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Abstract: We develop a local convergence of an iterative method for solving nonlinear least squares
problems with operator decomposition under the classical and generalized Lipschitz conditions.
We consider the case of both zero and nonzero residuals and determine their convergence orders.
We use two types of Lipschitz conditions (center and restricted region conditions) to study the
convergence of the method. Moreover, we obtain a larger radius of convergence and tighter error
estimates than in previous works. Hence, we extend the applicability of this method under the same
computational effort.
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1. Introduction

Nonlinear least squares problems often arise while solving overdetermined systems of
nonlinear equations, estimating parameters of physical processes by measurement results,
constructing nonlinear regression models for solving engineering problems, etc. The most
used method for solving nonlinear least squares problems is the Gauss–Newton method [1].
In the case when the derivative can not be calculated, difference methods are used [2,3].

Some nonlinear functions have a differentiable and a nondifferentiable part. In this
case, a good idea is to use a sum of the derivative of the differentiable part of the operator
and the divided difference of the nondifferentiable part instead of the Jacobian [4–6].
Numerical study shows that these methods converge faster than Gauss–Newton type’s
method or difference methods.

In this paper, we study the local convergence of the Gauss–Newton–Secant method
under the classical and generalized Lipschitz conditions for first-order Fréchet derivative
and divided differences.

Let us consider the nonlinear least squares problem:

min
x∈Rp

1
2
(F(x) + G(x))T(F(x) + G(x)), (1)
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where residual function F + G : Rp → Rm (m ≥ p) is nonlinear in x, F is a continuously
differentiable function, and G is a continuous function, the differentiability of which,
in general, is not required.

We propose the following modification of the Gauss–Newton method combined with
the Secant-type method [4,6] for finding the solution to problem (1):

xn+1 = xn − (AT
n An)

−1 AT
n (F(xn) + G(xn)), n = 0, 1, . . . , (2)

where An = F′(xn) + G(xn, xn−1), F′(xn) is a Fréchet derivative of F(x); G(xn, xn−1) is a
divided difference of the first order of function G

(
x
)

[7] at points xn, xn−1; and x0, x−1
are given.

Setting An = F′(xn), for solving problem (1), from (2) we obtain an iterative Gauss–
Newton-type method:

xn+1 = xn − (F′(xn)
T F′(xn))

−1F′(xn)
T(F(xn) + G(xn)), n = 0, 1, . . . . (3)

For m = p, problem (1) turns into a system of nonlinear equations:

F(x) + G(x) = 0. (4)

In this case, method (2) is transformed into the combined Newton–Secant
method [8–10]:

xn+1 = xn − (F′(xn) + G(xn, xn−1))
−1(F(xn) + G(xn)), n = 0, 1, . . . , (5)

and method (3) into the Newtons-type method for solving nonlinear equations [11]:

xn+1 = xn − (F′(xn))
−1(F(xn) + G(xn)), n = 0, 1, . . . . (6)

The convergence domain is small (in general), and error estimates are pessimistic.
These problems restrict the applicability of these methods. The novelty of our work is in
the claim that these problems can be addressed without adding hypotheses. In particular,
our idea is to use a center and restricted radius Lipschitz conditions. Such an approach to
the study of the convergence of methods allows for extending the convergence ball of the
method and improving error estimates.

The remainder of the paper is organized as follows: Section 2 deals with the local
convergence analysis. The numerical experiments appear in Section 3. Section 4 contains
the concluding remarks and ideas about future works.

2. Local Convergence Analysis

Let us consider, at first, some auxiliary lemmas needed to obtain the main results. Let
D be an open subset of Rp.

Lemma 1 ([4]). Let e(t) =
∫ t

0
E(u)du, where E is an integrable and positive nondecreasing

function on [0, T]. Then, e(t) is monotonically increasing with respect to t on [0, T].

Lemma 2 ([1,12]). Let h(t) =
1
t

∫ t

0
H(u)du, where H is an integrable and positive nondecrea-

sing function on [0, T]. Then, h(t) is nondecreasing with respect to t on (0, T].

Additionally, h(t) at t = 0 is defined as h(0) = lim
t→0

(
1
t

∫ t

0
H(u)du

)
.

Lemma 3 ([13]). Let s(t) =
1
t2

∫ t

0
S(u)u du, where S is an integrable and positive nondecreasing

function on [0, T]. Then, s(t) is nondecreasing with respect to t on (0, T].
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Definition 1. The Fréchet derivative F′ satisfies the center Lipschitz condition on D with L0
average if

‖F′(x)− F′(x∗)‖ ≤
∫ ρ(x)

0
L0(u)du, for each x ∈ D ⊂ Rp, (7)

where ρ(x) = ‖x− x∗‖, x∗ ∈ D is a solution of problem (1), and L0 is an integrable, positive, and
nondecreasing function on [0, T].

The functions M0, L, M, L1 and M1 introduced next are as the function L0: integrable,
positive, and nondecreasing functions defined on [0, 2R].

Definition 2. The first order divided difference G(x, y) satisfies the center Lipschitz condition on
D× D with M0 average if

‖G(x, y)− G(x∗, x∗)‖ ≤
∫ ρ(x)+ρ(y)

0
M0(u)du, for each x, y ∈ D. (8)

Let B > 0 and α > 0. We define function ϕ on [0,+∞) by

ϕ(t) = B
[

2α +
∫ t

0
L0(u)du +

∫ 2t

0
M0(u)du

][∫ t

0
L0(u)du +

∫ 2t

0
M0(u)du

]
. (9)

Suppose that equation
ϕ(t) = 1 (10)

has at least one positive solution. Denote by γ the minimal such solution. Then, we can
define Ω0 = D ∩Ω(x∗, γ), where Ω(x∗, γ) = {x : ‖x− x∗‖ < γ}.

Definition 3. The Fréchet derivative F′ satisfies the restricted radius Lipschitz condition on Ω0
with L average if

‖F′(x)− F′(xτ)‖ ≤
∫ ρ(x)

τρ(x)
L(u)du, xτ = x∗ + τ(x− x∗), 0 ≤ τ ≤ 1, for each x ∈ Ω0. (11)

Definition 4. The first order divided difference G(x, y) satisfies the restricted radius Lipschitz
condition on Ω0 with M average if

‖G(x, y)− G(u, v)‖ ≤
∫ ‖x−u‖+‖y−v‖

0
M(u)du, for each x, y, u, v ∈ Ω0. (12)

Definition 5. The Fréchet derivative F′ satisfies the radius Lipschitz condition on D with L1
average if

‖F′(x)− F′(xτ)‖ ≤
∫ ρ(x)

τρ(x)
L1(u)du, for each x ∈ D. (13)

Definition 6. The first order divided difference G(x, y) satisfies the radius Lipschitz condition on
D with M1 average if

‖G(x, y)− G(u, v)‖ ≤
∫ ‖x−u‖+‖y−v‖

0
M1(u)du, for each x, y, u, v ∈ D. (14)

Remark 1. It follows from the preceding definitions that L = L(L0, M0), M = M(L0, M0), and
for each t ∈ [0, γ]

L0(t) ≤ L1(t), (15)

L(t) ≤ L1(t), (16)

M(t) ≤ M1(t), (17)
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since Ω0 ⊆ D. By L(L0, M0), we mean that L (or M) depends on L0 and M0 by the definition of
Ω0. In case any of (15)–(17) are strict inequalities, the following benefits are obtained over the work
in [4] using L1, M1 instead of the new functions:

(a1) An at least as large convergence region leading to at least as many initial choices;
(a2) At least as tight upper bounds on the distances ‖xn − x∗‖, so at least as few iterations are

needed to obtain a desired error tolerance.

These benefits are obtained under the same computational effort as in [4], since the
new functions L0, M0, L, and M are special cases of the functions L1 and M1. This technique
of using the center Lipschitz condition in combination with the restricted convergence
region has been used by us on Newton’s, Secant, Newton-like methods [14,15], and can be
used on other methods, too, with the same benefits.

The proof of the next result follows as the corresponding one in [4], but there are crucial
differences, where we use (L0, L) instead of L1 and (M0, M) instead of M1 used in [4].

We use the Euclidean norm. Note that the following equality is satisfied for the
Euclidean norm ‖A− B‖ = ‖AT − BT‖, where A, B ∈ Rm×p.

Theorem 1. Let F + G : Rp → Rm be continuous on an open convex subset D ⊂ Rp, F be a
continuously differentiable function, and G be a continuous function. Suppose that problem (1) has
a solution x∗ ∈ D; the inverse operation

(AT
∗ A∗)−1 = [(F′(x∗) + G(x∗, x∗))T(F′(x∗) + G(x∗, x∗))]−1 (18)

exists, such that ‖(AT
∗ A∗)−1‖ ≤ B; (7), (8), (11), and (12) hold, and γ given in (10) exists.

Furthermore,

‖F(x∗) + G(x∗)‖ ≤ η, ‖F′(x∗) + G(x∗, x∗)‖ ≤ α; (19)

B
R

( ∫ R

0
L0(u)du +

∫ 2R

0
M0(u)du

)
η < 1 (20)

and Ω = Ω(x∗, r∗) ⊆ D, where r∗ is the unique positive zero of the function q given by

q(r) = B
[(

α +
∫ r

0
L0(u)du +

∫ 2r

0
M0(u)du

)( ∫ r

0
L(u)udu +

∫ r

0
M(u)du

)
+
(

2α +
∫ r

0
L0(u)du +

∫ 2r

0
M0(u)du

)( ∫ r

0
L0(u)du +

∫ 2r

0
M0(u)du

)
+
(1

r

∫ r

0
L0(u)du +

1
r

∫ 2r

0
M0(u)du

)
η

]
− 1. (21)

Then, for x0, x−1 ∈ Ω, the iterative sequence {xn}, n = 0, 1, . . . , generated by (2), is well
defined, remains in Ω, and converges to x∗. Moreover, the following error estimates hold for each
n = 0, 1, 2, . . .:

‖xn+1 − x∗‖ ≤ C1‖xn−1 − x∗‖+ C2‖xn − x∗‖+ C3‖xn−1 − x∗‖‖xn − x∗‖
+C4‖xn − x∗‖2, (22)
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where

g(r) =
B

1− ϕ(r)
; C1 = g(r∗)

1
2r∗

∫ 2r∗

0
M0(u)du η; (23)

C2 = g(r∗)
(

1
r∗

∫ r∗

0
L0(u)du +

1
2r∗

∫ 2r∗

0
M0(u)du

)
η; (24)

C3 = g(r∗)
(

α +
∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

)
1
r∗

∫ r∗

0
M(u)du; (25)

C4 = g(r∗)
(

α +
∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

)
1
r∗

∫ r∗

0
L(u)udu. (26)

Proof. We obtain

lim
r→0+

1
r

∫ r

0
L0(u)du ≤ lim

r→0+

L0(r)r
r
≤ L0(0), (27)

lim
r→0+

1
r

∫ 2r

0
M0(u)du ≤ lim

r→0+

M0(2r)2r
r

≤ 2M0(0), (28)

since L0 and M0 are positive and nondecreasing functions on [0, R], and [0, 2R], respectively.
Taking into account Lemma 1 for a sufficiently small η, q(0) = B(L0(0) + 2M0(0))η− 1 < 0.
With a sufficiently large R, the inequality q(R) > 0 holds. By the intermediate value the-
orem, the function q has a positive zero on (0, R) denoted by r∗. Moreover, this zero

is the only one on (0, R). Indeed, according to Lemma 2, the function
(1

r

∫ r

0
L0(u)du +

1
r

∫ 2r

0
M0(u)du

)
η is non-decreasing with respect to r on (0, R]. By Lemma 1, functions∫ r

0
L(u)du,

∫ r

0
M(u)du, and

∫ 2r

0
M(u)du are monotonically increasing on [0, R]. Further-

more, by Lemma 3, the function
∫ r

0
L(u)udu = r2

( 1
r2

∫ r

0
L(u)udu

)
is monotonically in-

creasing with respect to r on (0, R]. Therefore, q(r) is monotonically increasing on (0, R].
Thus, the graph of function q(r) crosses the positive r-axis only once on (0, R). Finally,
from the monotonicity of q and since q(γ) > 0, we obtain r∗ < γ, so Ω(x∗, r∗) ⊂ Ω0.

We denote An = F′(xn) + G(xn, xn−1). Let n = 0. By the assumption x0, x−1 ∈ Ω,
we obtain the following estimation:∥∥∥I − (AT

∗ A∗)−1 AT
0 A0

∥∥∥ =
∥∥∥(AT

∗ A∗)−1(AT
∗ A∗ − AT

0 A0)
∥∥∥

=
∥∥∥(AT

∗ A∗)−1
[

AT
∗ (A∗ − A0) + (AT

∗ − AT
0 )(A0 − A∗) + (AT

∗ − AT
0 )A∗

]∥∥∥
≤
∥∥∥(AT

∗ A∗)−1
∥∥∥[‖AT

∗ ‖‖A∗ − A0‖+ ‖AT
∗ − AT

0 ‖‖A0 − A∗‖+ ‖AT
∗ − AT

0 ‖‖A∗‖
]

≤ B
[
α‖A∗ − A0‖+ ‖AT

∗ − AT
0 ‖‖A0 − A∗‖+ α‖AT

∗ − AT
0 ‖
]
. (29)

Using conditions (11) and (12), we obtain

‖A0 − A∗‖ = ‖(F′(x0) + G(x0, x−1))− (F′(x∗) + G(x∗, x∗))‖
= ‖F′(x0)− F′(x∗) + G(x0, x−1)− G(x∗, x∗)‖
≤ ‖F′(x0)− F′(x∗)‖+ ‖G(x0, x−1)− G(x∗, x∗)‖

≤
∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du, (30)
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where ρk = ρ(xk). Then, from inequality (29) and the equation q(r) = 0, we obtain by (10)

‖I − (AT
∗ A∗)−1 AT

0 A0‖ ≤ B
[

2α +
∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du

]
×
[∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du

]
≤ B

[
2α +

∫ r∗

0
L0(u)du

+
∫ 2r∗

0
M0(u)du

][∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
< 1. (31)

Next, from (29)–(31) and the Banach lemma [16], it follows that (AT
0 A0)

−1 exists, and∥∥∥(AT
0 A0)

−1
∥∥∥ ≤ g0 = B

{
1− B

[
2α +

∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du

]
×
[ ∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du

]}−1

≤ g(r∗) = B
{

1− B
[
2α +

∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
×
[ ∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]}−1

. (32)

Hence, x1 is correctly defined. Next, we will show that x1 ∈ Ω(x∗, r∗).
Using the fact

AT
∗ (F(x∗) + G(x∗)) = (F′(x∗) + G(x∗, x∗))T(F(x∗) + G(x∗)) = 0, (33)

x0, x−1 ∈ Ω(x∗, r∗) and the choice of r∗, we obtain the estimate

‖x1 − x∗‖ =
∥∥∥x0 − x∗ − (AT

0 A0)
−1[AT

0 (F(x0) + G(x0))− AT
∗ (F(x∗) + G(x∗))

]∥∥∥
≤

∥∥∥−(AT
0 A0)

−1
∥∥∥ ∥∥∥− AT

0

[
A0 −

∫ 1

0
F′(x∗ + t(x0 − x∗))dt

−G(x0, x∗)
]
(x0 − x∗) + (AT

0 − AT
∗ )(F(x∗) + G(x∗))

∥∥∥. (34)

So, considering the inequalities∥∥∥A0 −
∫ 1

0
F′(x∗ + t(x0 − x∗))dt− G(x0, x∗)

∥∥∥
=
∥∥∥F′(x0)−

∫ 1

0
F′(x∗ + t(x0 − x∗))dt + G(x0, x−1)− G(x0, x∗)

∥∥∥
=
∥∥∥ ∫ 1

0

[
F′(x0)− F′(x∗ + t(x0 − x∗))

]
dt + G(x0, x−1)− G(x0, x∗)

∥∥∥
=
∥∥∥ ∫ 1

0

[
F′(x0)− F′(xt

0)
]
dt + G(x0, x−1)− G(x0, x∗)

∥∥∥
≤
∫ 1

0

∫ ρ0

tρ0

L(u)dudt +
∫ ρ−1

0
M(u)du =

∫ ρ0

0
L(u)udu +

∫ ρ−1

0
M(u)du

≤ 1
r2∗

∫ r∗

0
L(u)udu ρ2

0 +
1
r∗

∫ r∗

0
M(u)du ρ−1, (35)

‖A0‖ ≤ ‖A∗‖+ ‖A0 − A∗‖ ≤ α +
∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du, (36)

we obtain
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‖x1 − x∗‖ ≤ g0

{[
α +

∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du

]
×
[ ∫ ρ0

0
L(u)udu +

∫ ρ−1

0
M(u)du

]
‖x0 − x∗‖+ η

[ ∫ ρ0

0
L0(u)du

+
∫ ρ0+ρ−1

0
M0(u)du

]}
≤ g0

{[
α +

∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
×
[ 1

r2∗

∫ r∗

0
L(u)uduρ2

0 +
1
r∗

∫ r∗

0
M(u)du ρ−1

]
‖x0 − x∗‖

+η
[ 1

r∗

∫ r∗

0
L0(u)duρ0 +

1
2r∗

∫ 2r∗

0
M0(u)du(ρ0 + ρ−1)

]}
(37)

< g(r∗)
{[

α +
∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

][ ∫ r∗

0
L(u)udu +

∫ r∗

0
M(u)du

]
+

1
r∗

[ ∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
η

}
r∗ = p(r∗)r∗ = r∗,

where

p(r) = g(r)
{[

α +
∫ r

0
L0(u)du +

∫ 2r

0
M0(u)du

][ ∫ r

0
L(u)udu +

∫ r

0
M(u)du

]
+

1
r

[ ∫ r

0
L0(u)du +

∫ 2r

0
M0(u)du

]
η

}
. (38)

Therefore, x1 ∈ Ω(x∗, r∗), and estimate (22) holds for n = 0.
Let us assume that xn ∈ Ω(x∗, r∗) for n = 0, 1, ..., k and estimate (22) holds for n =

0, 1, ..., k− 1, where k ≥1 is an integer. We shall show xn+1 ∈ Ω and that the estimate (22)
holds for n = k.

We can write

‖I − (AT
∗ AT
∗ )
−1 AT

k Ak‖ = ‖(AT
∗ A∗)−1(AT

∗ A∗ − AT
k Ak)‖

= ‖(AT
∗ A∗)−1(AT

∗ (A∗ − Ak) + (AT
∗ − AT

k )(Ak − A∗) + (AT
∗ − AT

k )A∗)‖

≤ B
(

α‖A∗ − Ak‖+ ‖AT
∗ − AT

k ‖‖Ak − A∗‖+ α‖AT
∗ − AT

k ‖
)

≤ B
[
2α +

∫ ρk

0
L0(u)du +

∫ ρk+ρk−1

0
M0(u)du

][ ∫ ρk

0
L0(u)du (39)

+
∫ ρk+ρk−1

0
M0(u)du

]
≤ B

[
2α +

∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
×
[ ∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
< 1.

Consequently,
(

AT
k Ak

)−1 exists, and

‖(AT
k+1 Ak+1)

−1‖ ≤ gk = B
{

1− B
[
2α +

∫ ρk

0
L0(u)du +

∫ ρk+ρk−1

0
M0(u)du

]
×
[ ∫ ρk

0
L0(u)du +

∫ ρk+ρk−1

0
M0(u)du

]}−1
≤ g(r∗). (40)
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Therefore, xk+1 is correctly defined, and the following estimate holds:

‖xk+1 − x∗‖ = ‖xk − x∗ − (AT
k Ak)

−1[AT
k (F(xk) + G(xk))− AT

∗ (F(x∗)

+G(x∗))]‖ ≤ ‖ − (AT
k Ak)

−1‖
∥∥∥− AT

k

[
Ak −

∫ 1

0
F′(x∗ + t(xk − x∗))dt

−G(xk, x∗)
]
(xk − x∗) + (AT

k − AT
∗ )(F(x∗) + G(x∗))

∥∥∥
≤ ‖− (AT

k Ak)
−1‖

∥∥∥− AT
k

[
Ak −

∫ 1

0
F′(x∗ + t(xk − x∗))dt

−G(xk, x∗)
]
(xk − x∗) + (AT

k − AT
∗ )(F(x∗) + G(x∗))

∥∥∥ (41)

≤ gk

{[
α +

∫ ρk

0
L0(u)du +

∫ ρk+ρk−1

0
M0(u)du

][ ∫ ρk

0
L(u)udu

+
∫ ρk−1

0
M(u)du

]
‖xk − x∗‖+ η

[ ∫ ρk

0
L0(u)du +

∫ ρk+ρk−1

0
M0(u)du

]}
≤ g(r∗)

{[
α +

∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
×
[ 1

r2∗

∫ r∗

0
L(u)uduρ2

k +
1
r∗

∫ r∗

0
M(u)duρk−1

]
‖xk − x∗‖

+η
[ 1

r∗

∫ r∗

0
L0(u)duρk +

1
2r∗

∫ 2r∗

0
M0(u)du(ρk + ρk−1)

]}
< p(r∗)r∗ = r∗.

This proves that xk+1 ∈ Ω(x∗, r∗) and estimate (22) for n = k.
Thus, by the induction method, (2) is correctly defined, xn ∈ Ω(x∗, r∗), and esti-

mate (22) holds for each n = 0, 1, 2, . . ..
It remains to be proven that xn → x∗ for n→ ∞.
Let us define functions a and b on [0, r∗] as

a(r) = g(r)
{[

α +
∫ r

0
L0(u)du +

∫ 2r

0
M0(u)du

][ ∫ r

0
L(u)udu +

∫ r

0
M(u)du

]
+
[1

r

∫ r

0
L0(u)du +

1
2r

∫ 2r

0
M0(u)du

]
η

}
; (42)

b(r) = g(r)
1
2r

∫ 2r

0
M(u)du η. (43)

According to the choice of r∗, we obtain

a(r∗) ≥ 0, b(r∗) ≥ 0, a(r∗) + b(r∗) = 1. (44)

Using estimate (22), the definition of functions a, b and constants
Ci (i = 1, 2, 3, 4), we have

‖xn+1 − x∗‖ ≤ C1‖xn−1 − x∗‖+ (C2 + C3r∗ + C4r∗)‖xn − x∗‖
= a(r∗)‖xn − x∗‖+ b(r∗)‖xn−1 − x∗‖. (45)

According to the proof in [17], under the conditions (42)–(45), the sequence {xn}
converges to x∗ for n→ ∞.

Corollary 1 ([4]). The convergence order of method (2) for the problem (1) with zero residual is

equal to
1 +
√

5
2

.
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If η = 0, we have the nonlinear least squares problem with zero residual. Then,
the constants C1 = 0 and C2 = 0, and estimate (22) takes the form

‖xn+1 − x∗‖ ≤ C3‖xn−1 − x∗‖ ‖xn − x∗‖+ C4‖xn − x∗‖2. (46)

This inequality can be written as

‖xn+1 − x∗‖ ≤ (C3 + C4)‖xn−1 − x∗‖ ‖xn − x∗‖. (47)

Then, we can write an equation for determining the convergence order as follows:

t2 − t− 1 = 0. (48)

Therefore, the positive root, t∗ =
1 +
√

5
2

of the latter equation is the order of conver-
gence of method (2).

In case G(x) ≡ 0 in (1), we obtain the following consequences.

Corollary 2 ([4]). The convergence order of method (2) for problem (1) with zero residual is quadratic.

Indeed, if G(x) ≡ 0, then C3 = 0, and estimate (22) takes the form

‖xn+1 − x∗‖ ≤ C4‖xn − x∗‖2, (49)

which indicates the quadratic convergence rate of method (2).

Remark 2. If L0 = L = L1 and M0 = M = M1, our results specialize to the corresponding ones
in [4]. Otherwise, they constitute an improvement as already noted in Remark 1. As an example,
let q1, g1, C1

1 , C1
2 , C1

3 , C1
4 , r1
∗ denote the functions and parameters where L0, L, M0, M are replaced

by L1, L1, M1, M1, respectively. Then, we have in view of (15)–(17) that

q(r) ≤ q1(r), (50)

g(r) ≤ g1(r), (51)

C1 ≤ C1
1 , (52)

C2 ≤ C1
2 , (53)

C3 ≤ C1
3 , (54)

and

C4 ≤ C1
4 . (55)

Hence, we have

r1
∗ ≤ r∗, (56)

the new error bounds (22) being tighter than the corresponding (6) in [4], and the rest of the
advantages (already mentioned in Remark 1) holding true.

Next, we study the convergence of method (2) if L0, L, M0, M are constants, as a
consequence of Theorem 1.

Corollary 3. Let F + G : Rp → Rm be continuous on an open convex subset D ⊂ Rp, F be a
continuously differentiable, and G be a continuous function on D. Suppose that problem (1) has a
solution x∗ ∈ D, and the inverse operation

(AT
∗ A∗)−1 = [(F′(x∗) + G(x∗, x∗))T(F′(x∗) + G(x∗, x∗))]−1 (57)
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exists, such that ‖(AT
∗ A∗)−1‖ ≤ B.

Suppose that the Fréchet derivative F′ satisfies the classic Lipschitz conditions

‖F′(x)− F′(x∗)‖ ≤ L0‖x− x∗‖, for each x ∈ D, (58)

‖F′(x)− F′(y)‖ ≤ L‖x− y‖, for each x, y ∈ Ω0 (59)

and the function G has a first order divided difference G(x, y) that satisfies

‖G(x, y)− G(x∗, x∗)‖ ≤ M0(‖x− x∗‖+ ‖y− x∗‖), for each x, y ∈ D, (60)

‖G(x, y)− G(u, v)‖ ≤ M(‖x− u‖+ ‖y− v‖), for each x, y, u, v ∈ Ω0, (61)

where Ω0 = D ∩Ω

(
x∗,

√
B2α2 + B− Bα

B(L0 + 2M0)

)
.

Furthermore,

‖F(x∗) + G(x∗)‖ ≤ η, ‖F′(x∗) + G(x∗, x∗)‖ ≤ α, B(L0 + 2M0)η < 1 (62)

and Ω = Ω(x∗, r∗) ⊆ D, where

r∗ =
4(1− BT0η)

Bα(4T0 + T) +
√

B2α2(4T0 + T)2 + 8BT0(2T0 + T)(1− BT0η)
, (63)

T0 = L0 + 2M0, T = L + 2M. Then, for each x0, x−1 ∈ Ω, the iterative sequence {xn} ,
n = 0, 1, ..., generated by (2) is well defined, remains in Ω, and converges to x∗, such that the
following error estimate holds for each n = 0, 1, 2, . . .:

‖xn+1 − x∗‖ ≤ C1‖xn−1 − x∗‖+ C2‖xn − x∗‖
+C3‖xn−1 − x∗‖‖xn − x∗‖+ C4‖xn − x∗‖2, (64)

where

g(r) = B[1− B(2α + (L0 + 2M0)r)(L0 + 2M0)r]−1; (65)

C1 = g(r∗)M0η; C2 = g(r∗)(L0 + M0)η; (66)

C3 = g(r∗)(α + (L0 + 2M0)r∗)M; (67)

C4 = g(r∗)(α + (L0 + 2M0)r∗)
L
2

. (68)

The proof of Corollary 3 is analogous to the proof of Theorem 1.

3. Numerical Examples

In this section, we give examples to show the applicability of method (2) and to

confirm Remark 2. We use the norm ‖x‖ =
√

p
∑

i=1
x2

i for x ∈ Rp.

Example 1. Let function F + G : R2 → R3 be defined by

F(x) + G(x) =

 3u2v + v2 − 1 + |u2 − 1|
u4 + uv3 − 1 + |v|
v− 0.3 + |u− 1|

, (69)

F(x) =

 3u2v + v2 − 1
u4 + uv3 − 1

v− 0.3

, G(x) =

 |u2 − 1|
|v|
|u− 1|

, (70)
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where x = (u, v). The solution of this problem x∗ ≈ (0.917889, 0.288314) and
η ≈ 0.079411.

Let us give the number of iterations needed to obtain an approximate solution of this
problem. We test method (2) for the different initial points x0 = δ(1.1, 0.5)T , where δ ∈ R,
and use the stopping criterion ‖xn+1− xn‖ ≤ ε. The additional point x−1 = x0 + 10−4. The
numerical results are shown in Table 1.

Table 1. Results for Example 1, ε = 10−8.

δ = 0.1 δ = 1 δ = 5 δ = 10 δ = 100

Number of iterations 12 8 15 17 25

In Table 2, we give values of xn+1, ‖xn+1 − xn‖ and the norm of residual at each itera-
tion.

Table 2. Iterative sequence, norm of growth, and residual for Example 1, x0 = (0.8, 0.2)T , ε = 10−6.

n xn+1 ‖xn+1− xn‖ ‖F(xn+1) + G(xn+1)‖
0 (0.937901, 0.312602) 0.178033 0.143759
1 (0.918455, 0.290216) 2.965298 × 10−2 7.973496 × 10−2

2 (0.917850, 0.288333) 1.977741 × 10−3 7.941104 × 10−2

3 (0.917888, 0.288313) 4.346993 × 10−5 7.941092 × 10−2

4 (0.917889, 0.288314) 7.873833 × 10−7 7.941092 × 10−2

Example 2. Let function F + G : D ⊆ R→ R3 be defined by [5]:

F(x) + G(x) =

 x + µ
λx3 + x− µ

λ|x2 − 1| − λ

, (71)

F(x) =

 x + µ
λx3 + x− µ

0

, G(x) =

 0
0

λ|x2 − 1| − λ

, (72)

where λ, µ ∈ R are two parameters. Here x∗ = 0 and η =
√

2|µ|. Thus, if µ = 0, then we have a
problem with zero residual.

Let us consider Example 2 and show that r1
∗ ≤ r∗ and the new error estimates (64) are

tighter than the corresponding ones in [4]. We consider the case of the classical Lipschitz
conditions (Corollary 3). Error estimates from [4] are as follows:

‖xn+1 − x∗‖ ≤ C1
1‖xn−1 − x∗‖+ C1

2‖xn − x∗‖
+C1

3‖xn−1 − x∗‖‖xn − x∗‖+ C1
4‖xn − x∗‖2, (73)

where

g1(r) = B[1− B(2α + (L1 + 2M1)r)(L1 + 2M1)r]−1; (74)

C1
1 = g1(r1

∗)M1η; C1
2 = g1(r1

∗)(L1 + M1)η; (75)

C1
3 = g1(r1

∗)(α + (L1 + 2M1)r1
∗)M1; (76)

C1
4 = g1(r1

∗)(α + (L1 + 2M1)r1
∗)

L1

2
. (77)

They can be obtained from (64) by replacing r∗, L0, L, M0, M in g(r), C1, C2, C3, C4 by
r1
∗, L1, L1, M1, M1, respectively. Similarly,
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r1
∗ =

4(1− BT1η)

5BαT1 +
√

25B2α2T2
1 + 24BT2

1 (1− BT1η)
, T1 = L1 + 2M1. (78)

Let us choose D = (−0.5; 0.5). Thus, we have B = 0.5, η =
√

2|µ|, α =
√

2,
L0 = max

x∈D
3|λ||x|, L = max

x,y∈Ω0
3|λ||x + y|, L1 = max

x,y∈D
3|λ||x + y|, M0 = M = M1 = |λ|.

Radii are written in Table 3.

Table 3. Radii of convergence domains.

λ µ L0 L L1 M r∗ r1
∗

0.4 0 0.6 1.004205 1.2 0.4 0.319259 0.235702
0.1 0.2 0.15 0.3 0.3 0.1 1.192633 0.885163

Tables 4 and 5 report the left and right side of error estimates (64) and (73). We
obtained these results for ε = 10−8 and starting approximations x−1 = 0.2001, x0 = 0.2.
We see that the new error bounds (64) are tighter than the corresponding (73) from [4].

Table 4. Results for λ = 0.4, µ = 0.

n |xn+1− x∗| The Right Side of (64) The Right Side of (73)

0 4.364164 × 10−3 0.125318 0.169740
1 1.425535 × 10−5 1.245455 × 10−3 1.529729 × 10−3

2 2.179258 × 10−11 8.675961 × 10−8 1.060957 × 10−7

3 3.542853 × 10−22 4.314684 × 10−16 5.272102 × 10−16

Table 5. Results for λ = 0.1, µ = 0.2.

n |xn+1− x∗| The Right Side of (64) The Right Side of (73)

0 2.063103 × 10−3 5.909333 × 10−2 8.484100 × 10−2

1 5.453349 × 10−7 9.113893 × 10−3 1.080560 × 10−2

2 2.054057 × 10−14 9.051468 × 10−5 1.057648 × 10−4

3 1.447579 × 10−18 2.390964 × 10−8 2.792694 × 10−8

4. Conclusions

We developed an improved local convergence analysis of the Gauss–Newton–Secant
method for solving nonlinear least squares problems with nondifferentiable operator.
We use a center and restricted radius Lipschitz conditions to study the method. As a
consequence, we obtain a larger radius of convergence and tighter error estimates under
the same computational effort as in earlier papers. This idea can be used to extend the
usage of other methods with inverses, such as Newton-type, Secant-type, single-step,
or multi-step, to mention a few. This should be our future work. Finally, it is worth
mentioning that except for the methods used in this paper, some of the most representative
computational intelligence algorithms can be used to solve the problems, such as monarch
butterfly optimization (MBO) [18], the earthworm optimization algorithm (EWA) [19],
elephant herding optimization (EHO) [20], the moth search (MS) algorithm [21], the slime
mould algorithm (SMA), and Harris hawks optimization (HHO) [22].
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