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Abstract: This paper presents an approach to design convolutional neural network architectures, 
using the particle swarm optimization algorithm. The adjustment of the hyper-parameters and 
finding the optimal network architecture of convolutional neural networks represents an important 
challenge. Network performance and achieving efficient learning models for a particular problem 
depends on setting hyper-parameter values and this implies exploring a huge and complex search 
space. The use of heuristic-based searches supports these types of problems; therefore, the main 
contribution of this research work is to apply the PSO algorithm to find the optimal parameters of 
the convolutional neural networks which include the number of convolutional layers, the filter size 
used in the convolutional process, the number of convolutional filters, and the batch size. This 
work describes two optimization approaches; the first, the parameters obtained by PSO are kept 
under the same conditions in each convolutional layer, and the objective function evaluated by PSO 
is given by the classification rate; in the second, the PSO generates different parameters per layer, 
and the objective function is composed of the recognition rate in conjunction with the Akaike in-
formation criterion, the latter helps to find the best network performance but with the minimum 
parameters. The optimized architectures are implemented in three study cases of sign language 
databases, in which are included the Mexican Sign Language alphabet, the American Sign Lan-
guage MNIST, and the American Sign Language alphabet. According to the results, the proposed 
methodologies achieved favorable results with a recognition rate higher than 99%, showing com-
petitive results compared to other state-of-the-art approaches. 
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1. Introduction 
Deep neural networks have demonstrated their capacity to solve classification 

problems using a hierarchical model, millions of parameters, and learning with big da-
tabases. Convolutional neural networks (CNN) are a special class of deep neural net-
works that consist of several convolutions, pooling, and fully connected layers; this has 
proven to be a robust method for image or video processing, classification, and pattern 
recognition. In recent years CNN has attracted attention for achieving superior results in 
various applications in the computer vision domain, such as medicine, aerospace, natural 
language processing and robotics [1,2]. 

CNN are widely used in the field of industry, however, when designing CNN ar-
chitectures, we face some challenges which include the high computational costs for in-
formation processing and finding the optimal CNN parameters (architecture) for each 
problem [3]. CNN architectures are made up of numerous parameters and, depending on 
their configuration, can generate a variety of classification results when applied to solve 
the same tasks; the setting of the hyper-parameter values is usually based on a random 
search, performing several tests or adjusting manually and this represents a complex 
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search process. To solve this challenge, various researchers have proposed the imple-
mentation of evolutionary computation approaches to automatically design the optimal 
CNN architectures and to increase its performance [4,5]. In Sun et al. [6,7], an evolution-
ary approach is implemented to automatically obtain CNN architectures, achieving good 
results against the state-of-the-art architectures. In Ma et al. [8], the authors present an 
analysis of different methodologies based on evolutionary computing techniques to op-
timize CNN architectures, these were tested on benchmark data sets and achieved com-
petitive results. Baldominos et al. [9] implement an approach to automatically design 
CNN architectures, using genetic algorithms (GA) in conjunction with grammatical 
evolution. 

In the state of the art, we can find a variety of meta-heuristics that are applied to 
optimize CNN hyper-parameters, including the FGSA [10–12], harmonic search (HS) 
[13], differential evolution (DE) [14], microcanonical optimization algorithm [15], Whale 
optimization algorithm [16] and tree growth algorithm framework [17] to mention a few. 

In other research works, the PSO algorithm is used to optimize CNN architectures, 
obtaining favorable results in the solution of different applications. In Sun et al. [18], 
Singh et al. [19] and Wang et al. [20], PSO is applied to automatically design CNN archi-
tectures; these approaches are tested on known benchmark datasets, and the results ob-
tained are competitive against the state-of-the-art architectures. Besides this, PSO has 
been implemented in other fields of machine learning, including the optimization of dif-
ferent types of artificial neural network architectures, given favorable solutions for a 
plethora of problems [21,22]. In [23], PSO optimizes models of modular neural networks 
and is applied to obtain the blood pressure trend. In [24], a hybrid ANN-PSO method is 
applied to model the electricity price forecasting for the Indian energy exchange. As well 
as in [25], the PSO variants are applied to generate optimal modular neural network ar-
chitectures obtaining competitive results for human recognition. In [26], the PSO algo-
rithm is used to optimize deep neural network architectures and is tested in image clas-
sification tasks. In [27] a new paradigm of hybrid classification based on PSO is pre-
sented, which is applied for the prediction of medical diagnoses and prognoses. Fur-
thermore, in [28] the artificial bee colony (ABC) [29] and PSO are used to optimize mul-
tilayer perceptron neural networks (MLP); the approach is applied to estimate the heat-
ing load and cooling load of energy efficient buildings; and the authors report that PSO 
outperforms ABC, improving the MLP performance. In the listed works, we can note the 
advantages that PSO offers in the optimization process, increasing performance in dif-
ferent tasks. 

In research related to CNN approaches applied to the recognition of sign language, 
we find the work presented in [30] where a CNN model with stochastic pooling is im-
plemented in the recognition of the Chinese sign language spelling, achieving a rate of 
89.32 ± 1.07% recognition. In [31] a CNN method for Arabic sign language (ArSL) recog-
nition was applied, where the authors report a value of 90.02% precision. In [32] a 
3D-CNN approach is applied to sign language recognition for extensive vocabulary, 
images are captured through a Kinect, the authors report effectiveness of 88.7%. 

The contribution of this research work focuses on implementing a hybrid method-
ology, where the PSO algorithm is applied to find the optimal design of parameters for 
CNN architectures. This work presents two optimization approaches; in both, the pa-
rameters considered are the number of convolution layers, the filter size used in each 
convolutional layer, the convolution filters number and, the batch size. In the first ap-
proach, the consistency of the parameters between each layer is maintained in the same 
conditions and the objective function is given by the recognition rate. In the second ap-
proach, the aim is to find more random searches in the architectures that the PSO pro-
duces; in this case, the values for each convolution layer are completely different, and the 
objective function is given by the highest recognition rate, and the lowest Akaike infor-
mation criterion (AIC); the latter helps to obtain more robust performance of the network 
with the minimum parameters as the AIC allows penalizing the number of parameters 
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used in each training. The optimized architectures are tested with three sign language 
databases, including the Mexican Sign Language (MSL) alphabet, the American Sign 
Language (ASL) alphabet [33], and the American Sign Language MNIST (ASL MNIST) 
[34]. This research aims to impulse the investigation in the soft computing area for the 
development of tools to help the deaf community for a more inclusive society [35]. 

The structure of this work is organized as follows. Section 2 presents the general 
theory about convolutional neural networks. Section 3 introduces PSO theory, including 
definitions, functionality, and the main equations. Section 4 details the methodology for 
developing the two PSO-CNN optimization approaches. Section 5 describes an analysis 
of the experimental results achieved after the optimized architectures are implemented 
for the three databases. Additionally, Section 5 presents a statistical test to compare the 
two optimization proposals, and we also show a comparative analysis against other CNN 
approaches focused on sign language recognition. Finally, Section 6 gives important 
conclusions and future works. 

2. Convolutional Neural Networks 
Biologically inspired computational models are capable of far outperforming pre-

vious forms of common artificial intelligence of machine learning. One of the most im-
pressive forms of ANN (artificial neural network) architecture is that of CNN, which is 
mainly implemented to solve difficult image-based pattern recognition tasks. 

CNNs are a specialized type of ANN with supervised learning, which process their 
layers by emulating the visual cortex of the human eye. This procedure allows the 
recognition of characteristic patterns in the input data, which makes it possible to identify 
objects through a set of hidden layers, which have a hierarchy and are specialized. The 
first layers are capable of detecting curves and lines and to the extent that you work with 
deeper layers, it is possible to achieve the recognition of more complex shapes, such as a 
silhouette or peoples’ faces. 

These types of networks are designed to operate specifically with image processing. 
The design of its architecture emulates the behavior of the visual cortex of the brain when 
processing and recognizing images [36]. Its main function is to locate and learn the in-
formation characteristic patterns, such as curves, lines, color tones, etc., through the ap-
plication of convolution layers, which facilitate the process of identification and classifi-
cation of objects [37,38]. 

The basic CNN architecture is presented in Figure 1, which consists of five layers: 
the input, convolution, non-linearity (ReLu), pooling, and classification layer [39,40], 
these are described in the following subsections. 

 
Figure 1. The minimal architecture of a CNN. 

CNNs are widely implemented in applications that need the use of artificial vision 
techniques. Although the results that have been obtained are very promising, the reality 
is that they incur high computational costs; therefore it is essential to implement tech-
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niques that allow your performance to be increased. For this reason, an optimization of 
the CNN parameters is presented to improve the recognition percentage and reduce 
computational cost. In Figure 2, we can appreciate some parameters that can be opti-
mized in each CNN layer [41]. 

 
Figure 2. Layers and the parameters per layer of a CNN. 

2.1. Input Layer 
It is the first layer of a CNN, here the images or videos are entered that are going to 

be processed by the neural network to extract their characteristics. All information is 
stored in two-dimensional matrices. To increase the effectiveness of the algorithms and 
reduce the computational cost, it is recommended to carry out a previous preprocessing 
of the images to be trained, such as segmentation, normalization of pixel values, extrac-
tion of characteristics of the objects or the background to keep the most relevant infor-
mation, working them in grayscale, etc. 

2.2. Convolution Layer 
One of the most distinctive processes of this type of network is convolutions. It con-

sists of taking a group of pixels from the input image and making a dot product with a 
kernel to produce numerous images that are the feature maps; these maps are distinct 
and depend on the type and size of the convolution filter implemented in the image. 

Among the important characteristics that it gives to the kernel, is to detect lines, 
edges, focus, blur, curves, colors, among others. This is achieved by performing the 
convolution between the image and the kernel, multiplying the filter values pixel by pixel 
with those of the image, by traveling the filter from left to right; this representation can be 
appreciated in Figure 3 [42]. 

 
Figure 3. Feature maps generated by the convolution process. 
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2.3. Non-Linearity Layer 
The activation function in the convolutional layer has the same proposal that the 

activation used in any neural network, commonly a non-linearity function is used to 
normalize the images. There exist different activation functions; one of the most used in 
this type of models is the rectified linear unit (ReLU) function which brings back a value 
of zero if it receives a value less than zero as input, nevertheless for any value greater 
than zero the same parameter comes back [41,42]. 

2.4. Pooling Layer 
The pooling task is used to reduce the dimensionality of the network, in other 

words, allows the reduction of the number of parameters, which shortens training time 
and combats over-fitting [41]. Among the most used types of grouping, we can mention 
the following: (1) mean, select the arithmetic mean of the values, (2) max pooling, select 
the pixel with the largest value in the feature map and (3) sum, take the sum of all the 
elements present in the feature map. 

The pooling operation is usually done using a 2 × 2 filter, assuming that we have a 4 
× 4 future map (obtained after the convolution layer), and this operation is carried out; 
first, the future map is divided into 4 segments with the size of the filer (2 × 2), second, in 
each segment an pixel value is selected according to pooling type (mean, max, sum). An 
example is illustrated in Figure 4. 

 
Figure 4. Examples of pooling using the mean, max and sum operation. 

2.5. Classifier Layer 
This layer appears in the CNN architecture after total convolutional and pooling 

layers; this is a fully connected layer that interprets the feature representations obtained 
by the previous layers and performs the high-level reasoning function. It has a similar 
principle to the conventional multilayer perceptron neural system, and in this layer, the 
CNN recognizes and classifies the images that are part of the output. In a multiclass 
classification problem, this fully connected layer has the same number of outputs as the 
classes defined in the study case to be solved. The Softmax function has become one of 
the most popular options for the classification task, due to its effectiveness [42]. 

  



Axioms 2021, 10, 139 6 of 26 
 

3. Particle Swarm Optimization 
It is a stochastic algorithm established on the intelligence of the swarm and inspired 

by the way birds forage for food; each bird is represented using particles which “move” 
in a multidimensional search space and “adjust” based on the experience of neighbors 
and your own. 

The possible solution to the problem is depicted by the particle, which can be con-
sidered as “an individual element in a flock” [43]. PSO uses local and global information 
to find the best solution using a fitness function and the speeds at which the particles are 
moving. 

PSO is very prone to premature convergence and falls into local optimum, so since 
its introduction in 1995 by Kennedy and Eberhart [44], various optimization variants 
have been proposed [45–48]. 

Algorithm 1. The PSO algorithm 
Initialize the parameter of the problem (a random population). 

while (completion criteria are not met) 

begin 

For each particle i do 

begin 

Update the position 𝑝  using (1). 

Update the velocity 𝑥  using (2). 

Evaluate the fitness value of the particle 

If is necessary using (3)(4) 

Update pbesti(t) and gbesti(t). 

end 
end 

Algorithm 1 describes the process carried out by the PSO. This algorithm is defined 
by the equations that allow updating of the velocity with Equation (2) and the position 
with Equation (1).  𝑝 𝑡 + 1 =  𝑝 𝑡 + 𝑥 𝑡 + 1 , (1) 

In Equation (1), 𝑝 (𝑡) is the position of particle 𝑖 in a time 𝑡, within the search 
space. By adding a velocity 𝑥 (𝑡) it is possible to change the position of the particle [45]. 𝑥 (𝑡 + 1) = 𝑥 (𝑡) + 𝑐 𝑟 𝑦 −  𝑝 (𝑡) +  𝑐 𝑟 𝑦 −  𝑝 (𝑡) , (2)

In Equation (2), 𝑥 represents the velocity and 𝑖 the particle. The parameters 𝑐  and 𝑐  define the cognitive and social factors, respectively. The random values in the interval 
[0,1] are depicted by 𝑟  and 𝑟 , ω is an inertia weight and the best position of the particle 
(𝑝𝑏𝑒𝑠𝑡  ) is determined by 𝑦  and the best global position (𝑔𝑏𝑒𝑠𝑡 ) by 𝑦. 

The swarm is assumed to consist of 𝑛 particles, so an objective function 𝑓 is im-
plemented to perform the computation of particle fitness with a maximization task. The 
personal and global best values are updated using Equations (3) and (4), respectively, at a 
time 𝑡 [48]. 
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Thus, 𝑖 ∈ 1⋯𝑛 𝑝𝑏𝑒𝑠𝑡 (𝑡 + 1) = 𝑝𝑏𝑒𝑠𝑡 (𝑡) 𝑖𝑓 𝑓(𝑝𝑏𝑒𝑠𝑡 (𝑡)) ≤ 𝑓(𝑝(𝑡 + 1))𝑝 (𝑡 + 1) 𝑖𝑓 𝑓(𝑝𝑏𝑒𝑠𝑡 (𝑡)) > 𝑓(𝑝 (𝑡 + 1)) (3) 𝑔𝑏𝑒𝑠𝑡(𝑡 + 1) = 𝑚𝑎𝑥 𝑓(𝑦),𝑓 𝑔𝑏𝑒𝑠𝑡(𝑡)  𝑤ℎ𝑒𝑟𝑒,   𝑦  𝑝𝑏𝑒𝑠𝑡 (𝑡),  𝑝𝑏𝑒𝑠𝑡 (𝑡), … ,  𝑝𝑏𝑒𝑠𝑡 (𝑡) 
(4) 

According to Equations (1) and (2), the movements of the particle in the search space 
are illustrated in Figure 5. 

 
Figure 5. Representation of the movement of the particle. 

The red and yellow circles represent the movement that a particle makes when the 
parameters c1 and c2 are updated. When c1 > c2, the particle moves in the direction of the 
yellow circle. When this condition is met, it means that the swarm performs the explora-
tion process, so they “fly” in the search space to find the area that allows it to find the 
global optimum. 

This movement allows the particles to perform long displacements, thus covering 
the whole search space. In the case of c2 > c1 then, the particle motion will be towards the 
red circle. It is here that the exploitation process takes place; it consists of the swarm 
“flying” in the best area of the search space, making small motions, which allow an in-
tensive search [49]. 

4. Convolutional Neural Network Architecture Optimized by PSO 
This Section presents two optimization approaches where the PSO algorithm is ap-

plied to optimize the parameters of CNN architectures, these approaches are denoted as 
PSO-CNN-I and PSO-CNN-II. The first objective is to select the most relevant parameters 
that have influence to obtain good performance of CNN and then implement the PSO 
algorithm to find these optimal parameters. 

The parameters to be optimized were selected after evaluating the performance of a 
CNN with an experimental study, where the parameters were changed manually. As 
mentioned above, different CNN parameter values produce a variety of results for the 
same task; for this reason, the aim is to find the optimal architectures. The parameters 
listed below were chosen to be optimized in this work. 
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• The number of convolutional layers; 
• The filter size or filter dimension used in each convolutional; 
• The number of filters to extract the future maps (the convolution filter number); 
• The batch size number: this value represents the number of images that are entered 

into CNN in each training block. 
The general methodology of the proposal is presented in Figure 6, as the “training 

and optimization” block is the most important part of the whole process, where the CNN 
is initialized to integrate the parameter optimization by applying the PSO algorithm. In 
this process, the PSO is initialized according to the parameter given for the execution (the 
parameters are explained below) and this generates the particles. Each particle is a pos-
sible solution and its position has the parameter to be optimized, so each solution repre-
sents a complete CNN training. 

 
Figure 6. Representation of the movement of the particle. 

The training process is an iterative cycle that ends when all the particles generated 
by the PSO are evaluated for each generation. The computational cost is higher and, it 
depends on the database size, the size of particles, the number of iterations of the PSO 
and, the number of particles in each iteration. That is to say, if the PSO is executed with 10 
particles and 10 iterations, the CNN training process is executed 100 times. The steps to 
optimize the CNN by the PSO algorithm are illustrated in Figure 7 and explained as fol-
lows. 
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Figure 7. Flowchart of CNN optimization process using PSO. 

1. Input database to train the CNN. This step consists of selecting the database to be 
processed and classified for the CNN (ASL alphabet, ASL MINIST and MSL alpha-
bet). Is important to mention that all the elements of each database need to keep a 
similar structure or characteristics. In other words, images with the same scale and 
color gamma (grayscale, RGB, CMYK); additionally, with the same dimensions of 
pixels and a similar format of file (JPGE, PNG, TIFF, BMP, etc.). 

2. Generate the particle population for the PSO algorithm. The PSO parameters are set 
to include the number of iterations, the number of particles, inertial weight, cogni-
tive constant (W1), and social constant (W2); the parameters used in the experi-
mentation are presented in Table 8. This step involves the design of the particles; the 
structures of these are presented in Tables 1 and 3 according to the two optimization 
architecture proposals in this paper. 

3. Initialize the CNN architecture, with the parameter obtained by the PSO (convolu-
tion layers number, the filter size, number of convolution filters, and the batch size) 
the CNN is initialized and in conjunction with the additional parameter specified in 
Table 8, the CNN is ready to train the input database. 

4. CNN training and validation. The CNN reads and processes the input databases 
taking the images for training, validation, and testing; this step produces a recogni-
tion rate and the AIC value. These values return to the PSO as part of the objective 
function. 

5. Evaluate the objective function. The PSO algorithm evaluates the objective function 
to determine the best value. As in this research, we are considering two approaches, 
in the first, the objective function is only the recognition rate (Equation (5)) and in 
the second, the objective function consists of the recognition rate and the AIC value 
(Equation (6)). 
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6. Update PSO parameters. At each iteration, each particle updates its velocity and 
position depending on its own best-known position (Pbest) in the search-space and 
the best-known position in the whole swarm (Gbest). 

7. The process is repeated, evaluating all the particles until the stop criteria are found 
(in this case, it is the number of iterations). 

8. Finally, the optimal solution is selected. In this process, the particle represented by 
Gbest is the optimal one for the CNN model. 

4.1. PSO-CNN Optimization Process (PSO-CNN-I) 
This first approach, which we are going to identify as PSO-CNN-I, consists of im-

plementing a particle with four positions, one position for each parameter to be opti-
mized (Figure 8). Table 1 presents the detail of the particle composition where the posi-
tion 𝑥  corresponds to the number of layers with a search space from 1 to n, that is to say, 
that method can produce architectures with a minimum of one layer and maximum n, for 
the purposes of this work, we are using n = 3. The 𝑥  position represents the number of 
convolution filters used to extract the characteristics, with a search space of 32 to 18 fil-
ters. Position 𝑥  is the filter size; the search space is from 1 to 4 where this values repre-
sents a position, the value reached is mapped with the values of Table 2 to obtain the fil-
ter size (i.e., if the particle generates a value of 1 this represents a filter size of [3 × 3], to 
get a value of 2 the filter size will be [5 × 5] and so on, respectively, for each value. The last 
position represents the batch size (𝑥 ), this is initialized considering the search space 
ranges from 32 to 256. In this optimization process, the consistency of the parameters 
between the layers is maintained in the same conditions, that is, if after the PSO execution 
it generates a particle with 3 convolutional layers (𝑥 ), 50 filters (𝑥 ), a filter dimension of 
3 × 3 (𝑥 ) and batch size of 50 (𝑥 ). The same values of filter numbers (𝑥 ) and filter size 
(𝑥 ) will apply to the three convolution layers of the CNN. 

 
Figure 8. Structure of the particle used in the PSO-CNN-I approach. 

Table 1. Search spaces used to define the particle in the PSO-CNN-I approach. 

Particle Coordinate Hyper-Parameter Search Space 𝑥  Number of convolutional
layers 

[1, 3] 𝑥  Filter number [32, 128] 𝑥  Filter size [1, 4] 𝑥  Batch size in the training [32, 256] 

Table 2. Convolutional filter dimensions for the 𝒙𝟑 position. 𝒙𝟑 Value Search Space 
1 [3, 3] 
2 [5, 5] 
3 [7, 7] 
4 [9, 9] 

In this process, the objective function defined by Equation (5) is given by the recog-
nition rate (precision) that the CNN returns after it is trained with the parameters gener-
ated by the PSO. 
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𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒, (5) 

4.2. PSO-CNN Optimization Process (PSO-CNN-II) 
In this second proposal, identifying as PSO-CNN-II, the particle structure consists of 

eight positions whose structure is presented in Figure 9, where each position represents 
the parameter to be optimized. The difference from the previous approach (PSO-CNN-I 
in Section 4.1) is finding more random searches in the architectures that the PSO pro-
duces; because in this case, the values for each convolution layer are completely different. 
Table 3 presents the detail of the particle composition, the description of each position, 
and the search space used. As we can see in Table 3, the positions 𝑥 , 𝑥  and 𝑥  repre-
sent an index with an integer value between 1 to 4, and depending on the value taken by 
the PSO, a mapping is made with values presented in Table 2. 

According to the values to optimize in this new approach, the 𝑥  position is used to 
control the number of convolution layers and the activation of the positions 𝑥  to 𝑥 . If 
PSO generates a particle with a value of one for 𝑥 , only the position 𝑥  and 𝑥  will be 
activated to generate the number of filters of the convolutional layer 1 and the filter size 
to use in this layer. In other words, if PSO produces a particle with a value of three in the 𝑥  position, the positions from 𝑥  to 𝑥  will be activated to generate the number of fil-
ters to use in the convolutional layer 1 (𝑥 ), the filter size of layer 1 (𝑥 ), the number of 
filters of layer 2 (𝑥 ), the filter size for layer 2 (𝑥 ), the number of filters of layer 3 (𝑥 ), and 
the filter size for layer 3 (𝑥 ), respectively; these values are completely different from each 
other, therefore this methodology helps to produce more heterogeneous CNN architec-
tures. 

 
Figure 9. Structure of the particle used in the PSO-CNN-II approach. 

Table 3. Search spaces used to define the particle in the PSO-CNN-II approach. 

Particle Coordinate Hyper-Parameter Search Space 𝑥  Convolutional layer number [1, 3] 𝑥  Filter number (layer 1) [32, 128] 𝑥  Filter size (layer 1) [1, 4] 𝑥  Filter number (layer 2) [32, 128] 𝑥  Filter size (layer 2) [1, 4] 𝑥  Filter number (layer 3) [32, 128] 𝑥  Filter size (layer 3) [1, 4] 𝑥  Batch size in the training [32, 256] 

Another difference between this proposal and the previous one (PSO-CNN-I) is that 
the objective function changes, for this we are using the recognition rate together with the 
Akaike information criteria (AIC). The AIC penalizes the architectures according to the 
number of parameters used; that is to say, the model is penalized when it needs more 
parameters. The objective function is considered the highest recognition rate and the 
lowest AIC. The AIC is defined in Equation (6). 𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿), (6) 

According to our problem, in Equation (6) 𝑘 is the number of parameters of the 
model (number of layers and filter number) and 𝐿 is the maximum value of the recog-
nition that the CNN can reach; in this case, the value is 100. Figure 10 illustrates an ex-
ample of a particle generated by PSO. 
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Figure 10. Example of a particle generated by PSO. 

Based on the structure of Figure 10, we have a three-layer convolutional architec-
ture, where the first layer consists of 100 convolution filters with a filter size of 3 × 3. The 
second layer has 85 convolution filters with a filter size of 5 × 5 and the third convolution 
layer has 50 convolutional filters with a filter size of 7 × 7. Finally, the batch size is 32. The 
CNN is training with these values, and the recognition rate is calculated, additionally the 
AIC is obtained based on the parameters of the positions 𝑥 , 𝑥 , 𝑥  and 𝑥  which rep-
resents the number of convolution layers and the number of filters for each convolutional 
layer. After applying Equation (6), this architecture produces the AIC defined in Equa-
tion (7). 𝐴𝐼𝐶 =  2(3 + 100 + 85 + 50) − 2𝑙𝑛 (100), 𝐴𝐼𝐶 =  466.7897, 

(7) 

Assuming that there are two architectures with the same recognition rate but with 
different AICs (Table 4), the model will take the architecture with the lowest AIC, as this 
would help penalize the parameters that are needed to train the network and thus pro-
duce optimized and simpler architectures. 

Table 4. Objective function values based on the recognition rate and the AIC value. 

Architecture Number Recognition Rate (%) AIC Value 
1 98.50 466.78 
2 98.50 350.85 

5. Experiments and Results 
This section describes the three databases implemented in the case studies (ASL al-

phabet, ASL MNIST, and MSL alphabet), the static parameters used to set the PSO algo-
rithm and the CNN process, the experimental results obtained in the two optimization 
approaches that were performed (PSO-CNN-I and PSO-CNN-II), as well as the compar-
ison analysis against other approaches. 

5.1. Sign Language Databases Used in the Study Cases 
The characteristics of the sign databases are described below. 

5.1.1. American Sign Language (ASL Alphabet) 
The ASL alphabet consists of 87,000 images in color format, with a dimension of 200 

× 200 pixels. This database contains 29 classes, these are labeled in a range of 0 to 28, with 
a one-to-one assignment for each letter of the American alphabet A–Z (0 to 25 for the 
alphabet; that is, 0 = A and 25 = Z) the other three classes correspond to the space sym-
bols, delete, and null (26 to 28; i.e., 26 = space, 27 = delete and, 28 = null). Table 5 presents 
the general description of the ASL alphabet database and Figure 11 illustrates a sample of 
the images. 
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Table 5. ASL Alphabet database description. 

Name ASL Alphabet Detail 
Total images 87,000 

Images for training 82,650 
Images for test 4350 

Images size 32 * 32 
Database format JPGE 

 
Figure 11. A sample of the ASL alphabet database. 

5.1.2. American Sign Language (ASL MNIST) 
ASL MNIST consists of a collection of 34,627 grayscale images with a dimension of 

28 × 28 pixels. This database has 24 labeled classes in a range from 0 to 25 with assign-
ment for each letter of the alphabet A-Z (the class 9 = J and 25 = Z, were excluded due to 
gestural movements). Table 6 presents a description of this database and Figure 12 illus-
trates a sample of the sign images. 

Table 6. ASL MNIST database description. 

Name ASL MNIST Detail 
Total images 34,627 

Images for training 24,239 
Images for test 10,388 

Images size 28 * 28 
Database format CSV 
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Figure 12. A sample of the ASL MNIST database. 

5.1.3. Mexican Sign Language (MSL Alphabet) 
The MSL alphabet database was obtained from a group of 18 people, including deaf 

students and sign language translation teachers. Students are part of an inclusive group 
in a high school in Mexico. This database consists of 21 classes with the alphabet of the 
MSL without movement as illustrated in Figure 13. Ten images were captured for each 
letter, achieving a total of 3780 grayscale images with a dimension of 32 by 32. Table 7 
displays a general overview of the MSL alphabet database. 

Table 7. MSL alphabet database description. 

Name MSL Alphabet Detail 
Total images 3780 

Images for training 2646 
Images for test 1134 

Images size 32 * 32 
Database format JPG 
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Figure 13. Sample of the MSL alphabet database. 

5.2. Parameters Used in the Experimentation 
In the CNN parameter settings, some static parameters were used, including the 

learning function, the activation function in the classifying layer, the non-linearity acti-
vation function, and the epoch number. The fixed parameters considered in the PSO 
configuration are the number of particles, the iterations number, the inertial weight, and 
the social and cognitive constants. The static parameters used for PSO and CNN are 
presented in Table 8. The dynamic parameters optimized by PSO are the number of 
convolutional layers, the size of the filters used in each convolutional layer, the number 
of convolutional filters, and the batch size (Tables 1 and 3). 

Table 8. Static parameters for CNN and PSO. 

Parameters of CNN 
Learning function Adam 
Activation function (classifying layer) Softmax 
Non-linearity activation function ReLU 
Epochs 5 

Parameters of PSO 
Particles 10 
Iterations 10 
Inertial weight (W) 0.85 
Social constant (W2) 2 
Cognitive constant (W1) 2 

5.3. Optimization Results Obtained by the PSO-CNN-I Approach 
This section presents the simulation results produced after the CNN architecture is 

optimized considering the approach described in Section 4.1. The experimentation con-
sists of 30 executions carried out on the three databases; the aim is to obtain the optimal 
CNN architecture, that is, minimum parameters necessary to maximize the recognition 
rate. 

The first experiment was applied in the ASL alphabet (Table 5), using a distribution 
of 80% of the total images for training and 20% for testing. Table 9 shows the values 
achieved after 30 executions, where the higher recognition rate was a value of 99.87% and 
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the mean was 99.58%. Based on the results, we can see that the optimal architecture 
achieved by the PSO was as follows: three convolutional layers, 128 filters per layer with 
a filter size of 7 × 7, and the batch size with a value of 256. 

Table 9. Results achieved by the PSO-CNN-I in ASL alphabet database. 

No. 
No. 

Layers 
No. 

Filters 
Filter 
Size 

Batch 
Size 

Recognition 
Rate (%) 

1 3 99 [7 × 7] 107 98.85 
2 3 104 [9 × 9] 256 99.66 
3 3 128 [9 × 9] 256 99.70 
4 3 128 [7 × 7] 256 99.79 
5 3 128 [9 × 9] 256 99.72 
6 3 128 [7 × 7] 256 99.62 
7 2 32 [7 × 7] 256 98.18 
8 3 109 [7 × 7] 256 99.73 
9 3 128 [7 × 7] 197 99.75 

10 3 128 [7 × 7] 256 99.81 
11 3 66 [7 × 7] 181 99.31 
12 3 118 [7 × 7] 256 99.87 
13 3 128 [9 × 9] 256 99.67 
14 3 128 [7 × 7] 256 99.85 
15 3 128 [9 × 9] 256 99.61 
16 3 128 [9 × 9] 256 99.63 
17 3 90 [9 × 9] 256 99.66 
18 3 128 [7 × 7] 256 99.82 
19 3 128 [7 × 7] 256 99.79 
20 3 128 [7 × 7] 256 99.76 
21 3 128 [9 × 9] 256 99.68 
22 3 128 [9 × 9] 256 99.67 
23 3 128 [7 × 7] 256 99.75 
24 3 123 [7 × 7] 32 98.38 
25 3 128 [9 × 9] 256 99.64 
26 3 128 [7 × 7] 256 99.82 
27 3 128 [9 × 9] 215 99.56 
28 3 128 [7 × 7] 256 99.87 
29 3 100 [9 × 9] 256 99.64 
30 3 128 [7 × 7] 256 99.84 
    Mean 99.58 

In another test, the PSO-CNN-I approach was applied to the ASL MNIST database; 
Table 10 presents the results achieved by the CNN where the best recognition rate was a 
value of 98.82% and the mean of 99.53%. According to this analysis, the optimal archi-
tecture for this study case is two convolutional layers, with 117 convolutional filters in 
both layers with a filter size of 7 × 7 and the batch size with a value of 129. 
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Table 10. Results achieved by the PSO-CNN-I in ASL MNIST database. 

No. 
No. 

Layers 
No. 

Filters 
Filter 
Size 

Batch 
Size 

Recognition 
Rate (%) 

1 3 128 [9 × 9] 137 99.27 
2 2 128 [9 × 9] 218 99.54 
3 2 128 [7 × 7] 205 99.52 
4 3 128 [7 × 7] 136 99.33 
5 2 128 [9 × 9] 232 99.59 
6 3 96 [9 × 9] 107 98.82 
7 2 118 [7 × 7] 189 99.36 
8 2 128 [9 × 9] 256 99.59 
9 2 112 [9 × 9] 256 99.49 

10 2 128 [9 × 9] 256 99.60 
11 2 128 [7 × 7] 256 99.59 
12 2 128 [7 × 7] 256 99.61 
13 2 128 [9 × 9] 220 99.67 
14 2 128 [9 × 9] 256 99.57 
15 2 128 [9 × 9] 256 99.51 
16 2 128 [7 × 7] 237 99.55 
17 2 128 [7 × 7] 256 99.61 
18 2 128 [9 × 9] 256 99.58 
19 2 128 [9 × 9] 256 99.53 
20 2 128 [9 × 9] 256 99.65 
21 2 128 [7 × 7] 148 99.42 
22 2 128 [9 × 9] 256 99.51 
23 2 128 [9 × 9] 215 99.53 
24 2 128 [9 × 9] 255 99.56 
25 2 128 [9 × 9] 256 99.65 
26 2 128 [7 × 7] 256 99.57 
27 2 128 [9 × 9] 256 99.53 
28 2 117 [7 × 7] 129 99.98 
29 3 128 [5 × 5] 242 99.87 
30 2 128 [7 × 7] 256 99.55 
    Mean 99.53 

Table 11 presents the experimental results obtained when the approach is applied in 
the MSL alphabet database. As we can see in Table 11, the best accuracy reached by the 
CNN was 99.37% with a mean of 99.10%. In this case, the optimal architecture is as fol-
lows: one convolutional layer with 122 convolutional filters, filter size of 3 × 3, and batch 
size of 128. 
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Table 11. Results achieved by the PSO-CNN-I in MSL alphabet database. 

No. 
No. 

Layers 
No. 

Filters 
Filter 
Size 

Batch 
Size 

Recognition 
Rate (%) 

1 2 101 [7 × 7] 93 98.95 
2 1 128 [3 × 3] 56 98.95 
3 1 110 [3 × 3] 52 98.82 
4 1 128 [3 × 3] 121 99.20 
5 1 128 [3 × 3] 128 99.32 
6 1 128 [3 × 3] 128 99.07 
7 1 128 [3 × 3] 110 99.24 
8 1 101 [5 × 5] 114 98.82 
9 1 128 [3 × 3] 128 99.24 

10 1 74 [3 × 3] 88 98.95 
11 1 128 [3 × 3] 128 99.32 
12 1 128 [3 × 3] 32 98.48 
13 1 128 [3 × 3] 93 99.28 
14 1 128 [3 × 3] 97 99.11 
15 1 128 [3 × 3] 32 98.74 
16 1 128 [3 × 3] 72 99.32 
17 1 128 [3 × 3] 93 99.37 
18 1 63 [3 × 3] 47 98.44 
19 1 128 [3 × 3] 128 99.20 
20 1 126 [3 × 3] 128 99.28 
21 1 128 [3 × 3] 128 99.32 
22 1 128 [3 × 3] 83 99.20 
23 1 128 [3 × 3] 63 99.20 
24 1 122 [3 × 3] 128 99.37 
25 1 128 [3 × 3] 128 99.32 
26 1 114 [3 × 3] 84 99.32 
27 1 128 [3 × 3] 32 98.74 
28 1 128 [3 × 3] 89 99.28 
29 1 43 [3 × 3] 53 97.81 
30 1 128 [3 × 3] 72 98.99 
    Mean 99.10 

5.4. Optimization Results Obtained by the PSO-CNN-II Approach 
The results presented in this section consist of 30 executions of the PSO-CNN-II ap-

proach applied in the ASL alphabet, ASL MNIST, and MSL alphabet databases; the ob-
jective is to maximize the recognition rate and minimize the value of AIC. 

The experimental results obtained from the ASL alphabet database after applying 
the PSO-CNN-II optimization approach (Section 4.2) are presented in Table 12. In this 
test, the database was distributed so that 70% of the data were kept for the training phase 
and 30% of the data for testing. Table 12 shows the best recognition rate with a value of 
99.23% and a mean of 98.69%. The best architecture found by the PSO for the CNN had 
the following structure: three convolutional layers where the first layer had 84 convolu-
tional filters and 3 × 3 size filters; the second layer with 128 convolutional filters with the 
size of 9 × 9 and the third layer with 128 convolutional filters and 7 × 7 size filters. In this 
approach, the objective function is composed of the recognition rate and the AIC value; 
that is, the best recognition rate is evaluated first and then the AIC value, if it was the case 
that CNN achieved two or more architectures with the same recognition rate, the process 
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takes the architecture with the minimum AIC, with the goal of achieving an optimal ar-
chitecture with the fewest parameters and the highest recognition rate. 

Table 12. Results achieved by the PSO-CNN-II in ASL alphabet database. 

No. 
No. 

Layers 

Layer 1 Layer 2 Layer 3 
Batch 
Size 

AIC 
Value 

(%) 
Recogn. 

Rate 
No. 

Filters 
Filter 
Size 

No. 
Filters 

Filter 
Size 

No. 
Filters 

Filter 
Size 

1 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 98.99 
2 3 128 [5 × 5] 121 [5 × 5] 128 [5 × 5] 213 750.78 98.73 
3 3 84 [3 × 3] 128 [7 × 7] 128 [5 × 5] 84 676.78 99.23 
4 2 45 [5 × 5] 128 [7 × 7] 0 0 0 340.78 98.15 
5 3 32 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 572.78 98.86 
6 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 98.96 
7 3 84 [5 × 5] 128 [5 × 5] 128 [3 × 3] 256 676.78 98.85 
8 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.02 
9 3 32 [5 × 5] 128 [5 × 5] 128 [3 × 3] 256 572.78 98.9 
10 3 124 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 756.78 98.64 
11 3 32 [3 × 3] 128 [7 × 7] 128 [7 × 7] 256 572.78 98.93 
12 3 32 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 572.78 98.53 
13 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.01 
14 3 73 [7 × 7] 128 [7 × 7] 108 [3 × 3] 256 614.78 97.91 
15 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.06 
16 2 128 [3 × 3] 128 [7 × 7] 0 0 0 506.78 98.23 
17 2 88 [7 × 7] 128 [7 × 7] 0 0 0 426.78 97.4 
18 3 32 [5 × 5] 128 [7 × 7] 128 [5 × 5] 256 572.78 99.06 
19 2 128 [5 × 5] 119 [7 × 7] 0 0 0 488.78 98.1 
20 3 116 [3 × 3] 128 [5 × 5] 128 [7 × 7] 252 740.78 98.96 
21 3 49 [5 × 5] 128 [7 × 7] 128 [7 × 7] 256 606.78 98.93 
22 2 128 [3 × 3] 128 [7 × 7] 0 0 0 506.78 98.19 
23 3 32 [5 × 5] 128 [7 × 7] 128 [5 × 5] 256 572.78 98.96 
24 2 32 [5 × 5] 128 [7 × 7] 0 0 0 314.78 98.04 
25 2 128 [5 × 5] 81 [5 × 5] 0 0 0 412.78 98.92 
26 3 32 [5 × 5] 128 [7 × 7] 128 [3 × 3] 256 572.78 98.58 
27 3 32 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 572.78 98.88 
28 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.02 
29 3 128 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 764.78 99.08 
30 3 128 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 764.78 98.71 

         Mean 98.69 

In Table 13, we present the results where the PSO-CNN-II was implemented in the 
ASL MNIST database. In this test, the best recognition rate was 99.80%, an AIC value of 
506.79 and, a mean of 99.48%. The optimal parameters found by the PSO were the fol-
lowing: two-layer CNN architecture, the first layer had 128 filters of convolution and a 
filter size of 5 × 5; the second layer had 128 convolutional filters with a filter size of 9 × 9, 
and the batch size was 128. 
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Table 13. Results achieved by the PSO-CNN-II in ASL MNIST database. 

No. 
No. 

Layers 

Layer 1 Layer 2 Layer 3 
Batch 
Size 

AIC 
Value 

(%) 
Recogn. 

Rate 
No. 

Filters 
Filter 
Size 

No. 
Filters 

Filter 
Size 

No. 
Filters 

Filter 
Size 

1 2 128 [5 × 5] 128 [9 × 9] 0 0 128 506.79 99.80 
2 2 74 [9 × 9] 114 [9 × 9] 0 0 174 370.79 99.42 
3 3 32 [5 × 5] 128 [9 × 9] 128 [5 × 5] 122 572.79 99.53 
4 2 125 [5 × 5] 125 [9 × 9] 0 0 147 503.79 99.58 
5 2 90 [5 × 5] 128 [9 × 9] 0 0 256 500.79 99.68 
6 3 32 [3 × 3] 128 [9 × 9] 128 [9 × 9] 148 572.79 99.51 
7 2 121 [7 × 7] 95 [9 × 9] 0 0 100 426.79 99.26 
8 3 32 [7 × 7] 128 [9 × 9] 125 [9 × 9] 256 569.79 99.6 
9 2 32 [9 × 9] 126 [9 × 9] 0 0 106 310.79 99.4 
10 3 115 [7 × 7] 102 [9 × 9] 128 [7 × 7] 215 686.79 99.42 
11 2 32 [9 × 9] 128 [9 × 9] 0 0 256 314.79 99.44 
12 2 77 [7 × 7] 100 [9 × 9] 0 0 183 348.79 99.59 
13 2 87 [7 × 7] 128 [9 × 9] 0 0 256 424.79 99.7 
14 2 32 [9 × 9] 128 [9 × 9] 0 0 256 314.79 99.53 
15 3 32 [5 × 5] 103 [9 × 9] 125 [9 × 9] 256 516.79 99.53 
16 2 70 [9 × 9] 126 [9 × 9] 0 0 256 386.79 99.63 
17 2 64 [7 × 7] 128 [9 × 9] 0 0 256 378.79 99.7 
18 3 32 [7 × 7] 77 [9 × 9] 128 [9 × 9] 256 470.79 99.36 
19 2 128 [7 × 7] 128 [9 × 9] 0 0 256 506.79 99.74 
20 3 32 [3 × 3] 128 [9 × 9] 128 [5 × 5] 32 572.79 98.95 
21 3 32 [7 × 7] 128 [9 × 9] 123 [7 × 7] 162 577.79 99.33 
22 2 51 [9 × 9] 128 [9 × 9] 0 0 194 352.79 99.47 
23 2 50 [7 × 7] 128 [9 × 9] 0 0 256 350.79 99.63 
24 2 128 [7 × 7] 128 [9 × 9] 0 0 162 506.79 99.67 
25 2 100 [5 × 5] 76 [5 × 5] 0 0 76 346.79 98.23 
26 2 52 [9 × 9] 128 [7 × 7] 0 0 256 354.79 99.54 
27 2 128 [5 × 5] 128 [9 × 9] 0 0 142 506.79 99.53 
28 3 83 [3 × 3] 125 [9 × 9] 0 0 136 410.79 99.38 
29 3 128 [5 × 5] 128 [9 × 9] 128 [9 × 9] 256 764.79 99.57 
30 2 74 [7 × 7] 120 [9 × 9] 0 0 256 382.79 99.72 

         Mean 99.48 

In another experiment, the optimization approach was applied to the MSL alphabet 
database after 30 simulations. The results obtained are presented in Table 14, where the 
best recognition rate was 99.45% with an AIC of 248.79. The general mean for this study 
case was a value of 98.91%. In this optimization, one-layer CNN architecture was 
achieved, with 128 convolutional filters, 3 × 3 filter sizes, and 154 batch sizes. 

  



Axioms 2021, 10, 139 21 of 26 
 

Table 14. Results achieved by the PSO-CNN-II in MSL alphabet. 

No. 
No. 

Layers 

Layer 1 Layer 2 Layer 3 
BATCH 

SIZE 
AIC 

Value 

(%) 
Recogn. 

Rate 
No. 

Filters 
Filter 
Size 

No. 
Filters 

Filter 
Size 

No. 
Filters 

Filter 
Size 

1 1 128 [3 × 3] 0 0 0 0 32 248.79 98.74 
2 1 128 [3 × 3] 0 0 0 0 163 248.79 99.28 
3 1 116 [3 × 3] 0 0 0 0 105 224.79 98.99 
4 1 81 [3 × 3] 0 0 0 0 32 154.79 98.44 
5 1 128 [3 × 3] 0 0 0 0 149 248.79 98.90 
6 1 128 [3 × 3] 0 0 0 0 221 248.79 98.57 
7 1 128 [3 × 3] 0 0 0 0 57 248.79 99.24 
8 1 67 [3 × 3] 0 0 0 0 246 126.73 97.77 
9 1 118 [3 × 3] 0 0 0 0 113 228.79 99.16 
10 1 128 [3 × 3] 0 0 0 0 154 248.79 99.45 
11 1 103 [3 × 3] 0 0 0 0 92 198.79 99.03 
12 1 65 [3 × 3] 0 0 0 0 32 122.79 98.32 
13 1 128 [3 × 3] 0 0 0 0 94 248.79 99.07 
14 1 128 [3 × 3] 0 0 0 0 90 248.79 99.11 
15 1 112 [3 × 3] 0 0 0 0 97 216.79 99.24 
16 1 128 [3 × 3] 0 0 0 0 32 248.79 98.74 
17 1 128 [3 × 3] 0 0 0 0 46 248.79 98.65 
18 1 128 [3 × 3] 0 0 0 0 199 248.79 98.32 
19 1 128 [3 × 3] 0 0 0 0 244 248.79 99.03 
20 1 120 [3 × 3] 0 0 0 0 32 232.79 99.07 
21 1 128 [3 × 3] 0 0 0 0 105 248.79 99.16 
22 1 128 [3 × 3] 0 0 0 0 77 248.79 99.03 
23 1 108 [3 × 3] 0 0 0 0 84 208.79 99.07 
24 1 54 [3 × 3] 0 0 0 0 32 100.79 98.44 
25 1 102 [3 × 3] 0 0 0 0 102 196.79 99.03 
26 1 128 [3 × 3] 0 0 0 0 114 248.79 99.20 
27 1 119 [3 × 3] 0 0 0 0 256 230.79 98.61 
28 1 98 [3 × 3] 0 0 0 0 122 188.79 99.20 
29 1 128 [3 × 3] 0 0 0 0 83 248.79 99.07 
30 1 128 [3 × 3] 0 0 0 0 135 248.79 99.37 

         Mean 98.91 

5.5. Statistical Test between PSO-CNN-I and PSO-CNN-II Optimization Process 
Table 15 presents a summary of the results obtained after the two approaches were 

applied to the three databases. We can see that good results were achieved in all the 
cases; we can analyze that for the ASL alphabet and the ASL MNIST, the PSO-CNN-I 
optimization approach was better with mean values of 99.58% and 99.53%, respectively. 
For the MSL alphabet database, the PSO-CNN-II optimization method achieved a better 
recognition rate with a mean value of 98.91%. Although, if the results were analyzed with 
respect to the AIC value, for the ASL MNIST and the MSL alphabet, the PSO-CNN-I 
reached the lowest values with AIC of 462.79 and 236.80, respectively, and for ASL al-
phabet, the PSO-CNN-II achieved a better AIC value. A low AIC value means that the 
CNN architecture required fewer parameters, so it is important to determine what is 
most relevant to any problem, the CNN accuracy, or to configure the CNN architectures 
with minimal parameters that can be implemented in real-time systems. 
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Table 15. Summary of the results obtained in the PSO-CNN-I and PSO-CNN-II approaches. 

Database 
PSO-CNN-I PSO-CNN-II 

Best Mean AIC Best Mean AIC 
ASL alphabet 99.87% 99.58% 764.79 99.23% 98.69% 676.78 
ASL MNIST 99.98% 99.53% 462.79 99.80% 99.48% 506.79 

MSL alphabet 99.37% 99.05% 236.80 99.45% 98.91% 248.79 

To confirm if significant evidence exists between the architectures and to identify 
which is better, the Wilcoxon signed-rank test was applied [50]; this is a non-parametric 
test that is recommended to be applied when the numerical data are not normally dis-
tributed, as is the case with the experimental results of metaheuristic algorithms. The 
Wilcoxon test was performed to compare the PSO-CNN-I and PSO-CNN-II optimization 
processes, considering the results presented in Tables 9–14. The general description of the 
values used to execute the Wilcoxon test is presented in Table 16 and described below: 
• A confidence level of 95% (α = 0.05). 
• The null hypothesis is given that (H ): the PSO-CNN-I architecture (μ ) is equal to 

PSO-CNN-II architecture (μ ), expressed as H :μ =  μ . 
• The alternative hypothesis is (H ): affirm that PSO-CNN-I architecture (μ ) is greater 

than that PSO-CNN-II architecture (μ ), expressed as H : μ >  μ (Affirmation). 
• The objective is to reject the hypothesis null (H ) and support the alternative hy-

pothesis (H ). 

Table 16. General description of the Wilcoxon test. 

 Description Hypothesis 

Null hypothesis 
PSO-CNN-I architecture (μ ) = 
PSO-CNN-II architecture (μ ) 

H :μ =  μ  

Alternative hypothesis 
PSO-CNN-I architecture (μ ) > 
PSO-CNN-II architecture (μ ), 

H : μ >  μ (Affirmation) 

The first Wilcoxon test was applied for the ASL alphabet results (Tables 9 and 12). 
Table 17 shows the R+, R-, and the p-value (the p-values have been computed by using 
SPSS), where R+ represents the sum of ranks for the problems in which the first algorithm 
outperformed the second, and R− the sum of ranks for the opposite. The results obtained 
indicate an R+ of 455, an R- of 10 and the p-value of <0.001. Because the p-value is less than 
the alpha value of α = 0.05, then we support the alternative hypothesis with a 95% level of 
evidence, and we can affirm that the PSO-CNN-I architecture is better than the 
PSO-CNN-II. 

Table 17. Wilcoxon test results for the ASL alphabet. 

Comparison 
PSO-CNN-I (𝝁𝟏)—PSO-CNN-II (𝝁𝟐) 

R+ R- p-Value 

ASL alphabet 455 10 <0.001 

Table 18 presents the results after the Wilcoxon test was applied for the ASL MNIST 
results (Tables 10 and 13). This test obtains the values R+ = 245.5, R- = 189.5, and the 
p-value = 0.545. Since the p-value is greater than the alpha value of α = 0.05, the null hy-
pothesis is accepted with a 95% level of evidence; therefore, we can affirm that evidence 
does not exist to determine that the PSO-CNN-I architecture is better than the 
PSO-CNN-II. 
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Table 18. Wilcoxon test results for the ASL MNIST. 

Comparison 
PSO-CNN-I (𝝁𝟏)—PSO-CNN-II (𝝁𝟐) R+ R- p-Value 

ASL MNIST 245.5 189.5 0.545 

Finally, Table 19 presents the Wilcoxon test for the results of the MSL alphabet (Ta-
bles 11 and 14). The results obtained indicate the values R+ = 291, R- = 115, and the p-value 
= 0.045. We can see that the p-value is less than the alpha value of α = 0.05; therefore, we 
support the alternative hypothesis with a level of evidence of 95%, and we can affirm that 
the PSO-CNN-I architecture is better than the PSO-CNN-II. 

Table 19. Z-test results for the ASL MNIST. 

Comparison 
PSO-CNN-I (𝝁𝟏)—PSO-CNN-II (𝝁𝟐) R+ R- p-Value 

MSL alphabet 291 115 0.045 

5.6. State-of-the-Art Analysis Comparison 
To obtain more evidence about the performance of the optimization approaches 

presented in this paper, we make a comparative analysis (Table 20) against the 
state-of-art research, where CNN models are implemented in Alphabet Sign Language 
database recognition. The results presented in Table 20 represent the best recognition rate 
values reported by the authors, the detail of which is explained as follows: Zhao et al. [51] 
reports an accuracy of 89.32%, the CNN architecture has two convolutional layers, two 
pooling layers, the batch size is 150, and 80 iterations. The authors generated their own 
ASL database, this was captured in five people covering 24 letters of the alphabet, and 
each person’s letters had about 528 photos. 

Rathi [52] presents an optimization of the transfer learning model (based on CNN) 
and it was applied to the ASL MNIST database, using 27,455 images of 24 letters of the 
ASL alphabet. The data split was as follows, 80% of the data was for training, 10% for 
testing, and 10% of data for validation purposes with a training batch size of 100. The best 
recognition rate evidenced by the author was a value of 95.03%. 

In Bin et al. [53], an architecture of four convolutional layers and two pooling layers 
was presented. The database was generated by the researchers themselves, taking char-
acteristics of the ASL MINIST and consisting of 4800 images; the best accuracy reported 
by the authors was 95.00%. 

Dionisio et al. [54], reported a recognition rate of 97.64% for the ASL MNIST with a 
six-layer convolutional architecture, three pooling layers, a filter size of 3 × 3, and a batch 
size of 128. The database was divided using 10% of data for phase testing, 10% for phase 
validation, and 80% for training. 

Finally, we present the recognition rate achieved by our two approaches PSO-CNN-I 
and PSO-CNN-II with the best values of recognition rates of 99.98% and 99.80%, respec-
tively. In the PSO-CNN-II, the best architecture obtained for the ASL MINIST was of two 
layers with 117 filters per layer with a size filter of 7 × 7 and batch size of 129. For the 
PSO-CNN-I, it was of two layers with 117 filters per layer with a size filter of 7 × 7 and 
batch size of 129. 

As one can observe in Table 20, the highest performance was obtained by the pro-
posed model (PSO-CNN-I) with a value of 99.98%, achieving an advantage over the rest 
of the approaches. 
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Table 20. State-of-the-Art Comparison. 

Reference Recognition Rate (%) Dataset 
Y. Zhao and L.Wang [40] 89.32 ASL own 

D.Rathi [41] 95.03 ASL MNIST 
L.Y.Bin y Y.Huann [42] 95.00 ASL own 

R. Dionisio [39] 97.64 ASL MNIST 
PSO-CNN-I 99.98 ASL MNIST 
PSO-CNN-II 99.80 ASL MNIST 

6. Conclusions and Future Work 
In summary, in this paper, we present two approaches to optimize CNN architec-

tures by implementing the PSO algorithm, these being applied to sign language recogni-
tion. The main contribution was to find some CNN hyper-parameters; in the proposals 
the number of convolutional layers, the size of the filter used in each convolutional layer, 
the number of convolutional filters, and the batch size were included. According to the 
experimentation and the results obtained in the two PSO-CNN optimization methodol-
ogies, we can conclude that the recognition rate increased in all case studies carried out, 
providing a robust performance with the minimum parameters. Overall, the recognition 
rates achieved by the three databases were as follows: for the ASL MNIST database, the 
best value was 99.98% and an average of 99.53% with the PSO-CNN-I approach. For the 
ASL alphabet database, the best accuracy was 99.87% and an average of 99.58% with 
PSO-CNN-I, and for the MSL alphabet, the best value was 99.45% and an average of 
98.91% after applying the PSO-CNN-II approach. After a comparative analysis against 
other state-of-the-art works focused on sign language recognition (ASL and MSL), we can 
confirm that the optimization approaches of this work present competitive results. 

This research focused on optimizing the number of convolutional layers, the filter 
size used in each convolutional layer, the number of convolutional filters, and the batch 
size. The results provide evidence of the importance of applying optimization algorithms 
to find the optimal parameters of convolutional neural network architectures. 

As future work, the PSO algorithm could be applied to optimize other CNN hy-
per-parameters, implement another version of the PSO algorithm or explore different 
evolutionary computational techniques, to produce more robust CNN architectures that 
will be implemented in different sign language datasets used in other countries. In the 
experimental test, the images were introduced as static images, but we are considering 
working with input images in real-time or capturing them through video. On the other 
hand, our idea is to be able to implement the use of this proposal in the development of 
assisted communication tools and to contribute to human−computer iteration applica-
tions that can be of support to the deaf community. 
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