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1. Introduction

The study of fixed points and iterations of nonlinear mappings is a central topic in
nonlinear functional analysis. See, for example, [1–23] and the references cited therein. This
activity stems from Banach’s classical theorem [24] concerning the existence of a unique
fixed point for a strict contraction. It also covers the convergence of (inexact) iterates of a
non-expansive mapping to one of its fixed points. In particular, the convergence of infinite
products of such mappings is important because of their many applications to the study of
feasibility and optimization problems, which find important applications in engineering
and medical sciences [19–22,25–30]. The book [14] contains several results that show the
convergence of inexact orbits of a nonlinear self-mapping of a compete metric space to
one of its fixed points. In the present paper, we establish a variant of these results for
inexact products of uniformly continuous self-mappings of a complete metric space that is
uniformly continuous and bounded on bounded sets. These mappings have a common
invariant bounded set that attracts all the infinite products. It is shown that previously
established convergence theorems for products of non-expansive mappings in [15] continue
to hold even under the presence of computational errors. Our results also generalize the
results of [23] obtained in the case when the common invariant set is a singleton and the
results of [31] obtained for inexact powers of a single mapping when the invariant set is
a singleton.

2. Main Results

Let (Z, ρ) be a complete metric space. For each x ∈ Z and each r > 0 set

B(x, r) = {z ∈ Z : ρ(x, z) ≤ r}.

For each x ∈ Z and each nonempty set D ⊂ Z, put

ρ(x, D) = inf{ρ(x, y) : y ∈ D}.

Fix
θ ∈ X.
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Suppose that
F ⊂ Z

is a nonempty closed bounded set and that mappings Si : Z → Z, i = 1, 2, . . . satisfy the
following assumptions.

Assumption 1.
Si(F) ⊂ F for all natural numbers i.

Assumption 2. For each nonempty bounded set K ⊂ Z and each ε > 0, there exists δ > 0 such
that

ρ(Si(x1), Si(x2)) ≤ ε

for all natural numbers i and all pairs of points x1, x2 ∈ K satisfying ρ(x1, x2) ≤ δ.

Assumption 3. For each nonempty bounded set K ⊂ Z, there exists M > 0 such that

Si(K) ⊂ B(θ, M)

for all natural numbers i.

Suppose that R is a collection of mappings r : {1, 2, . . . } → {1, 2, . . . } such that the
following assumptions hold.

Assumption 4. For each r ∈ R and each integer q ≥ 1 the mapping t→ r(t + q), t = 1, 2, . . .
also belongs toR.

Assumption 5. For each nonempty bounded set K ⊂ Z and each ε > 0, there exists a natural
number n(K, ε) such that for each x ∈ K, each r ∈ R and each integer n ≥ n(K, ε),

ρ(
n

∏
i=1

Sr(i)(x), F) ≤ ε.

In this paper, we prove the following results.

Theorem 1. Let K be a nonempty, bounded subset of Z and let ε > 0. Then there exist δ =
δ(ε, K) > 0 and a natural number N such that for each r ∈ R, each natural number n ≥ N and
each sequence {xi}n

i=0 ⊂ Z, which satisfies

x0 ∈ K

and
ρ(Sr(i+1)(xi), xi+1) ≤ δ, i = 0, . . . , n− 1

the inequality
ρ(xi, F) ≤ ε

holds for all i = N, . . . , n.

The following corollary is easily deduced from Theorem 1.

Corollary 1. Assume that r ∈ R, a sequence {xi}∞
i=0 ⊂ Z has a bounded sub-sequence and that

lim
i→∞

ρ(Sr(i+1)(xi), xi+1) = 0.

Then
lim
i→∞

ρ(xi, F) = 0.
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Theorem 2. Let ε > 0. Then, there exists δ > 0 such that for each r ∈ R and each sequence
{xi}∞

i=0 ⊂ Z, which satisfies
ρ(x0, F) ≤ δ

and
ρ(Sr(i+1)(xi), xi+1) ≤ δ, i = 0, 1, . . .

the inequality
ρ(xi, F) ≤ ε

holds for all integers i ≥ 0.

Theorem 3. Let M > 0. Then, there exists δ̄ > 0 such that for each ε > 0 and each sequence

{δi}∞
i=0 ⊂ (0, δ̄]

satisfying
lim
i→∞

δi = 0

there exists a natural number n0 such that the following assertion holds.
For each r ∈ R and each sequence {xi}∞

i=0 ⊂ Z, which satisfies

x0 ∈ B(θ, M)

and
ρ(Sr(i+1)(xi), xi+1) ≤ δi, i = 0, 1, . . . ,

the inequality
ρ(xn, F) ≤ ε

holds for all integers n ≥ n0.

It should be mentioned that prototypes of our results were obtained in [15] when the
mappings Si, i = 1, 2, . . . are non-expansive, in [23] when the set F is a singleton and in
[31] where the set F is a singleton and Si = S1 for all natural numbers i.

The paper is organized as follows. Section 3 contains auxiliary results. Theorem 1 is
proved in Section 4. The proof of Theorem 2 is given in Section 5. Section 6 contains the
proof of Theorem 2.

3. Auxiliary Results

Assumption 3 implies the following result.

Lemma 1. Let K be a nonempty, bounded subset of Z, and let N be a natural number. Then, there
exists M0 > 0 such that

K ⊂ B(θ, M0)

and that for each integer n ∈ {1, . . . , N} and each mapping r : {1, . . . , n} → {1, 2, . . . },

(
n

∏
i=1

Sr(i))(K) ⊂ B(θ, M0).

Lemma 2. Let K be a nonempty, bounded subset of Z, N be a natural number and let ε ∈ (0, 1).
Then, there exists δ ∈ (0, ε) such that for each x, y ∈ K satisfying ρ(x, y) ≤ δ, each integer
n ∈ {1, . . . , N} and each mapping r : {1, . . . , n} → {1, 2, . . . } the inequality

ρ(
n

∏
i=1

Sr(i)(x),
n

∏
i=1

Sr(i)(y)) ≤ ε

holds.
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Proof. Let M0 > 0 be as guaranteed by Lemma 1. Then,

K ⊂ B(θ, M0) (1)

and

(
n

∏
i=1

Sr(i))(K) ⊂ B(θ, M0) (2)

for each integer n ∈ {1, . . . , N} and each mapping r : {1, . . . , n} → {1, 2, . . . }.
Set

δN = ε/4. (3)

By induction, using (A2), we define a sequence of positive numbers δi, i = 0, . . . , N− 1
such that for each integer i ∈ {0, . . . , N − 1},

δi < δi+1/2 (4)

and that for each x, y ∈ B(θ, M0) satisfying ρ(x, y) ≤ δi and each natural number j we have

ρ(Sj(x), Sj(y)) ≤ δi+1. (5)

Set
δ = δ0. (6)

Assume that
x, y ∈ K ⊂ B(θ, M0) (7)

(see (1)), n ∈ {1, . . . , N}, r : {1, . . . , n} → {1, 2, . . . } and that

ρ(x, y) ≤ δ = δ0 (8)

(see (6)). In view of (2), (3) and (7), for each j ∈ {1, . . . , n},

j

∏
i=1

Sr(i)(x),
j

∏
i=1

Sr(i)(y) ∈ B(θ, M0). (9)

By (5), (7), (8) and the choice of δ0,

ρ(Sr(1)(x), Sr(1)(y)) ≤ δ1. (10)

We show by induction that for j = 1, . . . , n,

ρ(
j

∏
i=1

Sr(i)(x),
j

∏
i=1

Sr(i)(y)) ≤ δj. (11)

In view of (10) our assumption holds for j = 1. Assume that j ∈ {1, . . . , n} \ {n} and
that (11) holds. It follows from (9), (11) and the choice of δj (see (5)) that

ρ(
j+1

∏
i=1

Sr(i)(x),
j+1

∏
i=1

Sr(i)(y)) = ρ(Sr(j+1)

j

∏
i=1

Sr(i)(x), Sr(j+1)

j

∏
i=1

Sr(i)(y)) ≤ δj+1

and the assumption made for j also holds for j + 1. Therefore, by induction, we showed
that (11) holds for j = 1, . . . , n and in particular

ρ(
n

∏
i=1

Sr(i)(x),
n

∏
i=1

Sr(i)(y)) ≤ δn ≤ ε/4.

Lemma 2 is proved.
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Lemma 3. Let K be a nonempty, bounded subset of Z, N be a natural number and let ε ∈
(0, 1). Then, there exists δ ∈ (0, ε) such that for each integer n ∈ {1, . . . , N}, each mapping
r : {1, . . . , n} → {1, 2, . . . }, each sequence {xi}n

i=0 ⊂ Z, which satisfies

x0 ∈ K (12)

and
ρ(Sr(i+1)(xi), xi+1) ≤ δ, i = 0, . . . , n− 1 (13)

and for a sequence {yi}n
i=0 ⊂ Z defined by

y0 = x0,

yi+1 = Sr(i+1)(yi), i = 0, . . . , n− 1

the inequality ρ(xi, yi) ≤ ε holds for all i = 1, . . . , n.

Proof. Choose M0 > 1 such that

K ⊂ B(θ, M0 − 1). (14).

By induction, using (A3), we define a sequence of numbers Mi > 1, i = 1, 2, . . . such
that for each integer i ≥ 0

Mi+1 > Mi + 2 (15)

and that for each natural number j,

Sj(B(θ, Mi + 1)) ⊂ B(θ, Mi+1 − 1). (16)

Set
δN = ε/4. (17)

By induction, using (A2), we define a sequence of positive numbers δi, i = 1, . . . , N
such that (17) holds and that for each integer i ∈ {1, . . . , N} \ {N},

δi < δi+1/4

and that for each x, y ∈ B(θ, MN + 4) satisfying ρ(x, y) ≤ 2δi and each natural number j
we have

ρ(Sj(x), Sj(y)) ≤ δi+1/2. (18)

Set
δ = δ1. (19)

Assume that an integer n ∈ {1, . . . , N}, r : {1, . . . , n} → {1, 2, . . . } and that a sequence
{xi}n

i=0 ⊂ Z satisfies (12) and (13). By (12) and (14),

ρ(x0, θ) ≤ M0 − 1. (20)

Set
y0 = x0, (21)

yi+1 = Sr(i+1)(yi), i = 0, . . . , n− 1. (22)

In view of (15), (16), (20)–(22) and the definition of Mi, i = 1, 2, . . . ,

yi ∈ B(θ, Mi − 1), i = 0, . . . , n. (23)

By induction we show that for all i = 1, . . . , n,

ρ(xi, yi) ≤ δi. (24)
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Equations (13), (19) and (22) imply that

ρ(x1, y1) ≤ ρ(x1, Sr(1)(x0)) ≤ δ = δ1

and our assumption holds for i = 1.
Assume that p ∈ {1, . . . , n} \ {n} and that (24) is true for i = 1, . . . , p. In view of (15)

and (23),
yp ∈ B(θ, Mp − 1) ⊂ B(θ, MN). (25)

By (15), (17), (24) with i = p, (25) and the construction of δi, i = 1, . . . , N,

xp ∈ B(θ, Mp) ⊂ B(θ, MN), (26)

ρ(xp, yp) ≤ δp. (27)

It follows from (25)–(27) and the choice of δp (see (18)) that

ρ(Sr(p+1)(xp), Sr(p+1)(yp)) ≤ δp+1/2. (28)

By (13), (19), (22) and (28),

ρ(xp+1, yp+1) ≤ ρ(xp+1, Sr(p+1)(xp)) + ρ(Sr(p+1)(xp), yp+1)

≤ δ + δp+1/2 ≤ δp+1.

Therefore, the assumption made for p also holds for p + 1. Thus, by induction we
showed that (24) holds for all i = 0, 1, . . . , n. Lemma 3 is proved.

4. Proof of Theorem 1

We may assume without loss of generality that

ε ≤ 4−1

and that
∪{B(z, 4) : z ∈ F} ⊂ K. (29)

In view of Assumption 4, there exists a natural number N ≥ 4 such that

ρ((
n

∏
i=1

Sr(i))(x), F) ≤ ε/4 (30)

for each x ∈ K, each r ∈ R and each integer n ≥ N.
Lemma 3 implies that there exists δ ∈ (0, ε/4) such that the following property holds:
(a) for each integer n ∈ {1, . . . , 2N}, each mapping r ∈ R, each sequence {zi}n

i=0 ⊂ Z,
which satisfies

z0 ∈ K

and
ρ(Sr(i+1)(zi), zi+1) ≤ δ, i = 0, . . . , n− 1

and for a sequence {yi}n
i=0 ⊂ Z defined by

y0 = x0,

yi+1 = Sr(i+1)(yi), i = 0, . . . , n− 1

the inequality ρ(zi, yi) ≤ ε/4 holds for all i = 1, . . . , n.
Assume that n ≥ N is an integer, r ∈ R and that the sequence {xi}n

i=0 ⊂ Z satisfies

x0 ∈ K, (31)
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ρ(Sr(i+1)(xi), xi+1) ≤ δ, i = 0, . . . , n− 1. (32)

Define
y0 = x0,

yi+1 = Sr(i+1)(yi), i = 0, . . . , n− 1. (33)

Property (a) and (31)–(33) imply that

ρ(xi, yi) ≤ ε/4, i = 1, . . . , min{n, 2N}. (34)

It follows from (30), (31), (33) and the choice of N that

ρ(yi, F) ≤ ε/4, i = N, . . . , n. (35)

If n ≤ 2N, then by (34) and (35), for i = N, . . . , n

ρ(xi, F) ≤ ρ(xi, yi) + ρ(yi, F) ≤ ε/2.

Assume that
n > 2N. (36)

We show that
ρ(xi, F) ≤ ε for all i ∈ {N, . . . , n}.

Assume the contrary. Then, there exists an integer

k ∈ (N, n] (37)

such that
ρ(xk, F) > ε. (38)

Equations (34)–(36) imply that for all i = N, . . . , 2N,

ρ(xi, F) ≤ ρ(xi, yi) + ρ(yi, F) ≤ ε/2. (39)

Therefore, in view of (37)–(39),
k > 2N. (40)

We may assume without loss of generality that

ρ(xi, F) ≤ ε, i ∈ {2N, . . . , k− 1}. (41)

Define
r̃(i) = r(i + k− N), i = 1, 2, . . . .

In view of (40) and (A4),
r̃ ∈ R. (42)

Define {x̃i}2N
i=0 ⊂ Z by

x̃i = xi+k−N , i = 0, . . . , N, (43)

x̃i+1 = Sr̃(i+1)(x̃i), i = N, . . . , 2N − 1. (44)

Equations (32), (42) and (43) imply that for all integers i = 0, . . . , N − 1,

ρ(x̃i+1, Sr̃(i+1)(x̃i)) = ρ(xi+1+k−N , Sr(i+1+k−N)(xi+k−N)) ≤ δ. (45)

Set
ỹ0 = x̃0,

ỹi+1 = Sr̃(i+1)(ỹi), i = 0, . . . , 2N − 1. (46)
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It follows from (29), (39)–(41) and (43) that

x̃0 = xk−N ∈ K. (47)

Property (a), (42) and (44)–(47) imply that

ρ(x̃i, ỹi) ≤ ε/4, i = 1, . . . , 2N. (48)

In view of (30), (46), (47) and the choice of N,

ρ(ỹi, F) ≤ ε/4, i = N, . . . , 2N. (49)

By (43), (48) and (49),

ρ(xk, F) = ρ(x̃N , F) ≤ ρ(x̃N , ỹN) + ρ(ỹN , F) ≤ ε/2.

This contradicts (38). The contradiction we have reached proves Theorem 1.

5. Proof of Theorem 2

We may assume without loss of generality that ε < 4−1. Let

K = ∪{B(z, 4) : z ∈ F}. (50)

By Theorem 1, there exist δ0 ∈ (0, ε) and a natural number N such that the following
property holds.

(a) For each natural number n ≥ N, each r ∈ R and each sequence {zi}n
i=0 ⊂ Z, which

satisfies
z0 ∈ K

and
ρ(Sr(i+1)(zi), zi+1) ≤ δ0, i = 0, . . . , n− 1

we have
ρ(zi, F) ≤ ε, i = N, . . . , n.

Lemma 3 implies that there exists δ1 ∈ (0, ε/4) such that the following property holds:
(b) for each mapping r ∈ R, each sequence {zi}N

i=0 ⊂ Z, which satisfies

z0 ∈ K

and
ρ(Sr(i+1)(zi), zi+1) ≤ δ1, i = 0, . . . , N − 1

and for a sequence {yi}N
i=0 ⊂ Z defined by

y0 = x0,

yi+1 = Sr(i+1)(yi), i = 0, . . . , N − 1

the inequality ρ(xi, yi) ≤ ε/4 holds for all i = 1, . . . , N.
Lemma 2 implies that there exists δ2 ∈ (0, ε/4) such that the following property holds:
(c) for each x, y ∈ K satisfying ρ(x, y) ≤ 2δ2 and each mapping r ∈ R,

ρ(
n

∏
i=1

Sr(i)(x),
n

∏
i=1

Sr(i)(y)) ≤ ε/4, n = 1, . . . , N.

Set
δ = 2−1 min{δ0, δ1, δ2}. (51)
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Assume that r ∈ R and that a sequence {xi}∞
i=0 ⊂ Z satisfies

ρ(x0, F) ≤ δ, (52)

d(xi+1, Sr(i+1)(xi)) ≤ δ, i = 0, 1, . . . . (53)

Property (a) and Equations (50)–(53) imply that

ρ(xi, F) ≤ ε (54)

for all integers i ≥ N.
Set

y0 = x0,

yi+1 = Sr(i+1)(yi), i = 0, 1, . . . . (55)

Property (b) and Equations (50)–(53) and (55) imply that

ρ(xi, yi) ≤ ε/4, i = 0, . . . , N. (56)

It follows from and Equations (50)–(52) that there exists

ξ0 ∈ F (57)

such that
ρ(y0, ξ0) < 2δ ≤ δ2 < ε. (58)

By property (c) and Equations (50), (55), (57) and (58), for n = 1, . . . , N,

ρ(
n

∏
i=1

Sr(i)(ξ0), yn) ≤ ε/4. (59)

In view of (56) and (59), for all n = 1, . . . , N,

ρ(
n

∏
i=1

Sr(i)(ξ0), xn) ≤ ε/2.

Combined with (57) and Assumption 1, this implies that

ρ(xi, F) ≤ ε/2, i = 1, . . . , N.

This completes the proof of Theorem 2.

6. Proof of Theorem 3

We may assume without loss of generality that

∪{B(z, 4) : z ∈ F} ⊂ B(θ, M). (60)

By Theorem 1 and Assumption 3, there exist

δ̄ ∈ (0, 1] and M1 > M

such that the following property holds:
(a) each r ∈ R and each sequence {xi}n

i=0 ⊂ Z, which satisfies

x0 ∈ B(θ, M)

and
ρ(Sr(i+1)(xi), xi+1) ≤ δ̄, i = 0, 1, . . .
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we have
xi ∈ B(θ, M1), i = 0, 1, . . . .

Assume that ε > 0 and a sequence

{δi}∞
i=0 ⊂ (0, δ̄] (61)

satisfies
lim
i→∞

δi = 0. (62)

By Theorem 1, there exist δ ∈ (0, δ̄] and a natural number N such that the following
property holds:

(b) for each r ∈ R and each sequence {zi}n
i=0 ⊂ Z, which satisfies

z0 ∈ B(θ, M1)

and
ρ(Sr(i+1)(zi), zi+1) ≤ δ, i = 0, 1, . . .

the inequality
ρ(zi, F) ≤ ε

holds for all integers i ≥ N.
In view of (61), there exists an integer n1 ≥ N such that

δi < δ for all integers i ≥ n1. (63)

Set
n0 = n1 + N. (64)

Assume that r ∈ R, {xi}∞
i=0 ⊂ Z,

x0 ∈ B(θ, M),

ρ(Sr(i+1)(xi), xi+1) ≤ δi, i = 0, 1, . . . . (65)

Property (a) and Equations (61), (64) and (65) imply that

xi ∈ B(θ, M1) for all integers i ≥ 1. (66)

It follows from property (b) and Equations (63), (65) and (66) that for all integers
i ≥ n1 + N = n0,

ρ(xi, F) ≤ ε.

Theorem 3 is proved.

7. An Application

Let (Z, 〈·, ·〉) be a Hilbert space equipped with an inner product that induces a com-
plete norm ‖ · ‖. For each x, y ∈ Z set ρ(x, y) = ‖x− y‖.

Let m be a natural number, Ci ⊂ X, i = 1, . . . , m be nonempty closed convex sets and
let Pi : X → Ci, i = 1, . . . , m be projections. Set

F = ∩m
i=1Ci.

We suppose that F 6= ∅. Our goal is to find a point x ∈ F. This is a well-known
feasibility problem that finds important applications in engineering and medical sciences
[19–22,25–30]. Fix a natural number N̄ ≥ m and denote by R the set of all mappings
r : {1, 2, . . . } → {1, . . . , m} such that for each number j,

{1, . . . , m} ⊂ {r(j), . . . , r(j + N̄ − 1)}.
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Choose x ∈ Z and r ∈ R. It is well-known that under certain mild assumptions,

ρ(
n

∏
i=1

Pr(i)(x), F)→ 0

as n→ ∞.
It is not difficult to see that this feasibility problem is a particular case of the general prob-

lem that is considered in this paper. Evidently, Assumptions 1–4 hold, while Assumption 5
holds if the family of sets possesses the following bounded regularity property:

for each ε > 0 and each M > 0, there exists δ > 0 such that if x ∈ B(0, M) satisfies
ρ(x, Ci) ≤ δ for all i = 1, . . . , m, then ρ(x, F) ≤ ε.

See, for example, Theorems 2.14, 2.15 and 3.8 of [21].
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