

Axioms 2021, 10, 139. https://doi.org/10.3390/axioms10030139 www.mdpi.com/journal/axioms

Article

Optimization of Convolutional Neural Networks Architectures
Using PSO for Sign Language Recognition
Jonathan Fregoso, Claudia I. Gonzalez * and Gabriela E. Martinez

Division of Graduate Studies and Research, Tijuana Institute of Technology, Tijuana 22414, Mexico;
jonathan.fregoso@tectijuana.edu.mx (J.F.); gmartinez@tectijuana.mx (G.E.M.)
* Correspondence: cgonzalez@tectijuana.mx

Abstract: This paper presents an approach to design convolutional neural network architectures,
using the particle swarm optimization algorithm. The adjustment of the hyper-parameters and
finding the optimal network architecture of convolutional neural networks represents an important
challenge. Network performance and achieving efficient learning models for a particular problem
depends on setting hyper-parameter values and this implies exploring a huge and complex search
space. The use of heuristic-based searches supports these types of problems; therefore, the main
contribution of this research work is to apply the PSO algorithm to find the optimal parameters of
the convolutional neural networks which include the number of convolutional layers, the filter size
used in the convolutional process, the number of convolutional filters, and the batch size. This
work describes two optimization approaches; the first, the parameters obtained by PSO are kept
under the same conditions in each convolutional layer, and the objective function evaluated by PSO
is given by the classification rate; in the second, the PSO generates different parameters per layer,
and the objective function is composed of the recognition rate in conjunction with the Akaike in-
formation criterion, the latter helps to find the best network performance but with the minimum
parameters. The optimized architectures are implemented in three study cases of sign language
databases, in which are included the Mexican Sign Language alphabet, the American Sign Lan-
guage MNIST, and the American Sign Language alphabet. According to the results, the proposed
methodologies achieved favorable results with a recognition rate higher than 99%, showing com-
petitive results compared to other state-of-the-art approaches.

Keywords: PSO; sign language recognition; optimization of convolutional neural networks

1. Introduction
Deep neural networks have demonstrated their capacity to solve classification

problems using a hierarchical model, millions of parameters, and learning with big da-
tabases. Convolutional neural networks (CNN) are a special class of deep neural net-
works that consist of several convolutions, pooling, and fully connected layers; this has
proven to be a robust method for image or video processing, classification, and pattern
recognition. In recent years CNN has attracted attention for achieving superior results in
various applications in the computer vision domain, such as medicine, aerospace, natural
language processing and robotics [1,2].

CNN are widely used in the field of industry, however, when designing CNN ar-
chitectures, we face some challenges which include the high computational costs for in-
formation processing and finding the optimal CNN parameters (architecture) for each
problem [3]. CNN architectures are made up of numerous parameters and, depending on
their configuration, can generate a variety of classification results when applied to solve
the same tasks; the setting of the hyper-parameter values is usually based on a random
search, performing several tests or adjusting manually and this represents a complex

Citation: Fregoso, J.; Gonzalez, C.I.;

Martinez, G.E. Optimization of

Convolutional Neural Networks

Architectures Using PSO for Sign

Language Recognition. Axioms 2021,

10, 139. https://doi.org/10.3390/

axioms10030139

Academic Editor: Oscar Humberto

Montiel Ross

Received: 29 May 2021

Accepted: 25 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(http://creativecommons.org/licenses

/by/4.0/).

Axioms 2021, 10, 139 2 of 26

search process. To solve this challenge, various researchers have proposed the imple-
mentation of evolutionary computation approaches to automatically design the optimal
CNN architectures and to increase its performance [4,5]. In Sun et al. [6,7], an evolution-
ary approach is implemented to automatically obtain CNN architectures, achieving good
results against the state-of-the-art architectures. In Ma et al. [8], the authors present an
analysis of different methodologies based on evolutionary computing techniques to op-
timize CNN architectures, these were tested on benchmark data sets and achieved com-
petitive results. Baldominos et al. [9] implement an approach to automatically design
CNN architectures, using genetic algorithms (GA) in conjunction with grammatical
evolution.

In the state of the art, we can find a variety of meta-heuristics that are applied to
optimize CNN hyper-parameters, including the FGSA [10–12], harmonic search (HS)
[13], differential evolution (DE) [14], microcanonical optimization algorithm [15], Whale
optimization algorithm [16] and tree growth algorithm framework [17] to mention a few.

In other research works, the PSO algorithm is used to optimize CNN architectures,
obtaining favorable results in the solution of different applications. In Sun et al. [18],
Singh et al. [19] and Wang et al. [20], PSO is applied to automatically design CNN archi-
tectures; these approaches are tested on known benchmark datasets, and the results ob-
tained are competitive against the state-of-the-art architectures. Besides this, PSO has
been implemented in other fields of machine learning, including the optimization of dif-
ferent types of artificial neural network architectures, given favorable solutions for a
plethora of problems [21,22]. In [23], PSO optimizes models of modular neural networks
and is applied to obtain the blood pressure trend. In [24], a hybrid ANN-PSO method is
applied to model the electricity price forecasting for the Indian energy exchange. As well
as in [25], the PSO variants are applied to generate optimal modular neural network ar-
chitectures obtaining competitive results for human recognition. In [26], the PSO algo-
rithm is used to optimize deep neural network architectures and is tested in image clas-
sification tasks. In [27] a new paradigm of hybrid classification based on PSO is pre-
sented, which is applied for the prediction of medical diagnoses and prognoses. Fur-
thermore, in [28] the artificial bee colony (ABC) [29] and PSO are used to optimize mul-
tilayer perceptron neural networks (MLP); the approach is applied to estimate the heat-
ing load and cooling load of energy efficient buildings; and the authors report that PSO
outperforms ABC, improving the MLP performance. In the listed works, we can note the
advantages that PSO offers in the optimization process, increasing performance in dif-
ferent tasks.

In research related to CNN approaches applied to the recognition of sign language,
we find the work presented in [30] where a CNN model with stochastic pooling is im-
plemented in the recognition of the Chinese sign language spelling, achieving a rate of
89.32 ± 1.07% recognition. In [31] a CNN method for Arabic sign language (ArSL) recog-
nition was applied, where the authors report a value of 90.02% precision. In [32] a
3D-CNN approach is applied to sign language recognition for extensive vocabulary,
images are captured through a Kinect, the authors report effectiveness of 88.7%.

The contribution of this research work focuses on implementing a hybrid method-
ology, where the PSO algorithm is applied to find the optimal design of parameters for
CNN architectures. This work presents two optimization approaches; in both, the pa-
rameters considered are the number of convolution layers, the filter size used in each
convolutional layer, the convolution filters number and, the batch size. In the first ap-
proach, the consistency of the parameters between each layer is maintained in the same
conditions and the objective function is given by the recognition rate. In the second ap-
proach, the aim is to find more random searches in the architectures that the PSO pro-
duces; in this case, the values for each convolution layer are completely different, and the
objective function is given by the highest recognition rate, and the lowest Akaike infor-
mation criterion (AIC); the latter helps to obtain more robust performance of the network
with the minimum parameters as the AIC allows penalizing the number of parameters

Axioms 2021, 10, 139 3 of 26

used in each training. The optimized architectures are tested with three sign language
databases, including the Mexican Sign Language (MSL) alphabet, the American Sign
Language (ASL) alphabet [33], and the American Sign Language MNIST (ASL MNIST)
[34]. This research aims to impulse the investigation in the soft computing area for the
development of tools to help the deaf community for a more inclusive society [35].

The structure of this work is organized as follows. Section 2 presents the general
theory about convolutional neural networks. Section 3 introduces PSO theory, including
definitions, functionality, and the main equations. Section 4 details the methodology for
developing the two PSO-CNN optimization approaches. Section 5 describes an analysis
of the experimental results achieved after the optimized architectures are implemented
for the three databases. Additionally, Section 5 presents a statistical test to compare the
two optimization proposals, and we also show a comparative analysis against other CNN
approaches focused on sign language recognition. Finally, Section 6 gives important
conclusions and future works.

2. Convolutional Neural Networks
Biologically inspired computational models are capable of far outperforming pre-

vious forms of common artificial intelligence of machine learning. One of the most im-
pressive forms of ANN (artificial neural network) architecture is that of CNN, which is
mainly implemented to solve difficult image-based pattern recognition tasks.

CNNs are a specialized type of ANN with supervised learning, which process their
layers by emulating the visual cortex of the human eye. This procedure allows the
recognition of characteristic patterns in the input data, which makes it possible to identify
objects through a set of hidden layers, which have a hierarchy and are specialized. The
first layers are capable of detecting curves and lines and to the extent that you work with
deeper layers, it is possible to achieve the recognition of more complex shapes, such as a
silhouette or peoples’ faces.

These types of networks are designed to operate specifically with image processing.
The design of its architecture emulates the behavior of the visual cortex of the brain when
processing and recognizing images [36]. Its main function is to locate and learn the in-
formation characteristic patterns, such as curves, lines, color tones, etc., through the ap-
plication of convolution layers, which facilitate the process of identification and classifi-
cation of objects [37,38].

The basic CNN architecture is presented in Figure 1, which consists of five layers:
the input, convolution, non-linearity (ReLu), pooling, and classification layer [39,40],
these are described in the following subsections.

Figure 1. The minimal architecture of a CNN.

CNNs are widely implemented in applications that need the use of artificial vision
techniques. Although the results that have been obtained are very promising, the reality
is that they incur high computational costs; therefore it is essential to implement tech-

Axioms 2021, 10, 139 4 of 26

niques that allow your performance to be increased. For this reason, an optimization of
the CNN parameters is presented to improve the recognition percentage and reduce
computational cost. In Figure 2, we can appreciate some parameters that can be opti-
mized in each CNN layer [41].

Figure 2. Layers and the parameters per layer of a CNN.

2.1. Input Layer
It is the first layer of a CNN, here the images or videos are entered that are going to

be processed by the neural network to extract their characteristics. All information is
stored in two-dimensional matrices. To increase the effectiveness of the algorithms and
reduce the computational cost, it is recommended to carry out a previous preprocessing
of the images to be trained, such as segmentation, normalization of pixel values, extrac-
tion of characteristics of the objects or the background to keep the most relevant infor-
mation, working them in grayscale, etc.

2.2. Convolution Layer
One of the most distinctive processes of this type of network is convolutions. It con-

sists of taking a group of pixels from the input image and making a dot product with a
kernel to produce numerous images that are the feature maps; these maps are distinct
and depend on the type and size of the convolution filter implemented in the image.

Among the important characteristics that it gives to the kernel, is to detect lines,
edges, focus, blur, curves, colors, among others. This is achieved by performing the
convolution between the image and the kernel, multiplying the filter values pixel by pixel
with those of the image, by traveling the filter from left to right; this representation can be
appreciated in Figure 3 [42].

Figure 3. Feature maps generated by the convolution process.

Axioms 2021, 10, 139 5 of 26

2.3. Non-Linearity Layer
The activation function in the convolutional layer has the same proposal that the

activation used in any neural network, commonly a non-linearity function is used to
normalize the images. There exist different activation functions; one of the most used in
this type of models is the rectified linear unit (ReLU) function which brings back a value
of zero if it receives a value less than zero as input, nevertheless for any value greater
than zero the same parameter comes back [41,42].

2.4. Pooling Layer
The pooling task is used to reduce the dimensionality of the network, in other

words, allows the reduction of the number of parameters, which shortens training time
and combats over-fitting [41]. Among the most used types of grouping, we can mention
the following: (1) mean, select the arithmetic mean of the values, (2) max pooling, select
the pixel with the largest value in the feature map and (3) sum, take the sum of all the
elements present in the feature map.

The pooling operation is usually done using a 2 × 2 filter, assuming that we have a 4
× 4 future map (obtained after the convolution layer), and this operation is carried out;
first, the future map is divided into 4 segments with the size of the filer (2 × 2), second, in
each segment an pixel value is selected according to pooling type (mean, max, sum). An
example is illustrated in Figure 4.

Figure 4. Examples of pooling using the mean, max and sum operation.

2.5. Classifier Layer
This layer appears in the CNN architecture after total convolutional and pooling

layers; this is a fully connected layer that interprets the feature representations obtained
by the previous layers and performs the high-level reasoning function. It has a similar
principle to the conventional multilayer perceptron neural system, and in this layer, the
CNN recognizes and classifies the images that are part of the output. In a multiclass
classification problem, this fully connected layer has the same number of outputs as the
classes defined in the study case to be solved. The Softmax function has become one of
the most popular options for the classification task, due to its effectiveness [42].

Axioms 2021, 10, 139 6 of 26

3. Particle Swarm Optimization
It is a stochastic algorithm established on the intelligence of the swarm and inspired

by the way birds forage for food; each bird is represented using particles which “move”
in a multidimensional search space and “adjust” based on the experience of neighbors
and your own.

The possible solution to the problem is depicted by the particle, which can be con-
sidered as “an individual element in a flock” [43]. PSO uses local and global information
to find the best solution using a fitness function and the speeds at which the particles are
moving.

PSO is very prone to premature convergence and falls into local optimum, so since
its introduction in 1995 by Kennedy and Eberhart [44], various optimization variants
have been proposed [45–48].

Algorithm 1. The PSO algorithm
Initialize the parameter of the problem (a random population).

while (completion criteria are not met)

begin

For each particle i do

begin

Update the position 𝑝 using (1).

Update the velocity 𝑥 using (2).

Evaluate the fitness value of the particle

If is necessary using (3)(4)

Update pbesti(t) and gbesti(t).

end
end

Algorithm 1 describes the process carried out by the PSO. This algorithm is defined
by the equations that allow updating of the velocity with Equation (2) and the position
with Equation (1). 𝑝 𝑡 + 1 = 𝑝 𝑡 + 𝑥 𝑡 + 1 , (1)

In Equation (1), 𝑝 (𝑡) is the position of particle 𝑖 in a time 𝑡, within the search
space. By adding a velocity 𝑥 (𝑡) it is possible to change the position of the particle [45]. 𝑥 (𝑡 + 1) = 𝑥 (𝑡) + 𝑐 𝑟 𝑦 − 𝑝 (𝑡) + 𝑐 𝑟 𝑦 − 𝑝 (𝑡) , (2)

In Equation (2), 𝑥 represents the velocity and 𝑖 the particle. The parameters 𝑐 and 𝑐 define the cognitive and social factors, respectively. The random values in the interval
[0,1] are depicted by 𝑟 and 𝑟 , ω is an inertia weight and the best position of the particle
(𝑝𝑏𝑒𝑠𝑡) is determined by 𝑦 and the best global position (𝑔𝑏𝑒𝑠𝑡) by 𝑦.

The swarm is assumed to consist of 𝑛 particles, so an objective function 𝑓 is im-
plemented to perform the computation of particle fitness with a maximization task. The
personal and global best values are updated using Equations (3) and (4), respectively, at a
time 𝑡 [48].

Axioms 2021, 10, 139 7 of 26

Thus, 𝑖 ∈ 1⋯𝑛 𝑝𝑏𝑒𝑠𝑡 (𝑡 + 1) = 𝑝𝑏𝑒𝑠𝑡 (𝑡) 𝑖𝑓 𝑓(𝑝𝑏𝑒𝑠𝑡 (𝑡)) ≤ 𝑓(𝑝(𝑡 + 1))𝑝 (𝑡 + 1) 𝑖𝑓 𝑓(𝑝𝑏𝑒𝑠𝑡 (𝑡)) > 𝑓(𝑝 (𝑡 + 1)) (3) 𝑔𝑏𝑒𝑠𝑡(𝑡 + 1) = 𝑚𝑎𝑥 𝑓(𝑦),𝑓 𝑔𝑏𝑒𝑠𝑡(𝑡) 𝑤ℎ𝑒𝑟𝑒, 𝑦 𝑝𝑏𝑒𝑠𝑡 (𝑡), 𝑝𝑏𝑒𝑠𝑡 (𝑡), … , 𝑝𝑏𝑒𝑠𝑡 (𝑡)
(4)

According to Equations (1) and (2), the movements of the particle in the search space
are illustrated in Figure 5.

Figure 5. Representation of the movement of the particle.

The red and yellow circles represent the movement that a particle makes when the
parameters c1 and c2 are updated. When c1 > c2, the particle moves in the direction of the
yellow circle. When this condition is met, it means that the swarm performs the explora-
tion process, so they “fly” in the search space to find the area that allows it to find the
global optimum.

This movement allows the particles to perform long displacements, thus covering
the whole search space. In the case of c2 > c1 then, the particle motion will be towards the
red circle. It is here that the exploitation process takes place; it consists of the swarm
“flying” in the best area of the search space, making small motions, which allow an in-
tensive search [49].

4. Convolutional Neural Network Architecture Optimized by PSO
This Section presents two optimization approaches where the PSO algorithm is ap-

plied to optimize the parameters of CNN architectures, these approaches are denoted as
PSO-CNN-I and PSO-CNN-II. The first objective is to select the most relevant parameters
that have influence to obtain good performance of CNN and then implement the PSO
algorithm to find these optimal parameters.

The parameters to be optimized were selected after evaluating the performance of a
CNN with an experimental study, where the parameters were changed manually. As
mentioned above, different CNN parameter values produce a variety of results for the
same task; for this reason, the aim is to find the optimal architectures. The parameters
listed below were chosen to be optimized in this work.

Axioms 2021, 10, 139 8 of 26

• The number of convolutional layers;
• The filter size or filter dimension used in each convolutional;
• The number of filters to extract the future maps (the convolution filter number);
• The batch size number: this value represents the number of images that are entered

into CNN in each training block.
The general methodology of the proposal is presented in Figure 6, as the “training

and optimization” block is the most important part of the whole process, where the CNN
is initialized to integrate the parameter optimization by applying the PSO algorithm. In
this process, the PSO is initialized according to the parameter given for the execution (the
parameters are explained below) and this generates the particles. Each particle is a pos-
sible solution and its position has the parameter to be optimized, so each solution repre-
sents a complete CNN training.

Figure 6. Representation of the movement of the particle.

The training process is an iterative cycle that ends when all the particles generated
by the PSO are evaluated for each generation. The computational cost is higher and, it
depends on the database size, the size of particles, the number of iterations of the PSO
and, the number of particles in each iteration. That is to say, if the PSO is executed with 10
particles and 10 iterations, the CNN training process is executed 100 times. The steps to
optimize the CNN by the PSO algorithm are illustrated in Figure 7 and explained as fol-
lows.

Axioms 2021, 10, 139 9 of 26

Figure 7. Flowchart of CNN optimization process using PSO.

1. Input database to train the CNN. This step consists of selecting the database to be
processed and classified for the CNN (ASL alphabet, ASL MINIST and MSL alpha-
bet). Is important to mention that all the elements of each database need to keep a
similar structure or characteristics. In other words, images with the same scale and
color gamma (grayscale, RGB, CMYK); additionally, with the same dimensions of
pixels and a similar format of file (JPGE, PNG, TIFF, BMP, etc.).

2. Generate the particle population for the PSO algorithm. The PSO parameters are set
to include the number of iterations, the number of particles, inertial weight, cogni-
tive constant (W1), and social constant (W2); the parameters used in the experi-
mentation are presented in Table 8. This step involves the design of the particles; the
structures of these are presented in Tables 1 and 3 according to the two optimization
architecture proposals in this paper.

3. Initialize the CNN architecture, with the parameter obtained by the PSO (convolu-
tion layers number, the filter size, number of convolution filters, and the batch size)
the CNN is initialized and in conjunction with the additional parameter specified in
Table 8, the CNN is ready to train the input database.

4. CNN training and validation. The CNN reads and processes the input databases
taking the images for training, validation, and testing; this step produces a recogni-
tion rate and the AIC value. These values return to the PSO as part of the objective
function.

5. Evaluate the objective function. The PSO algorithm evaluates the objective function
to determine the best value. As in this research, we are considering two approaches,
in the first, the objective function is only the recognition rate (Equation (5)) and in
the second, the objective function consists of the recognition rate and the AIC value
(Equation (6)).

Axioms 2021, 10, 139 10 of 26

6. Update PSO parameters. At each iteration, each particle updates its velocity and
position depending on its own best-known position (Pbest) in the search-space and
the best-known position in the whole swarm (Gbest).

7. The process is repeated, evaluating all the particles until the stop criteria are found
(in this case, it is the number of iterations).

8. Finally, the optimal solution is selected. In this process, the particle represented by
Gbest is the optimal one for the CNN model.

4.1. PSO-CNN Optimization Process (PSO-CNN-I)
This first approach, which we are going to identify as PSO-CNN-I, consists of im-

plementing a particle with four positions, one position for each parameter to be opti-
mized (Figure 8). Table 1 presents the detail of the particle composition where the posi-
tion 𝑥 corresponds to the number of layers with a search space from 1 to n, that is to say,
that method can produce architectures with a minimum of one layer and maximum n, for
the purposes of this work, we are using n = 3. The 𝑥 position represents the number of
convolution filters used to extract the characteristics, with a search space of 32 to 18 fil-
ters. Position 𝑥 is the filter size; the search space is from 1 to 4 where this values repre-
sents a position, the value reached is mapped with the values of Table 2 to obtain the fil-
ter size (i.e., if the particle generates a value of 1 this represents a filter size of [3 × 3], to
get a value of 2 the filter size will be [5 × 5] and so on, respectively, for each value. The last
position represents the batch size (𝑥), this is initialized considering the search space
ranges from 32 to 256. In this optimization process, the consistency of the parameters
between the layers is maintained in the same conditions, that is, if after the PSO execution
it generates a particle with 3 convolutional layers (𝑥), 50 filters (𝑥), a filter dimension of
3 × 3 (𝑥) and batch size of 50 (𝑥). The same values of filter numbers (𝑥) and filter size
(𝑥) will apply to the three convolution layers of the CNN.

Figure 8. Structure of the particle used in the PSO-CNN-I approach.

Table 1. Search spaces used to define the particle in the PSO-CNN-I approach.

Particle Coordinate Hyper-Parameter Search Space 𝑥 Number of convolutional
layers

[1, 3] 𝑥 Filter number [32, 128] 𝑥 Filter size [1, 4] 𝑥 Batch size in the training [32, 256]

Table 2. Convolutional filter dimensions for the 𝒙𝟑 position. 𝒙𝟑 Value Search Space
1 [3, 3]
2 [5, 5]
3 [7, 7]
4 [9, 9]

In this process, the objective function defined by Equation (5) is given by the recog-
nition rate (precision) that the CNN returns after it is trained with the parameters gener-
ated by the PSO.

Axioms 2021, 10, 139 11 of 26

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒, (5)

4.2. PSO-CNN Optimization Process (PSO-CNN-II)
In this second proposal, identifying as PSO-CNN-II, the particle structure consists of

eight positions whose structure is presented in Figure 9, where each position represents
the parameter to be optimized. The difference from the previous approach (PSO-CNN-I
in Section 4.1) is finding more random searches in the architectures that the PSO pro-
duces; because in this case, the values for each convolution layer are completely different.
Table 3 presents the detail of the particle composition, the description of each position,
and the search space used. As we can see in Table 3, the positions 𝑥 , 𝑥 and 𝑥 repre-
sent an index with an integer value between 1 to 4, and depending on the value taken by
the PSO, a mapping is made with values presented in Table 2.

According to the values to optimize in this new approach, the 𝑥 position is used to
control the number of convolution layers and the activation of the positions 𝑥 to 𝑥 . If
PSO generates a particle with a value of one for 𝑥 , only the position 𝑥 and 𝑥 will be
activated to generate the number of filters of the convolutional layer 1 and the filter size
to use in this layer. In other words, if PSO produces a particle with a value of three in the 𝑥 position, the positions from 𝑥 to 𝑥 will be activated to generate the number of fil-
ters to use in the convolutional layer 1 (𝑥), the filter size of layer 1 (𝑥), the number of
filters of layer 2 (𝑥), the filter size for layer 2 (𝑥), the number of filters of layer 3 (𝑥), and
the filter size for layer 3 (𝑥), respectively; these values are completely different from each
other, therefore this methodology helps to produce more heterogeneous CNN architec-
tures.

Figure 9. Structure of the particle used in the PSO-CNN-II approach.

Table 3. Search spaces used to define the particle in the PSO-CNN-II approach.

Particle Coordinate Hyper-Parameter Search Space 𝑥 Convolutional layer number [1, 3] 𝑥 Filter number (layer 1) [32, 128] 𝑥 Filter size (layer 1) [1, 4] 𝑥 Filter number (layer 2) [32, 128] 𝑥 Filter size (layer 2) [1, 4] 𝑥 Filter number (layer 3) [32, 128] 𝑥 Filter size (layer 3) [1, 4] 𝑥 Batch size in the training [32, 256]

Another difference between this proposal and the previous one (PSO-CNN-I) is that
the objective function changes, for this we are using the recognition rate together with the
Akaike information criteria (AIC). The AIC penalizes the architectures according to the
number of parameters used; that is to say, the model is penalized when it needs more
parameters. The objective function is considered the highest recognition rate and the
lowest AIC. The AIC is defined in Equation (6). 𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿), (6)

According to our problem, in Equation (6) 𝑘 is the number of parameters of the
model (number of layers and filter number) and 𝐿 is the maximum value of the recog-
nition that the CNN can reach; in this case, the value is 100. Figure 10 illustrates an ex-
ample of a particle generated by PSO.

Axioms 2021, 10, 139 12 of 26

Figure 10. Example of a particle generated by PSO.

Based on the structure of Figure 10, we have a three-layer convolutional architec-
ture, where the first layer consists of 100 convolution filters with a filter size of 3 × 3. The
second layer has 85 convolution filters with a filter size of 5 × 5 and the third convolution
layer has 50 convolutional filters with a filter size of 7 × 7. Finally, the batch size is 32. The
CNN is training with these values, and the recognition rate is calculated, additionally the
AIC is obtained based on the parameters of the positions 𝑥 , 𝑥 , 𝑥 and 𝑥 which rep-
resents the number of convolution layers and the number of filters for each convolutional
layer. After applying Equation (6), this architecture produces the AIC defined in Equa-
tion (7). 𝐴𝐼𝐶 = 2(3 + 100 + 85 + 50) − 2𝑙𝑛 (100), 𝐴𝐼𝐶 = 466.7897,

(7)

Assuming that there are two architectures with the same recognition rate but with
different AICs (Table 4), the model will take the architecture with the lowest AIC, as this
would help penalize the parameters that are needed to train the network and thus pro-
duce optimized and simpler architectures.

Table 4. Objective function values based on the recognition rate and the AIC value.

Architecture Number Recognition Rate (%) AIC Value
1 98.50 466.78
2 98.50 350.85

5. Experiments and Results
This section describes the three databases implemented in the case studies (ASL al-

phabet, ASL MNIST, and MSL alphabet), the static parameters used to set the PSO algo-
rithm and the CNN process, the experimental results obtained in the two optimization
approaches that were performed (PSO-CNN-I and PSO-CNN-II), as well as the compar-
ison analysis against other approaches.

5.1. Sign Language Databases Used in the Study Cases
The characteristics of the sign databases are described below.

5.1.1. American Sign Language (ASL Alphabet)
The ASL alphabet consists of 87,000 images in color format, with a dimension of 200

× 200 pixels. This database contains 29 classes, these are labeled in a range of 0 to 28, with
a one-to-one assignment for each letter of the American alphabet A–Z (0 to 25 for the
alphabet; that is, 0 = A and 25 = Z) the other three classes correspond to the space sym-
bols, delete, and null (26 to 28; i.e., 26 = space, 27 = delete and, 28 = null). Table 5 presents
the general description of the ASL alphabet database and Figure 11 illustrates a sample of
the images.

Axioms 2021, 10, 139 13 of 26

Table 5. ASL Alphabet database description.

Name ASL Alphabet Detail
Total images 87,000

Images for training 82,650
Images for test 4350

Images size 32 * 32
Database format JPGE

Figure 11. A sample of the ASL alphabet database.

5.1.2. American Sign Language (ASL MNIST)
ASL MNIST consists of a collection of 34,627 grayscale images with a dimension of

28 × 28 pixels. This database has 24 labeled classes in a range from 0 to 25 with assign-
ment for each letter of the alphabet A-Z (the class 9 = J and 25 = Z, were excluded due to
gestural movements). Table 6 presents a description of this database and Figure 12 illus-
trates a sample of the sign images.

Table 6. ASL MNIST database description.

Name ASL MNIST Detail
Total images 34,627

Images for training 24,239
Images for test 10,388

Images size 28 * 28
Database format CSV

Axioms 2021, 10, 139 14 of 26

Figure 12. A sample of the ASL MNIST database.

5.1.3. Mexican Sign Language (MSL Alphabet)
The MSL alphabet database was obtained from a group of 18 people, including deaf

students and sign language translation teachers. Students are part of an inclusive group
in a high school in Mexico. This database consists of 21 classes with the alphabet of the
MSL without movement as illustrated in Figure 13. Ten images were captured for each
letter, achieving a total of 3780 grayscale images with a dimension of 32 by 32. Table 7
displays a general overview of the MSL alphabet database.

Table 7. MSL alphabet database description.

Name MSL Alphabet Detail
Total images 3780

Images for training 2646
Images for test 1134

Images size 32 * 32
Database format JPG

Axioms 2021, 10, 139 15 of 26

Figure 13. Sample of the MSL alphabet database.

5.2. Parameters Used in the Experimentation
In the CNN parameter settings, some static parameters were used, including the

learning function, the activation function in the classifying layer, the non-linearity acti-
vation function, and the epoch number. The fixed parameters considered in the PSO
configuration are the number of particles, the iterations number, the inertial weight, and
the social and cognitive constants. The static parameters used for PSO and CNN are
presented in Table 8. The dynamic parameters optimized by PSO are the number of
convolutional layers, the size of the filters used in each convolutional layer, the number
of convolutional filters, and the batch size (Tables 1 and 3).

Table 8. Static parameters for CNN and PSO.

Parameters of CNN
Learning function Adam
Activation function (classifying layer) Softmax
Non-linearity activation function ReLU
Epochs 5

Parameters of PSO
Particles 10
Iterations 10
Inertial weight (W) 0.85
Social constant (W2) 2
Cognitive constant (W1) 2

5.3. Optimization Results Obtained by the PSO-CNN-I Approach
This section presents the simulation results produced after the CNN architecture is

optimized considering the approach described in Section 4.1. The experimentation con-
sists of 30 executions carried out on the three databases; the aim is to obtain the optimal
CNN architecture, that is, minimum parameters necessary to maximize the recognition
rate.

The first experiment was applied in the ASL alphabet (Table 5), using a distribution
of 80% of the total images for training and 20% for testing. Table 9 shows the values
achieved after 30 executions, where the higher recognition rate was a value of 99.87% and

Axioms 2021, 10, 139 16 of 26

the mean was 99.58%. Based on the results, we can see that the optimal architecture
achieved by the PSO was as follows: three convolutional layers, 128 filters per layer with
a filter size of 7 × 7, and the batch size with a value of 256.

Table 9. Results achieved by the PSO-CNN-I in ASL alphabet database.

No.
No.

Layers
No.

Filters
Filter
Size

Batch
Size

Recognition
Rate (%)

1 3 99 [7 × 7] 107 98.85
2 3 104 [9 × 9] 256 99.66
3 3 128 [9 × 9] 256 99.70
4 3 128 [7 × 7] 256 99.79
5 3 128 [9 × 9] 256 99.72
6 3 128 [7 × 7] 256 99.62
7 2 32 [7 × 7] 256 98.18
8 3 109 [7 × 7] 256 99.73
9 3 128 [7 × 7] 197 99.75

10 3 128 [7 × 7] 256 99.81
11 3 66 [7 × 7] 181 99.31
12 3 118 [7 × 7] 256 99.87
13 3 128 [9 × 9] 256 99.67
14 3 128 [7 × 7] 256 99.85
15 3 128 [9 × 9] 256 99.61
16 3 128 [9 × 9] 256 99.63
17 3 90 [9 × 9] 256 99.66
18 3 128 [7 × 7] 256 99.82
19 3 128 [7 × 7] 256 99.79
20 3 128 [7 × 7] 256 99.76
21 3 128 [9 × 9] 256 99.68
22 3 128 [9 × 9] 256 99.67
23 3 128 [7 × 7] 256 99.75
24 3 123 [7 × 7] 32 98.38
25 3 128 [9 × 9] 256 99.64
26 3 128 [7 × 7] 256 99.82
27 3 128 [9 × 9] 215 99.56
28 3 128 [7 × 7] 256 99.87
29 3 100 [9 × 9] 256 99.64
30 3 128 [7 × 7] 256 99.84
 Mean 99.58

In another test, the PSO-CNN-I approach was applied to the ASL MNIST database;
Table 10 presents the results achieved by the CNN where the best recognition rate was a
value of 98.82% and the mean of 99.53%. According to this analysis, the optimal archi-
tecture for this study case is two convolutional layers, with 117 convolutional filters in
both layers with a filter size of 7 × 7 and the batch size with a value of 129.

Axioms 2021, 10, 139 17 of 26

Table 10. Results achieved by the PSO-CNN-I in ASL MNIST database.

No.
No.

Layers
No.

Filters
Filter
Size

Batch
Size

Recognition
Rate (%)

1 3 128 [9 × 9] 137 99.27
2 2 128 [9 × 9] 218 99.54
3 2 128 [7 × 7] 205 99.52
4 3 128 [7 × 7] 136 99.33
5 2 128 [9 × 9] 232 99.59
6 3 96 [9 × 9] 107 98.82
7 2 118 [7 × 7] 189 99.36
8 2 128 [9 × 9] 256 99.59
9 2 112 [9 × 9] 256 99.49

10 2 128 [9 × 9] 256 99.60
11 2 128 [7 × 7] 256 99.59
12 2 128 [7 × 7] 256 99.61
13 2 128 [9 × 9] 220 99.67
14 2 128 [9 × 9] 256 99.57
15 2 128 [9 × 9] 256 99.51
16 2 128 [7 × 7] 237 99.55
17 2 128 [7 × 7] 256 99.61
18 2 128 [9 × 9] 256 99.58
19 2 128 [9 × 9] 256 99.53
20 2 128 [9 × 9] 256 99.65
21 2 128 [7 × 7] 148 99.42
22 2 128 [9 × 9] 256 99.51
23 2 128 [9 × 9] 215 99.53
24 2 128 [9 × 9] 255 99.56
25 2 128 [9 × 9] 256 99.65
26 2 128 [7 × 7] 256 99.57
27 2 128 [9 × 9] 256 99.53
28 2 117 [7 × 7] 129 99.98
29 3 128 [5 × 5] 242 99.87
30 2 128 [7 × 7] 256 99.55
 Mean 99.53

Table 11 presents the experimental results obtained when the approach is applied in
the MSL alphabet database. As we can see in Table 11, the best accuracy reached by the
CNN was 99.37% with a mean of 99.10%. In this case, the optimal architecture is as fol-
lows: one convolutional layer with 122 convolutional filters, filter size of 3 × 3, and batch
size of 128.

Axioms 2021, 10, 139 18 of 26

Table 11. Results achieved by the PSO-CNN-I in MSL alphabet database.

No.
No.

Layers
No.

Filters
Filter
Size

Batch
Size

Recognition
Rate (%)

1 2 101 [7 × 7] 93 98.95
2 1 128 [3 × 3] 56 98.95
3 1 110 [3 × 3] 52 98.82
4 1 128 [3 × 3] 121 99.20
5 1 128 [3 × 3] 128 99.32
6 1 128 [3 × 3] 128 99.07
7 1 128 [3 × 3] 110 99.24
8 1 101 [5 × 5] 114 98.82
9 1 128 [3 × 3] 128 99.24

10 1 74 [3 × 3] 88 98.95
11 1 128 [3 × 3] 128 99.32
12 1 128 [3 × 3] 32 98.48
13 1 128 [3 × 3] 93 99.28
14 1 128 [3 × 3] 97 99.11
15 1 128 [3 × 3] 32 98.74
16 1 128 [3 × 3] 72 99.32
17 1 128 [3 × 3] 93 99.37
18 1 63 [3 × 3] 47 98.44
19 1 128 [3 × 3] 128 99.20
20 1 126 [3 × 3] 128 99.28
21 1 128 [3 × 3] 128 99.32
22 1 128 [3 × 3] 83 99.20
23 1 128 [3 × 3] 63 99.20
24 1 122 [3 × 3] 128 99.37
25 1 128 [3 × 3] 128 99.32
26 1 114 [3 × 3] 84 99.32
27 1 128 [3 × 3] 32 98.74
28 1 128 [3 × 3] 89 99.28
29 1 43 [3 × 3] 53 97.81
30 1 128 [3 × 3] 72 98.99
 Mean 99.10

5.4. Optimization Results Obtained by the PSO-CNN-II Approach
The results presented in this section consist of 30 executions of the PSO-CNN-II ap-

proach applied in the ASL alphabet, ASL MNIST, and MSL alphabet databases; the ob-
jective is to maximize the recognition rate and minimize the value of AIC.

The experimental results obtained from the ASL alphabet database after applying
the PSO-CNN-II optimization approach (Section 4.2) are presented in Table 12. In this
test, the database was distributed so that 70% of the data were kept for the training phase
and 30% of the data for testing. Table 12 shows the best recognition rate with a value of
99.23% and a mean of 98.69%. The best architecture found by the PSO for the CNN had
the following structure: three convolutional layers where the first layer had 84 convolu-
tional filters and 3 × 3 size filters; the second layer with 128 convolutional filters with the
size of 9 × 9 and the third layer with 128 convolutional filters and 7 × 7 size filters. In this
approach, the objective function is composed of the recognition rate and the AIC value;
that is, the best recognition rate is evaluated first and then the AIC value, if it was the case
that CNN achieved two or more architectures with the same recognition rate, the process

Axioms 2021, 10, 139 19 of 26

takes the architecture with the minimum AIC, with the goal of achieving an optimal ar-
chitecture with the fewest parameters and the highest recognition rate.

Table 12. Results achieved by the PSO-CNN-II in ASL alphabet database.

No.
No.

Layers

Layer 1 Layer 2 Layer 3
Batch
Size

AIC
Value

(%)
Recogn.

Rate
No.

Filters
Filter
Size

No.
Filters

Filter
Size

No.
Filters

Filter
Size

1 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 98.99
2 3 128 [5 × 5] 121 [5 × 5] 128 [5 × 5] 213 750.78 98.73
3 3 84 [3 × 3] 128 [7 × 7] 128 [5 × 5] 84 676.78 99.23
4 2 45 [5 × 5] 128 [7 × 7] 0 0 0 340.78 98.15
5 3 32 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 572.78 98.86
6 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 98.96
7 3 84 [5 × 5] 128 [5 × 5] 128 [3 × 3] 256 676.78 98.85
8 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.02
9 3 32 [5 × 5] 128 [5 × 5] 128 [3 × 3] 256 572.78 98.9
10 3 124 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 756.78 98.64
11 3 32 [3 × 3] 128 [7 × 7] 128 [7 × 7] 256 572.78 98.93
12 3 32 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 572.78 98.53
13 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.01
14 3 73 [7 × 7] 128 [7 × 7] 108 [3 × 3] 256 614.78 97.91
15 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.06
16 2 128 [3 × 3] 128 [7 × 7] 0 0 0 506.78 98.23
17 2 88 [7 × 7] 128 [7 × 7] 0 0 0 426.78 97.4
18 3 32 [5 × 5] 128 [7 × 7] 128 [5 × 5] 256 572.78 99.06
19 2 128 [5 × 5] 119 [7 × 7] 0 0 0 488.78 98.1
20 3 116 [3 × 3] 128 [5 × 5] 128 [7 × 7] 252 740.78 98.96
21 3 49 [5 × 5] 128 [7 × 7] 128 [7 × 7] 256 606.78 98.93
22 2 128 [3 × 3] 128 [7 × 7] 0 0 0 506.78 98.19
23 3 32 [5 × 5] 128 [7 × 7] 128 [5 × 5] 256 572.78 98.96
24 2 32 [5 × 5] 128 [7 × 7] 0 0 0 314.78 98.04
25 2 128 [5 × 5] 81 [5 × 5] 0 0 0 412.78 98.92
26 3 32 [5 × 5] 128 [7 × 7] 128 [3 × 3] 256 572.78 98.58
27 3 32 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 572.78 98.88
28 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.02
29 3 128 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 764.78 99.08
30 3 128 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 764.78 98.71

 Mean 98.69

In Table 13, we present the results where the PSO-CNN-II was implemented in the
ASL MNIST database. In this test, the best recognition rate was 99.80%, an AIC value of
506.79 and, a mean of 99.48%. The optimal parameters found by the PSO were the fol-
lowing: two-layer CNN architecture, the first layer had 128 filters of convolution and a
filter size of 5 × 5; the second layer had 128 convolutional filters with a filter size of 9 × 9,
and the batch size was 128.

Axioms 2021, 10, 139 20 of 26

Table 13. Results achieved by the PSO-CNN-II in ASL MNIST database.

No.
No.

Layers

Layer 1 Layer 2 Layer 3
Batch
Size

AIC
Value

(%)
Recogn.

Rate
No.

Filters
Filter
Size

No.
Filters

Filter
Size

No.
Filters

Filter
Size

1 2 128 [5 × 5] 128 [9 × 9] 0 0 128 506.79 99.80
2 2 74 [9 × 9] 114 [9 × 9] 0 0 174 370.79 99.42
3 3 32 [5 × 5] 128 [9 × 9] 128 [5 × 5] 122 572.79 99.53
4 2 125 [5 × 5] 125 [9 × 9] 0 0 147 503.79 99.58
5 2 90 [5 × 5] 128 [9 × 9] 0 0 256 500.79 99.68
6 3 32 [3 × 3] 128 [9 × 9] 128 [9 × 9] 148 572.79 99.51
7 2 121 [7 × 7] 95 [9 × 9] 0 0 100 426.79 99.26
8 3 32 [7 × 7] 128 [9 × 9] 125 [9 × 9] 256 569.79 99.6
9 2 32 [9 × 9] 126 [9 × 9] 0 0 106 310.79 99.4
10 3 115 [7 × 7] 102 [9 × 9] 128 [7 × 7] 215 686.79 99.42
11 2 32 [9 × 9] 128 [9 × 9] 0 0 256 314.79 99.44
12 2 77 [7 × 7] 100 [9 × 9] 0 0 183 348.79 99.59
13 2 87 [7 × 7] 128 [9 × 9] 0 0 256 424.79 99.7
14 2 32 [9 × 9] 128 [9 × 9] 0 0 256 314.79 99.53
15 3 32 [5 × 5] 103 [9 × 9] 125 [9 × 9] 256 516.79 99.53
16 2 70 [9 × 9] 126 [9 × 9] 0 0 256 386.79 99.63
17 2 64 [7 × 7] 128 [9 × 9] 0 0 256 378.79 99.7
18 3 32 [7 × 7] 77 [9 × 9] 128 [9 × 9] 256 470.79 99.36
19 2 128 [7 × 7] 128 [9 × 9] 0 0 256 506.79 99.74
20 3 32 [3 × 3] 128 [9 × 9] 128 [5 × 5] 32 572.79 98.95
21 3 32 [7 × 7] 128 [9 × 9] 123 [7 × 7] 162 577.79 99.33
22 2 51 [9 × 9] 128 [9 × 9] 0 0 194 352.79 99.47
23 2 50 [7 × 7] 128 [9 × 9] 0 0 256 350.79 99.63
24 2 128 [7 × 7] 128 [9 × 9] 0 0 162 506.79 99.67
25 2 100 [5 × 5] 76 [5 × 5] 0 0 76 346.79 98.23
26 2 52 [9 × 9] 128 [7 × 7] 0 0 256 354.79 99.54
27 2 128 [5 × 5] 128 [9 × 9] 0 0 142 506.79 99.53
28 3 83 [3 × 3] 125 [9 × 9] 0 0 136 410.79 99.38
29 3 128 [5 × 5] 128 [9 × 9] 128 [9 × 9] 256 764.79 99.57
30 2 74 [7 × 7] 120 [9 × 9] 0 0 256 382.79 99.72

 Mean 99.48

In another experiment, the optimization approach was applied to the MSL alphabet
database after 30 simulations. The results obtained are presented in Table 14, where the
best recognition rate was 99.45% with an AIC of 248.79. The general mean for this study
case was a value of 98.91%. In this optimization, one-layer CNN architecture was
achieved, with 128 convolutional filters, 3 × 3 filter sizes, and 154 batch sizes.

Axioms 2021, 10, 139 21 of 26

Table 14. Results achieved by the PSO-CNN-II in MSL alphabet.

No.
No.

Layers

Layer 1 Layer 2 Layer 3
BATCH

SIZE
AIC

Value

(%)
Recogn.

Rate
No.

Filters
Filter
Size

No.
Filters

Filter
Size

No.
Filters

Filter
Size

1 1 128 [3 × 3] 0 0 0 0 32 248.79 98.74
2 1 128 [3 × 3] 0 0 0 0 163 248.79 99.28
3 1 116 [3 × 3] 0 0 0 0 105 224.79 98.99
4 1 81 [3 × 3] 0 0 0 0 32 154.79 98.44
5 1 128 [3 × 3] 0 0 0 0 149 248.79 98.90
6 1 128 [3 × 3] 0 0 0 0 221 248.79 98.57
7 1 128 [3 × 3] 0 0 0 0 57 248.79 99.24
8 1 67 [3 × 3] 0 0 0 0 246 126.73 97.77
9 1 118 [3 × 3] 0 0 0 0 113 228.79 99.16
10 1 128 [3 × 3] 0 0 0 0 154 248.79 99.45
11 1 103 [3 × 3] 0 0 0 0 92 198.79 99.03
12 1 65 [3 × 3] 0 0 0 0 32 122.79 98.32
13 1 128 [3 × 3] 0 0 0 0 94 248.79 99.07
14 1 128 [3 × 3] 0 0 0 0 90 248.79 99.11
15 1 112 [3 × 3] 0 0 0 0 97 216.79 99.24
16 1 128 [3 × 3] 0 0 0 0 32 248.79 98.74
17 1 128 [3 × 3] 0 0 0 0 46 248.79 98.65
18 1 128 [3 × 3] 0 0 0 0 199 248.79 98.32
19 1 128 [3 × 3] 0 0 0 0 244 248.79 99.03
20 1 120 [3 × 3] 0 0 0 0 32 232.79 99.07
21 1 128 [3 × 3] 0 0 0 0 105 248.79 99.16
22 1 128 [3 × 3] 0 0 0 0 77 248.79 99.03
23 1 108 [3 × 3] 0 0 0 0 84 208.79 99.07
24 1 54 [3 × 3] 0 0 0 0 32 100.79 98.44
25 1 102 [3 × 3] 0 0 0 0 102 196.79 99.03
26 1 128 [3 × 3] 0 0 0 0 114 248.79 99.20
27 1 119 [3 × 3] 0 0 0 0 256 230.79 98.61
28 1 98 [3 × 3] 0 0 0 0 122 188.79 99.20
29 1 128 [3 × 3] 0 0 0 0 83 248.79 99.07
30 1 128 [3 × 3] 0 0 0 0 135 248.79 99.37

 Mean 98.91

5.5. Statistical Test between PSO-CNN-I and PSO-CNN-II Optimization Process
Table 15 presents a summary of the results obtained after the two approaches were

applied to the three databases. We can see that good results were achieved in all the
cases; we can analyze that for the ASL alphabet and the ASL MNIST, the PSO-CNN-I
optimization approach was better with mean values of 99.58% and 99.53%, respectively.
For the MSL alphabet database, the PSO-CNN-II optimization method achieved a better
recognition rate with a mean value of 98.91%. Although, if the results were analyzed with
respect to the AIC value, for the ASL MNIST and the MSL alphabet, the PSO-CNN-I
reached the lowest values with AIC of 462.79 and 236.80, respectively, and for ASL al-
phabet, the PSO-CNN-II achieved a better AIC value. A low AIC value means that the
CNN architecture required fewer parameters, so it is important to determine what is
most relevant to any problem, the CNN accuracy, or to configure the CNN architectures
with minimal parameters that can be implemented in real-time systems.

Axioms 2021, 10, 139 22 of 26

Table 15. Summary of the results obtained in the PSO-CNN-I and PSO-CNN-II approaches.

Database
PSO-CNN-I PSO-CNN-II

Best Mean AIC Best Mean AIC
ASL alphabet 99.87% 99.58% 764.79 99.23% 98.69% 676.78
ASL MNIST 99.98% 99.53% 462.79 99.80% 99.48% 506.79

MSL alphabet 99.37% 99.05% 236.80 99.45% 98.91% 248.79

To confirm if significant evidence exists between the architectures and to identify
which is better, the Wilcoxon signed-rank test was applied [50]; this is a non-parametric
test that is recommended to be applied when the numerical data are not normally dis-
tributed, as is the case with the experimental results of metaheuristic algorithms. The
Wilcoxon test was performed to compare the PSO-CNN-I and PSO-CNN-II optimization
processes, considering the results presented in Tables 9–14. The general description of the
values used to execute the Wilcoxon test is presented in Table 16 and described below:
• A confidence level of 95% (α = 0.05).
• The null hypothesis is given that (H): the PSO-CNN-I architecture (μ) is equal to

PSO-CNN-II architecture (μ), expressed as H :μ = μ .
• The alternative hypothesis is (H): affirm that PSO-CNN-I architecture (μ) is greater

than that PSO-CNN-II architecture (μ), expressed as H : μ > μ (Affirmation).
• The objective is to reject the hypothesis null (H) and support the alternative hy-

pothesis (H).

Table 16. General description of the Wilcoxon test.

 Description Hypothesis

Null hypothesis
PSO-CNN-I architecture (μ) =
PSO-CNN-II architecture (μ)

H :μ = μ

Alternative hypothesis
PSO-CNN-I architecture (μ) >
PSO-CNN-II architecture (μ),

H : μ > μ (Affirmation)

The first Wilcoxon test was applied for the ASL alphabet results (Tables 9 and 12).
Table 17 shows the R+, R-, and the p-value (the p-values have been computed by using
SPSS), where R+ represents the sum of ranks for the problems in which the first algorithm
outperformed the second, and R− the sum of ranks for the opposite. The results obtained
indicate an R+ of 455, an R- of 10 and the p-value of <0.001. Because the p-value is less than
the alpha value of α = 0.05, then we support the alternative hypothesis with a 95% level of
evidence, and we can affirm that the PSO-CNN-I architecture is better than the
PSO-CNN-II.

Table 17. Wilcoxon test results for the ASL alphabet.

Comparison
PSO-CNN-I (𝝁𝟏)—PSO-CNN-II (𝝁𝟐)

R+ R- p-Value

ASL alphabet 455 10 <0.001

Table 18 presents the results after the Wilcoxon test was applied for the ASL MNIST
results (Tables 10 and 13). This test obtains the values R+ = 245.5, R- = 189.5, and the
p-value = 0.545. Since the p-value is greater than the alpha value of α = 0.05, the null hy-
pothesis is accepted with a 95% level of evidence; therefore, we can affirm that evidence
does not exist to determine that the PSO-CNN-I architecture is better than the
PSO-CNN-II.

Axioms 2021, 10, 139 23 of 26

Table 18. Wilcoxon test results for the ASL MNIST.

Comparison
PSO-CNN-I (𝝁𝟏)—PSO-CNN-II (𝝁𝟐) R+ R- p-Value

ASL MNIST 245.5 189.5 0.545

Finally, Table 19 presents the Wilcoxon test for the results of the MSL alphabet (Ta-
bles 11 and 14). The results obtained indicate the values R+ = 291, R- = 115, and the p-value
= 0.045. We can see that the p-value is less than the alpha value of α = 0.05; therefore, we
support the alternative hypothesis with a level of evidence of 95%, and we can affirm that
the PSO-CNN-I architecture is better than the PSO-CNN-II.

Table 19. Z-test results for the ASL MNIST.

Comparison
PSO-CNN-I (𝝁𝟏)—PSO-CNN-II (𝝁𝟐) R+ R- p-Value

MSL alphabet 291 115 0.045

5.6. State-of-the-Art Analysis Comparison
To obtain more evidence about the performance of the optimization approaches

presented in this paper, we make a comparative analysis (Table 20) against the
state-of-art research, where CNN models are implemented in Alphabet Sign Language
database recognition. The results presented in Table 20 represent the best recognition rate
values reported by the authors, the detail of which is explained as follows: Zhao et al. [51]
reports an accuracy of 89.32%, the CNN architecture has two convolutional layers, two
pooling layers, the batch size is 150, and 80 iterations. The authors generated their own
ASL database, this was captured in five people covering 24 letters of the alphabet, and
each person’s letters had about 528 photos.

Rathi [52] presents an optimization of the transfer learning model (based on CNN)
and it was applied to the ASL MNIST database, using 27,455 images of 24 letters of the
ASL alphabet. The data split was as follows, 80% of the data was for training, 10% for
testing, and 10% of data for validation purposes with a training batch size of 100. The best
recognition rate evidenced by the author was a value of 95.03%.

In Bin et al. [53], an architecture of four convolutional layers and two pooling layers
was presented. The database was generated by the researchers themselves, taking char-
acteristics of the ASL MINIST and consisting of 4800 images; the best accuracy reported
by the authors was 95.00%.

Dionisio et al. [54], reported a recognition rate of 97.64% for the ASL MNIST with a
six-layer convolutional architecture, three pooling layers, a filter size of 3 × 3, and a batch
size of 128. The database was divided using 10% of data for phase testing, 10% for phase
validation, and 80% for training.

Finally, we present the recognition rate achieved by our two approaches PSO-CNN-I
and PSO-CNN-II with the best values of recognition rates of 99.98% and 99.80%, respec-
tively. In the PSO-CNN-II, the best architecture obtained for the ASL MINIST was of two
layers with 117 filters per layer with a size filter of 7 × 7 and batch size of 129. For the
PSO-CNN-I, it was of two layers with 117 filters per layer with a size filter of 7 × 7 and
batch size of 129.

As one can observe in Table 20, the highest performance was obtained by the pro-
posed model (PSO-CNN-I) with a value of 99.98%, achieving an advantage over the rest
of the approaches.

Axioms 2021, 10, 139 24 of 26

Table 20. State-of-the-Art Comparison.

Reference Recognition Rate (%) Dataset
Y. Zhao and L.Wang [40] 89.32 ASL own

D.Rathi [41] 95.03 ASL MNIST
L.Y.Bin y Y.Huann [42] 95.00 ASL own

R. Dionisio [39] 97.64 ASL MNIST
PSO-CNN-I 99.98 ASL MNIST
PSO-CNN-II 99.80 ASL MNIST

6. Conclusions and Future Work
In summary, in this paper, we present two approaches to optimize CNN architec-

tures by implementing the PSO algorithm, these being applied to sign language recogni-
tion. The main contribution was to find some CNN hyper-parameters; in the proposals
the number of convolutional layers, the size of the filter used in each convolutional layer,
the number of convolutional filters, and the batch size were included. According to the
experimentation and the results obtained in the two PSO-CNN optimization methodol-
ogies, we can conclude that the recognition rate increased in all case studies carried out,
providing a robust performance with the minimum parameters. Overall, the recognition
rates achieved by the three databases were as follows: for the ASL MNIST database, the
best value was 99.98% and an average of 99.53% with the PSO-CNN-I approach. For the
ASL alphabet database, the best accuracy was 99.87% and an average of 99.58% with
PSO-CNN-I, and for the MSL alphabet, the best value was 99.45% and an average of
98.91% after applying the PSO-CNN-II approach. After a comparative analysis against
other state-of-the-art works focused on sign language recognition (ASL and MSL), we can
confirm that the optimization approaches of this work present competitive results.

This research focused on optimizing the number of convolutional layers, the filter
size used in each convolutional layer, the number of convolutional filters, and the batch
size. The results provide evidence of the importance of applying optimization algorithms
to find the optimal parameters of convolutional neural network architectures.

As future work, the PSO algorithm could be applied to optimize other CNN hy-
per-parameters, implement another version of the PSO algorithm or explore different
evolutionary computational techniques, to produce more robust CNN architectures that
will be implemented in different sign language datasets used in other countries. In the
experimental test, the images were introduced as static images, but we are considering
working with input images in real-time or capturing them through video. On the other
hand, our idea is to be able to implement the use of this proposal in the development of
assisted communication tools and to contribute to human−computer iteration applica-
tions that can be of support to the deaf community.

Author Contributions: Individual contributions by the authors are the following: formal analysis,
C.I.G.; conceptualization, writing—review and editing G.E.M. and C.I.G.; methodology, G.E.M.;
investigation, software, data curation, and writing—original draft preparation, J.F. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We thank CONACYT for the financial support provided with the scholarship
number: 954950 and our gratitude to the program of the Division of Graduate Studies and Research
of the Tijuana Institute of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

Axioms 2021, 10, 139 25 of 26

References
1. Hemanth, J.D.; Deperlioglu, O.; Kose, U. An enhanced diabetic retinopathy detection and classification approach using deep

convolutional neural network. Neural Comput. Appl. 2020, 32, 707–721.
2. Li, P.; Li, J.; Wang, G. Application of Convolutional Neural Network in Natural Language Processing. IEEE Access 2018, 64–70,

doi:10.1109/ICISCAE.2018.8666928.
3. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556.
4. Liang, S.D. Optimization for Deep Convolutional Neural Networks: How Slim Can It Go? IEEE Trans. Emerg. Top. Comput. Intell.

2020, 4, 171–179.
5. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016.
6. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. Evolving Deep Convolutional Neural Networks for Image Classification. IEEE Trans. Evol.

Comput. 2020, 24, 394–407.
7. Sun, Y.; Yen, G.G.; Yi, Z. Evolving Unsupervised Deep Neural Networks for Learning Meaningful Representations. IEEE Trans.

Evol. Comput. 2019, 23, 89–103.
8. Ma, B.; Li, X.; Xia, Y.; Zhang, Y. Autonomous deep learning: A genetic DCNN designer for image classification. Neurocomputing

2020, 379, 152–161.
9. Baldominos, A.; Saez, Y.; Isasi, P. Evolutionary convolutional neural networks: An application to handwriting recognition.

Neurocomputing 2018, 283, 38–52.
10. Poma, Y.; Melin, P.; Gonzalez, C.I.; Martinez, G.E. Optimization of Convolutional Neural Networks Using the Fuzzy Gravita-

tional Search Algorithm. J. Autom. Mob. Robot. Intell. Syst. 2020, 14, 109–120.
11. Poma, Y.; Melin, P.; Gonzalez, C.I.; Martinez, G.E. Filter Size Optimization on a Convolutional Neural Network Using FGSA. In

Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms; Springer: Cham, Switzerland, 2020;
Volume 862, pp. 391–403.

12. Poma, Y.; Melin, P.; Gonzalez, C.I.; Martinez, G.E. Optimal Recognition Model Based on Convolutional Neural Networks and
Fuzzy Gravitational Search Algorithm Method. In Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine;
Springer: Cham, Switzerland, 2020; Volume 827, pp. 71–81.

13. Lee, W.-Y.; Park, S.-M.; Sim, K.-B. Optimal hyperparameter tuning of convolutional neural networks based on the parame-
ter-setting-free harmony search algorithm. Optik 2018, 172, 359–367.

14. Wang, B.; Sun, Y.; Xue, B.; Zhang, M. A hybrid differential evolution approach to designing deep convolutional neural networks
for image classification. In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Wellington, New Zea-
land, 11–14 December 2018; Springer: Cham, Switzerland, 2018; pp. 237–250.

15. Gülcü, A.; KUş, Z. Hyper-Parameter Selection in Convolutional Neural Networks Using Microcanonical Optimization Algo-
rithm. IEEE Access 2020, 8, 52528–52540.

16. Zhang, N.; Cai, Y.; Wang, Y.; Tian, Y.; Wang, X.; Badami, B. Skin cancer diagnosis based on optimized convolutional neural
network. Artif. Intell. Med. 2020, 102, 101756.

17. Tuba, E.; Bacanin, N.; Jovanovic, R.; Tuba, M. Convolutional Neural Network Architecture Design by the Tree Growth Algo-
rithm Framework. In Proceedings of 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 17–
19 July 2019; pp. 1–8.

18. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. A particle swarm optimization based flexible convolutional autoencoder for image clas-
sification. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2295–2309.

19. Singh, P.; Chaudhury, S.; Panigrahi, B.K. Hybrid MPSO-CNN: Multi-level Particle Swarm optimized hyperparameters of
Convolutional Neural Network. Swarm Evol. Comput. 2021, 63, 100863.

20. Wang, B.; Sun, Y.; Xue, B.; Zhang, M. Evolving deep convolutional neural networks by variable-length particle swarm opti-
mization for image classification. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de
Janeiro, Brazil, 8–13 July 2018; Volume 1–8.

21. Gonzalez, B.; Melin, P.; Valdez, F. Particle Swarm Algorithm for the Optimization of Modular Neural Networks in Pattern
Recognition. Hybrid Intell. Syst. Control Pattern Recognit. Med. 2019, 827, 59–69.

22. Varela-Santos, S.; Melin, P. Classification of X-Ray Images for Pneumonia Detection Using Texture Features and Neural Net-
works. In Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications;
Springer: Cham, Switzerland, 2020; Volume 862, pp. 237–253.

23. Miramontes, I.; Melin, P.; Prado-Arechiga, G. Particle Swarm Optimization of Modular Neural Networks for Obtaining the
Trend of Blood Pressure. In Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and
Applications; Springer: Cham, Switzerland; 2020; Volume 862, pp. 225–236.

24. Peter, S.E.; Reglend, I.J. Sequential wavelet-ANN with embedded ANN-PSO hybrid electricity price forecasting model for
Indian energy exchange. Neural Comput. Appl. 2017, 28, 2277–2292.

25. Sánchez, D.; Melin, P.; Castillo, O. Comparison of particle swarm optimization variants with fuzzy dynamic parameter adap-
tation for modular granular neural networks for human recognition. J. Intell. Fuzzy Syst. 2020, 38, 3229–3252.

26. Fernandes, F.E.; Yen, G.G. Particle swarm optimization of deep neural networks architectures for image classification. Swarm
Evol. Comput. 2019, 49, 62–74.

27. Santucci, V.; Milani, A.; Caraffini, F. An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis.
Mathematics 2019, 7, 1051.

Axioms 2021, 10, 139 26 of 26

28. Zhou, G.; Moayedi, H.; Bahiraei, M.; Lyu, Z. Employing artificial bee colony and particle swarm techniques for optimizing a
neural network in prediction of heating and cooling loads of residential buildings. J. Clean. Prod. 2020, 254, 120082.

29. Karaboga, D.; Gorkemli, B.; Ozturk, C.; Karaboga, N. A comprehensive survey: Artificial bee colony (ABC) algorithm and
applications. Artif. Intell. Rev. 2014, 42, 21–57.

30. Xianwei, J.; Lu, M.; Wang, S.-H. An eight-layer convolutional neural network with stochastic pooling, batch normalization and
dropout for fingerspelling recognition of Chinese sign language. Spinger Multimed. Tools Appl. 2019, 79, 15697–15715.

31. Hayami, S.; Benaddy, M.; El Meslouhi, O.; Kardouchi, M. Arab Sign language Recognition with Convolutional Neural Net-
works. In Proceedings of the 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), Agadir,
Morocco, 22–24 July 2019.

32. Huang, J.; Zhou, W.; Li, H.; Li, W. Attention-Based 3D-CNNs for Large-Vocabulary Sign Language Recognition. IEEE Trans.
Circ. Syst. Video Technol. 2019, 29, 2822–2832.

33. Kaggle. American Sign Language Dataset. 2018. Available online: https://www.kaggle.com/grassknoted/asl-alphabet (accessed
on 10 February 2020).

34. Kaggle. Sign Language MNIST. 2017. Available online: https://www.kaggle.com/datamunge/sign-language-mnist (accessed on
8 February 2020).

35. Rastgoo, R.; Kiani, K.; Escalera, S. Sign Language Recognition: A Deep Survey. Expert Syst. Appl. 2021, 164, 113794.
36. Hubel, D.H.; Wiesel, T.N. Receptive fields of single neurons in the cat's striate cortex. J. Physiol. 1959, 148, 574–591.
37. Kim, P. Matlab Deep Learning; Apress: Seoul, Korea, 2017.
38. Cheng, J.; Wang, P.-s.; Li, G.; Hu, Q.-h.; Lu, H.-q. Recent advances in efficient computation of deep convolutional neural net-

works. Front. Inf. Technol. Electron. Eng. 2018, 19, 64–77.
39. Zou, Z.; Shuai, B.; Wang, G. Learning Contextual Dependence with Convolutional Hierarchical Recurrent Neural Networks.

IEEE Trans. Image Process. 2016, 25, 2983–2996.
40. Fukushima, K. A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.

Biol. Cybern. 1980, 36, 193–202.
41. Schmidhuber, J. Deep learning in neural networks: An overview. Elsevier Neural Netw. 2015, 61, 85–117.
42. Aggarwal, C.C. Neural Networks and Deep Learning; Springer Nature: Cham, Switzerland, 2018.
43. Jang, J.; Sun, C.; Mizutani, E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence;

Prentice-Hall: Upper Saddle River, NJ, USA, 1997.
44. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Net-

works IV, Washington, DC, USA, 27 November–1 December 1995; pp. 1942–1948.
45. Sandeep, R.; Sanjay, J.; Rajesh, K. A review on particle swarm optimization algorithms and their applications to data clustering.

J. Artif. Intell. 2011, 35, 211–222.
46. Hasan, J.; Ramakrishnan, S. A survey: Hybrid evolutionary algorithms for cluster analysis. Artif. Intell. Rev. 2011, 36, 179–204.
47. Fielding, B.; Zhang, L. Evolving Image Classification Architectures with Enhanced Particle Swarm Optimisation. IEEE Access

2018, 6, 68560–68575.
48. Sedighizadeh, D.; Masehian, E. A particle swarm optimization method, taxonomy and applications. Proc. Int. J. Comput. Theory

Eng. 2009, 5, 486–502.
49. Gaxiola, F.; Melin, P.; Valdez, F.; Castro, J.R.; Manzo-Martínez, A. PSO with Dynamic Adaptation of Parameters for Optimiza-

tion in Neural Networks with Interval Type-2 Fuzzy Numbers Weights. Axioms 2019, 8, 14.
50. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18.
51. Zhao, Y.; Wang, L. The Application of Convolution Neural Networks in Sign Language Recognition. In Proceedings of the 2018

Ninth International Conference on Intelligent Control and Information Processing (ICICIP), Wanzhou, China, 9–11 November
2018; pp. 269–272.

52. Rathi, D. Optimization of Transfer Learning for Sign Language Recognition Targeting. Int. J. Recent Innov. Trends Comput.
Commun. 2018, 6, 198–203.

53. Bin, L.Y.; Huann, G.Y.; Yun, L.K. Study of Convolutional Neural Network in Recognizing Static American Sign Language. In
Proceedings of the 2019 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur,
Malaysia, 17–19 September 2019; pp. 41–45.

54. Rodriguez, R.; Gonzalez, C.I.; Martinez, G.E.; Melin, P. An improved Convolutional Neural Network based on a parameter
modification of the convolution layer. In Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Appli-
cations; Springer: Cham, Switzerland, 2021; pp. 125–147.

