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Abstract: Quantum characteristics of a mass-accreting oscillator are investigated using the invariant
operator theory, which is a rigorous mathematical tool for unfolding quantum theory for time-
dependent Hamiltonian systems. In particular, the quantum energy of the system is analyzed in
detail and compared to the classical one. We focus on two particular cases; one is a linearly mass-
accreting oscillator and the other is an exponentially mass-accreting one. It is confirmed that the
quantum energy is in agreement with the classical one in the limit h̄→ 0. We showed that not only
the classical but also the quantum energy oscillates with time. It is carefully analyzed why the energy
oscillates with time, and a reasonable explanation for that outcome is given.
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1. Introduction

Hamiltonians of most actual physical systems such as forced oscillators [1–5], mass-
accreting oscillators [6–11], and damped oscillators [11–15] are a function of time. For this
reason, these systems are called time-dependent Hamiltonian systems (TDHSs). Deriv-
ing not only numerical but also analytical solutions of TDHSs has become one of main
tasks that deserve to be carried out in the context of theoretical physics. Sometimes,
to achieve such a purpose, the time variations of parameters of a system are assumed
to be sufficiently slow for simplicity. In this study, we are interested in time behavior of
quantized energy for mass-accreting nanomechanical oscillatory systems. Knowledge of
mass-accreting oscillators can be applied to analyzing the oscillation of an accretion disc
(diskoseismology) [2,16–20] and multiple crystal oscillator used for measuring density of a
particular gas [21].

The rate of increase in mass in the above-mentioned systems may vary with time
in general in an arbitrary fashion. As is well known, for a simple case in which the rate
of mass-accretion is constant with time, the system is described by the Caldirola-Kanai
Hamiltonian [22,23]. The description of a quantum system via such a Hamiltonian is in fact
a phenomenological method for single particle motion instead of the entire description of
the system and reservoir as a whole. Although we consider a quantum problem of a linear
oscillator model in this work, there are also many works from a long time ago devoted to
nonlinear oscillators and their quantum-classical-correspondence problem [24–27].

A useful tool for describing dynamical systems with time-dependent parameters is
invariant operator methods [28,29]. These methods have been widely used when unfolding
quantum theory of TDHSs. There may be many kinds of invariants for a system. For
instance, linear and quadratic invariant operators for an oscillator-like Hamiltonian system
are reported in Reference [30]. We will introduce a linear invariant operator in this research.
From quantum theory associated with the linear invariant operator, we can easily identify
the relation between the quantum and the classical theory of a dynamical system.
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In this work, we investigate how to develop quantum theory of a mass-accreting
oscillator on the basis of invariant operator method. General quantum theory of oscillators
with time-varying mass are used to analyze two particular systems such as the linearly
mass-accreting oscillator and the oscillator with exponentially increasing mass. We focus
on time behavior of quantum energy and compare it with the classical one. In classical
mechanics, the energy of the mass-accreting oscillator oscillates with time. We determine
whether quantum energy also oscillates over time with the same pattern as the classical
one and analyze why the energy oscillates. The similarity and difference between classical
and quantum states of the system are also addressed.

2. Preliminary Analysis in Classical Domain

We first note the classical aspect of mass-accreting oscillators as a preliminary. Ba-
sically, a mass-accreting oscillator is understood from the pail-rain model [7,11] or a
time-dependent mass system described in Reference [31]. Like many cases of TDHSs,
the action of the environment on the system can be replaced by a time-dependent term in
the Hamiltonian, allowing a standard approach for a single particle motion.

If we express the time-dependent mass as M(t) in this case, the Hamiltonian can be
represented in the form

H =
1
2

[
p2

M(t)
+ M(t)ω2

0q2
]

, (1)

where ω0 is a natural frequency. The corresponding classical equation of motion is given by

d2q
dt2 +

Ṁ(t)
M(t)

dq
dt

+ ω2
0q = 0. (2)

If we consider that this is a second-order differential equation, there may be two linearly
independent solutions. If we call them Q1(t) and Q2(t), respectively, the general solution
can be represented as

Q(t) = c1Q1(t) + c2Q2(t), (3)

where c1 and c2 are arbitrary constants. Once Q(t) is known, the expression of momentum
can also be derived from a basic relation between them in mechanics. Among the many
classical quantities that can be analyzed in terms of Equation (3), we consider classical
energy, which is of the form

Ec(t) =
1
2

[
M(t)Q̇2(t) + M(t)ω2

0Q2(t)
]
. (4)

For a particular case where the type of M(t) is chosen in a way that the solution of
Equation (2) is known or solved, we can completely describe the time behavior of this
classical energy. From the next section, we will analyze the system quantum mechanically
with the explicit choice of M(t).

3. Quantum Analysis

We consider two types of M(t) in order to analyze the quantum features of the system
depending on the pattern of mass-accreting. We first choose the time dependence of M(t)
so that it represents a linearly accreting mass, and the other choice in the next corresponds
to the exponentially mass-accreting one. As with the case of the classical analysis given in
the previous section, we also focus on the time evolution of mechanical energy but in view
of quantum theory.

3.1. Linearly Mass-Accreting Oscillator

Let us first consider the case in which mass of the system is given by M(t) = m + kt,
where m is the initial mass and k is a positive constant. Then, the equation of motion given
in Equation (2) becomes
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d2q
dt2 +

k
m + kt

dq
dt

+ ω2
0q = 0. (5)

The solutions of this equation are easily derived to be

Q1(t) = Q0 J0

[ω0

k
(m + kt)

]
, (6)

Q2(t) = Q0N0

[ω0

k
(m + kt)

]
, (7)

where Q0 is an arbitrary real constant and J0 and N0 are the first- and the second-kind 0th
order Bessel functions, respectively. Of course, the general solution Q(t) is obtained by
inserting these two equations into Equation (3).

The quantum Hamiltonian of the system is given by replacing canonical variables of
the classical Hamiltonian with their corresponding operators. Thus, we have

Ĥ(q̂, p̂, t) =
1
2

[
p̂2

M(t)
+ M(t)ω2

0 q̂2
]

. (8)

Through an inspection, we confirm that the separation of variables method for solving the
Schrödinger equation of the system with this Hamiltonian cannot be applicable. Hence,
we need another mathematical tool for solving quantum solutions of the system. One of
several methods useful for this purpose is the invariant operator method. A large part of
mechanical properties of dynamical physical systems can be clarified and understood from
this method. As is well known, the invariant operator Î(t) should satisfy the Liouville–von
Neumann equation which is of the form

dÎ(t)
dt

=
∂ Î(t)

∂t
+

1
ih̄
[ Î(t), Ĥ] = 0. (9)

By solving this equation for the linearly mass-accreting oscillator in a straightforward
way [9,30,32], we derive a linear operator as

Î =
eiθ(t)
√

h̄Ω

[
Ω

2ρ(t)

(
1− i

2(m + kt)ρ(t)ρ̇(t)
Ω

)
q̂ + iρ(t) p̂

]
, (10)

where

θ(t) =
∫ t

0

Ω
2ρ2(t′)(m + kt′)

dt′ + θ(0), (11)

ρ(t) =
√

Q2
1 + Q2

2, (12)

Ω = 2(m + kt)[Q1(t)Q̇2(t)− Q̇1(t)Q2(t)]. (13)

Notice that Î is a complex variable and its Hermitian adjoint Î† is also an invariant operator.
The commutation relation between them is [ Î, Î†] = 1. This means that we can regard
Î and Î† as an annihilation and creation operators of the system, respectively. In the
simple-harmonic-oscillator limit where Q1(t) = Q0 cos(ω0t) and Q2(t) = Q0 sin(ω0t), the
invariant operator reduces to

Î = ei[ω0t+θ(0)]

[√
mω0

2h̄
q̂ +

i√
2mω0h̄

p̂

]
, (14)

which is the familiar annihilation operator where a time-dependent phase is chosen.
Let us express the eigenvalue equation of the invariant operator in the form

Î|ψ(t)〉 = λ|ψ(t)〉. (15)
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Then, the eigenvalue is given by

λ =
eiθ(t)
√

h̄Ω

[
Ω

2ρ(t)

(
1− i

2(m + kt)ρ(t)ρ̇(t)
Ω

)
Q(t) + iρ(t)(m + kt)Q̇(t)

]
. (16)

Among many physical quantities that can be analyzed from a quantum point of view,
we are interested in the development of quantum energy of the TDHS, which has attracted
considerable concern in theoretical physics. Unlike that of classical energy, the expression
of quantum energy differs depending on given quantum states. For instance, the spectrum
of allowed quantum energies in the Fock state is discrete, whereas quantum energy in the
coherent state that we consider here is represented in terms of λ and λ∗.

From fundamental quantum dynamics, quantum energy is the expectation value of
the Hamiltonian

Eq(t) = 〈ψ(t)|Ĥ(q̂, p̂, t)|ψ(t)〉, (17)

where |ψ(t)〉 is the eigenstate of Î. Because we can also chose a different form of the
invariant operator instead of the one given in Equation (10), there may be many quantum
expressions of energy, which correspond to those of different quantum states. For the case
of the present work where Equation (10) is chosen as the invariant operator, the quantum
state 〈q|ψ(t)〉 corresponds to the coherent state.

To evaluate Equation (17), let us express the quantum Hamiltonian in terms of Î and
Î† such that

Ĥ =
h̄
2

{
(X + Y)e−2iθ(t) Î2 + (X∗ + Y)e2iθ(t) Î†2 + (

√
XX∗ + Y)(2 Î† Î + 1)

}
, (18)

where

X =

(
ρ̇

√
m + kt

Ω
− i

2ρ

√
Ω

m + kt

)2

, (19)

Y =
(m + kt)ω2

0ρ2

Ω
. (20)

Now a direct evaluation leads to the explicit formula of the quantum energy in the coher-
ent state:

Eq(t) =
h̄
2

{
(X + Y)e−2iθ(t)λ2 + (X∗ + Y)e2iθ(t)λ∗2 + (

√
XX∗ + Y)(2|λ|2 + 1)

}
. (21)

Notice that this oscillates with time like a classical energy as illustrated in Figure 1. The am-
plitude of such an oscillation diminishes as time goes by. If we consider that quantum
energy is represented in terms of h̄, quantum energy is different from the corresponding
classical one. It is expected that, when we neglect the value of h̄, quantum energy may
agree well with the classical one. From Figure 2, we see that the time behavior of the
expectation value of quantum energy under the limit h̄ → 0 follows a trajectory that is
quite similar to the classical one.
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Figure 1. Quantum energy of a linearly mass-accreting oscillator with various values of k. We used
c1 = c2 = 1, m = 1, ω0 = 1, Q0 = 1, and h̄ = 1.

Figure 2. Detailed comparison of the quantum energy (solid red line) with the classical energy (thick
dotted blue line) for linearly mass-accreting oscillator, under the limit h̄→ 0 for the quantum energy.
We used c1 = c2 = 1, m = 1, k = 0.1, ω0 = 1, and Q0 = 1.

3.2. Comparison with the Exponentially Mass-Accreting Oscillator

Now let us compare our results for the linear mass-accreting oscillator to those of the
exponentially mass-accreting oscillator which was treated in Reference [9]. In this case,
the time-dependent mass is given by M(t) = meγt where m is the initial mass and γ is a
constant. Here, the mass exponentially increases with time depending on the value of γ.
The classical equation of motion corresponding to this system is given by

d2q
dt2 + γ

dq
dt

+ ω2
0q = 0. (22)

This is the same as that of the damped harmonic oscillator. In fact, the classical trajectory
of exponentially mass-accreting oscillator in one-dimensional space is the same as that of
the damped harmonic oscillator. However, the energy of the system is different from that
of the damped harmonic oscillator and does not dissipate over time [6]. In this case, two
linearly independent solutions of the classical equation of motion are given by

Q1(t) = Q0e−γt/2 cos(ωt), (23)

Q2(t) = Q0e−γt/2 sin(ωt), (24)

where ω =
√

ω0 − γ2/4. In this case, a general solution given in Equation (3) is
represented as

Q(t) = Ae−γt/2 sin(ωt + ϕ), (25)
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where A =
√

c2
1 + c2

2 Q0 and ϕ = tan−1(c1/c2). Then, the corresponding classical energy
given in Equation (4) is expressed in the form

Ec(t) =
1
2

mA2
{

ω2
0 −

γ

2

[γ

2
cos[2(ωt + ϕ)] + ω sin[2(ωt + ϕ)]

]}
. (26)

This can be divided into kinetic and potential energies:

T =
1
2

mA2
[
ω cos(ωt + ϕ)− γ

2
sin(ωt + ϕ)

]2
, (27)

V =
1
2

mω2
0 A2 sin2(ωt + ϕ). (28)

The time behavior of mechanical energy together with T and V is plotted in Figure 3. This
energy oscillates as time goes by, but the envelope of the energy oscillation does not vary
with time. The energy of the oscillator increases around its turning points and decreases
around the equilibrium position where it attains maximum velocity.

Figure 3. Quantum mechanical energy (solid red line), (under the limit h̄ → 0), of exponentially
mass-accreting oscillator given in Equation (29) with γ = 0.1 for (A) and γ = 0.5 for (B). The long
dashed blue line is the corresponding kinetic energy, whereas the short dashed green line is the
potential energy. A slim violet curve is the relative position of the oscillator. We used A = 1, m = 1,
ω0 = 1, and ϕ = 1.
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Through the same procedure as that of the previous section, we can also obtain
quantum solution of energy as

Eq(t) =
1
2

h̄
ω2

0
ω

+
1
2

mA2
{

ω2
0 −

γ

2

[γ

2
cos[2(ωt + ϕ)] + ω sin[2(ωt + ϕ)]

]}
, (29)

which agrees well with that of Reference [9]. This energy also oscillates with time like a
classical one. From Figure 3, we see that the energy decreases with time near the equilibrium
position and increases at the turning points of the oscillator.

While the amplitude of the energy oscillation of the linearly mass-accreting oscillator
diminishes with time, the amplitude of the energy oscillation for the exponentially mass-
accreting oscillator does not vary. This is the main difference of the energy evolution
between the two oscillatory systems.

4. Conclusions

The time behavior of quantum energy of mass-accreting oscillatory nanosystems is
investigated through rigorous analytical analyses. The expression of quantum energy is
different depending on quantum states. The quantum energy that we have treated in
this work is associated with the coherent state. We confirmed that quantum energy of
the system oscillates with time like classical energy. This leads to quantum and classical
correspondence for the system, which is a fundamental concept in modern physics.

Now we analyze why the energies of the considered systems oscillate with time. To
interpret the results of our developments, let us compare them with the case of a mass-
accreting free particle. For this, we consider the Hamiltonian of a mass-accreting free
particle, which has the form Hfree = p2/[2M(t)]. This can be obtained by removing the
potential term from Equation (1). We can see that the corresponding classical energies for
linearly mass-accreting and exponentially mass-accreting free particles are given by

Ec,free =
1
2

m2

m + kt
V2(0), (30)

Ec,free =
1
2

me−γtV2(0), (31)

respectively, where V(0) is the initial velocity of the particle. Hence, the mechanical
energies in this case decay with time in proportion to

Ec,free ∝
1

m + kt
, (32)

Ec,free ∝ e−γt, (33)

respectively.
When the oscillatory systems attain the highest velocity near the equilibrium position,

the systems act like a free particle because we can neglect the force acting on the oscillator
through a spring at that moment. Since we can approximate the systems as a mass-
accreting free particle in that case, the oscillatory energy may dissipate in a manner similar
to those given in Equations (32) and (33), respectively, for linearly and exponentially mass-
accreting oscillators. This is the reason why the energies of the systems decay around the
equilibrium position.

On the other hand, the accretion of mass at the turning points of the oscillator results
in the increase in the potential energy due to a high displacement of the oscillator at those
instants of time. This is the reason why the energy increases at the turning points of
the oscillator.
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