling process.

We select the top-ranked nodes from the cascade graph according to the importance
coefficient s, and drop the nodes with low coefficient by a predefined downsample ratio
r. We denote the induced subgraph as G’. We use the learned importance coefficient s,
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as user weight and perform global max pooling on the induced subgraph to generate the
cascade graph representation Eg:

hg = max({tanh(s,)hk,Yu € G'}). (6)

3.2.2. Temporal Representation

Temporal information in the early stage of diffusion process has been proven to be
a salient predictor of future popularity in traditional approaches [5,12]. However, recent
graph neural network based methods normally overlook this type of information and lead
to suboptimal prediction results.The time interval between two propagation events reflects
the diffusion speed of information. Shorter propagation time interval usually means that
the information itself is more attractive and able to trigger wider diffusion. For each online
content, we extract the inter-infection duration time Tlt-" = {x1, x2, X pto| bLxi=ti—tiq

from its time series information 7?". We feed the inter-infection duration time into the
LSTM [18] neural network which is a variant of RNN to tackle the long-term dependency
problem, and obtain a series of outputs [07, 07, ...0max] after each recurrent computation:

G = LSTM(hy_1, %), 7)

where ¥; degenerates into a scalar value, J;_1 is the hidden state of previous time step, max
is the max time step of all cascades and 0; € RY, d refers to the dimension of hidden states.
We can use the final hidden states as our temporal information embedding, however, the
output at different time step also contain useful information. The temporal information of
first several infections are important features for popularity prediction [14], therefore, we
should pay more attention on the temporal information of these early participants. Since the
cascade size of online content usually follows a pow-law distribution, we sample the output
sequence using the index sequence generated by {n * 10", n € {1,2,...10},m = {0,1,2}},
and use a weighted sum to get the temporal representation from the outputs of LSTM
neural network:

N-1
he =} oj-, ®)
=0

where N is our sample size, @ is the attention vector learned automatically during training.
The weighted sum mechanism can better model time decay effect during the information
propagation than predefined time decay functions like exponential functions.

3.2.3. Predictor

The final component of our model is the predictor layer, which maps the learned
predictive features in the early cascade data to its future popularity. Specifically, it takes
the cascade graph embedding and temporal embedding learned in the previous step as the
input, and output the future popularity of the cascade. We concatenate the cascade graph
embedding ﬁg and temporal embedding h; as the representation for cascade C; and feed
the representation into a two-layer Multiple Layer Perception (MLP):

P = MLP(Concat(ftg, ht)). )

Similar as previous work, we use the mean square log-transformed error (MSLE) as
the loss function:
. 1 N=1 -
L(P,P) = N Y (logaP; — l0g2 )2, (10)
i=0
N is the total number of cascades, P; is the predicted increment popularity, P; is the

actual increment popularity for cascade C;. We take log-transformation for the cascade size
following previous work to avoid the situation where the training process is dominated
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by large cascades. Model parameters are trained by minimizing the loss function and
optimized using the Adam algorithm given its efficiency and ability to avoid overfitting.

4. Experiments and Results
4.1. Datasets

We evaluated the effectiveness and generalizability of our model on popularity pre-
diction task using two real-world datasets. Following many previous works [6,7,14], we
adopted mean squared log-transformed error (MSLE) as our evaluation metric to mea-
sure the discrepancy between the actual popularity values and predicted values. Sina
Weibo is a popular twitter-like microblog platform, the dataset provided in paper [6] is a
publicly available real-world dataset, which has been widely used in many recent related
works [7,13,15]. We used this dataset to predict the final retweet number of microblog.
HEP-PH [7] is a paper citation dataset and was used to predict the citation count of paper.

* Sina Weibo: The dataset contained all microblogs posted on 1 June 2016, all their
retweets and the corresponding retweet time within 24 h were recorded. The node in
the cascade graph was the user who retweeted the microblog, and the edge between
users represented their retweet relationship. Following previous works, we filtered
out tweets posted in the midnight since they usually gained less attention due to less
active users online. We also dropped microblogs whose retweet number was less than
10 or more than 1000 within the observation time window, because large cascades
were rarely few in number and might have dominated the training process.

e  HEP-PH: The dataset included paper citation relationship and paper publication time
from January 1993 to April 2003. The node in the cascade graph represented the paper,
and the edges referred to the corresponding citation relationship.

The detail statistics of datasets are shown in Table 1. For different observation time
window T, we list out the total number of cascades, nodes, and edges in our datasets. As
the observation time window T enlarged, we got more qualified cascades whose size was
more than 10 and less than 1000. We also calculated the average cascade size representing
average number of users participating in each cascade within the observation time.

Table 1. Descriptive statistics of two datasets. T refers to the observation time window.

Datasets Sina Weibo HEP-PH
T 1h 2h 3h 3years 5years 7years

Number of cascades 51,287 61,448 66,798 9409 10,629 10,983
Number of nodes 1,740,500 2,190,604 2,431,607 25,973 27,566 28,051
Number of edges 3,404,975 4,454,060 5,028,177 189,590 255,159 284,016

Average cascade size 66.39 72.49 75.27 20.15 24.01 25.86

As we can see from Figure 4, the distribution of cascade size followed a power-law
distribution, and most information cascades’ size was small. Figure 5 shows the average
cascade size at different time normalized by the final average cascade size. As we can see,
the microblog’s popularity already reached 80% after 10 h since it was posted, so we set
our observation time to be 1 h, 2 h, and 3 h when the normalized popularity was less than
60% to avoid saturation within the observation time window. We chose the observation
time for HEP-PH dataset to be 3 years, 5 years and 7 years for the same reason.
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Figure 4. Distribution of popularity: the X axis refers to the cascade size and the Y axis is the number
of cascades corresponding to the cascade size.
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Figure 5. Saturation ratio: the X axis refers to the time and the Y axis is the percentage of cascade size.

We calculated the distribution of the mean inter-infection time and cascade size for
the microblog dataset. Mean inter-infection time was defined as % Zinl (tj — tj,l) , Where
M is the number of users in the cascade. Figure 6a illustrate the distribution of mean
inter-infection time. As shown in Figure 6b, most large cascades (cascade size was large
than 100) had a quite small mean inter-infection time—less than 4 min. Furthermore, we
calculated the actual ratio of large cascades based on mean inter-infection time in Figure 6c.
More than 90% large cascades in the microblog dataset were propagated with a mean
inter-infection time less than 300 s. The statistical results showed that temporal information
such as mean inter-infection time was highly correlated with future popularity.

14,000
1 small cascades fr—

= Large cascades
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10,000
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Figure 6. (a) Mean inter-infection time (seconds) and its corresponding number of cascades; (b) The
distribution of large cascades over different mean inter-infection time (minutes); (c) More than 90%
large cascades with a mean inter-infection time less than 300 s.

4.2. Baselines

We compared the performance of our method with several state-of-art deep learning
based approaches including the following methods:
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*  DeepCas [39]: is an end-to-end deep learning method which extracts structural infor-
mation of cascade graph by taking random walk in the context of global graph, and
use bi-GRU neural network for the cascade size prediction task.

e  DeepHawkes [6]: bridges the gap between deep learning and self-exciting point
process by learning the cascade graph structural representation based on the level of
propagation paths and takes time decay effect into consideration when integrating
path representation into cascade representation.

e CasCN [7]: demonstrates the effectiveness in applying the graph neural network
framework to generate the representation of cascade graph. It claims to exploit
both the temporal and structural information by extracting cascade subgraphs from
cascade graph and using LSTM neural network to model the dynamic change of
cascade graphs.

The hyper-parameters of baselines kept the same as those used in model CasCN [7].
As for our model, the embedding dimensionality of nodes was 32, the batch size was set to
be 16. The dimension of cascade graph embedding was 32, and temporal embedding was
16. The learning rate for our model was 5 x 10~3. We used two graph convolutional layers
in the component of cascade graph representation.

4.3. Variants

We provided three variants of our model to investigate the effectiveness of each
component. The variants were generated by removing some part from the proposed model.
We demonstrated the contribution of each component by comparing their prediction
accuracy experimentally.

®  VGraph (mean pool): We removed the temporal representation component from our
model and only used the cascade graph representation alone. We also replaced the top-
k pooling method with mean pooling method from the cascade graph representation
component. The mean pooling method used the average of the embedding of all
nodes in the cascade as the cascade graph embedding.

¢ VGraph: We removed the temporal representation component from our model and
only used the cascade graph representation alone.

¢ VTemporal: We removed the cascade graph representation component and only used
temporal representation component alone.

4.4. Performance Comparison
4.4.1. Model vs. Baselines

Table 2 shows the experimental results of baselines and our proposed model on two
datasets. Following previous work [6,7,13], we chose mean square log-transformed error
(MSLE) as the evaluation metric. In general, the performance of our model was better than
the baselines on the evaluation of MSLE, surpassing the sub-optimal CasCN by around 11%.
When comparing different observation time window T, we can see that as the observation
time window enlarged, the MSLE error decreased, because more information was revealed
to the model. The results demonstrated that our model could effectively exploit both
temporal information and cascade graph information to predict the future popularity.

Table 2. Overall performance comparison.

Datasets Weibo Dataset HEP-PH
Metric MSLE
T 1h 2h 3h 3 years 5 years 7 years
DeepCas 2.958 2.689 2.647 1.765 1.538 1.462
DeepHawkes 2.441 2.287 2.252 1.581 1.470 1.233
CasCN 2.242 2.036 1.910 1.353 1.164 0.851

Proposed 1.931 1.813 1.770 1.251 1.147 0.673
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As early models which apply deep learning to cascade prediction tasks, DeepCas
and DeepHawkes focused on the representation learning of the propagation path, and the
ability of learning global cascade information was weak, the prediction results were not
very satisfactory compared to recent graph neural network based approach CasCN.

CasCN modeled the cascade graph with a graph convolutional network and used
LSTM neural network to model the dynamic changing characteristic from the sequence
of cascade subgraphs, but also overlooked the importance of temporal information. Our
proposed model explicitly modeled the inter-infection duration time information by us-
ing LSTM neural network, and reduced the prediction error by around 11% comparing
to CasCN.

We list the performance of our model variants on the evaluation of MSLE in Table 3.
In order to compare the performance of baselines and our model variants more intuitively,
we also present a line chart in Figure 7. As we can see, our variants VGraph which utilized
graph neural network to capture cascade graph information achieved a better prediction
result compared with DeepCas and DeepHawkes, demonstrating the advantage of graph
neural network based approaches.

3
—&— DeepCas
—l— DeepHawkes
2.8
—&— CasCN
Vgraph(mean pool)
2.6
—¥— VGraph

—®— VTemporal
2.4

.\ —4— Proposed
2.2

1.8

MSLE

1.6
1H 2H 3H

OBSERVATION TIME WINDOW

Figure 7. the line chart of performance comparison between baselines and model variants.

As shown in Table 3, the performance of our variant VGraph had a sub-optimal
prediction result compared with CasCN, demonstrating the importance of modeling the
changing characteristic of cascade graph. For model simplicity, we used the representation
of cascade graph instead of dynamic cascade subgraphs and left modeling the dynamics as
future work.

Table 3. Performance comparison of baselines and model variants.

Datasets Weibo Dataset
T 1h 2h 3h
Baseline
DeepCas 2.958 2.689 2.647
DeepHawkes 2.441 2.287 2.252
CasCN 2.242 2.036 1.910
Variants
VGraph (mean pool) 2.379 2.286 2.207
VGraph 2.360 2.231 2.164
VTemporal 2.011 1.843 1.798

Proposed 1.931 1.813 1.770
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We leveraged the temporal information in our model and made up for the deficiencies
of existing methods. The model variant—VTemporal outperformed CasCN with an approx-
imately 9% drop of MSLE error. The comparison of model variant—VTemporal and CasCN
demonstrated that temporal information rather than cascade graph information was a
better indicator for predicting future popularity, and confirmed the notably importance of
temporal information in popularity prediction task. By jointly model the cascade graph
information and temporal information, the prediction accuracy of our proposed model
was significantly improved compared with state-of-art deep learning based methods.

4.4.2. Variants Comparison

The model variant VGraph (mean pool) adopted mean pooling strategy to generate
the cascade graph representation, using the whole set of nodes in the cascade without
differentiating node importance. In comparison of VGraph (mean pool) and VGraph,
we demonstrated the effectiveness of top-k graph pooling strategy with a performance
improvement of around 2%. We also compared the experiment results on different down-
sample ratio v and found its best value was around 0.9 which makes intuitive sense, since
noisy nodes were much less than useful nodes in reality, getting rid of too many nodes
could lead to severe information loss.

The model variant VTemporal proved the significant importance of temporal infor-
mation in cascade popularity prediction task. The results were consistent with previous
study [44] which only utilized temporal convolutional networks to capture the temporal
information for popularity prediction of messages on social medias. Further on, as Figure 7
shows, model variant VTemporal achieved a much better prediction accuracy compared
with variant VGraph, and confirmed that temporal information was a better predictor of
popularity than cascade graph information. The results were consistent with the past work
of Shulman [5], who proved features of early adopters were weak predictors of popularity
compared to temporal features.

4.4.3. Latent Representation

End-to-end deep learning approaches on popularity prediction are often not inter-
pretable. In order to have a more intuitive understanding of the learned representation in
our model, we used t-SNE [45] to visualize the relationship between the learned represen-
tation and cascade size in Figure 8. T-SNE was mostly used to visualize high-dimensional
data and project it into low-dimensional space. Cascade graph representation and temporal
representation of cascades in test dataset generated by our model were projected into points
in a 2D plane. Different colors were used to distinguish cascade size, the darker color point
represented the larger cascade size. The distribution of color indicated the strength of
connection between the learned representation and the cascade size, i.e., if points spatially
close to each other shared the same color, it meant the representation was well correlated
with the cascade size. A clustering phenomenon could be seen from both cascade graph
representation and temporal representation in Figure 8, indicating that both cascade graph
information and temporal information were useful for cascade popularity prediction. We
also notice that the clustering phenomenon of temporal information was clearer than that
of cascade graph information, confirming that temporal information was more relevant
with popularity and a better predictor for popularity than cascade graph information.
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Figure 8. Visualization of learned representation: (a,c,e) show the cascade graph representations with
observation time window set to be 1 h, 2 h, 3 h separately. (b,d,f) show the temporal representations
with observation time window set to be 1 h, 2 h, 3 h separately.

5. Conclusions and Future Work

In this article, we propose a novel deep learning model to predict the popularity of
online content by modeling the early cascade graph information and temporal information.
To distinguish the importance of users and improve the ability to represent the cascade
graph characteristics, we utilize the graph neural network with a novel graph pooling
method. We also incorporate temporal information into our model by using LSTM neural
network and make up for the deficiency of existing graph neural networks based popularity
prediction methods. Experimental evaluations on two real-world datasets show that our
model significantly improves the accuracy of popularity prediction comparing with other
state-of-the-art methods. The experimental results demonstrate the notable importance of
temporal information in popularity prediction and provide us an intuitive guidance for
the subsequent popularity prediction work. In the future, it may be an interesting research
point to explore the relationship between the micro-level prediction task which aims at
predicting the next infected user and the popularity prediction task. Additionally, analyzing
the diffusion pattern of information on different topics and predicting the popularity based
on topic information may be a possible research direction.
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