
axioms

Article

Optimization of Convolutional Neural Networks Architectures
Using PSO for Sign Language Recognition

Jonathan Fregoso, Claudia I. Gonzalez * and Gabriela E. Martinez

����������
�������

Citation: Fregoso, J.; Gonzalez, C.I.;

Martinez, G.E. Optimization of

Convolutional Neural Networks

Architectures Using PSO for Sign

Language Recognition. Axioms 2021,

10, 139. https://doi.org/10.3390/

axioms10030139

Academic Editor: Oscar Humberto

Montiel Ross

Received: 29 May 2021

Accepted: 25 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Division of Graduate Studies and Research, Tijuana Institute of Technology, Tijuana 22414, Mexico;
jonathan.fregoso@tectijuana.edu.mx (J.F.); gmartinez@tectijuana.mx (G.E.M.)
* Correspondence: cgonzalez@tectijuana.mx

Abstract: This paper presents an approach to design convolutional neural network architectures,
using the particle swarm optimization algorithm. The adjustment of the hyper-parameters and
finding the optimal network architecture of convolutional neural networks represents an important
challenge. Network performance and achieving efficient learning models for a particular problem
depends on setting hyper-parameter values and this implies exploring a huge and complex search
space. The use of heuristic-based searches supports these types of problems; therefore, the main
contribution of this research work is to apply the PSO algorithm to find the optimal parameters of
the convolutional neural networks which include the number of convolutional layers, the filter size
used in the convolutional process, the number of convolutional filters, and the batch size. This work
describes two optimization approaches; the first, the parameters obtained by PSO are kept under the
same conditions in each convolutional layer, and the objective function evaluated by PSO is given
by the classification rate; in the second, the PSO generates different parameters per layer, and the
objective function is composed of the recognition rate in conjunction with the Akaike information
criterion, the latter helps to find the best network performance but with the minimum parameters.
The optimized architectures are implemented in three study cases of sign language databases, in
which are included the Mexican Sign Language alphabet, the American Sign Language MNIST,
and the American Sign Language alphabet. According to the results, the proposed methodologies
achieved favorable results with a recognition rate higher than 99%, showing competitive results
compared to other state-of-the-art approaches.

Keywords: PSO; sign language recognition; optimization of convolutional neural networks

1. Introduction

Deep neural networks have demonstrated their capacity to solve classification prob-
lems using a hierarchical model, millions of parameters, and learning with big databases.
Convolutional neural networks (CNN) are a special class of deep neural networks that
consist of several convolutions, pooling, and fully connected layers; this has proven to
be a robust method for image or video processing, classification, and pattern recognition.
In recent years CNN has attracted attention for achieving superior results in various ap-
plications in the computer vision domain, such as medicine, aerospace, natural language
processing and robotics [1,2].

CNN are widely used in the field of industry, however, when designing CNN architec-
tures, we face some challenges which include the high computational costs for information
processing and finding the optimal CNN parameters (architecture) for each problem [3].
CNN architectures are made up of numerous parameters and, depending on their configu-
ration, can generate a variety of classification results when applied to solve the same tasks;
the setting of the hyper-parameter values is usually based on a random search, performing
several tests or adjusting manually and this represents a complex search process. To solve
this challenge, various researchers have proposed the implementation of evolutionary

Axioms 2021, 10, 139. https://doi.org/10.3390/axioms10030139 https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-1631-033X
https://doi.org/10.3390/axioms10030139
https://doi.org/10.3390/axioms10030139
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms10030139
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms10030139?type=check_update&version=2


Axioms 2021, 10, 139 2 of 24

computation approaches to automatically design the optimal CNN architectures and to in-
crease its performance [4,5]. In Sun et al. [6,7], an evolutionary approach is implemented to
automatically obtain CNN architectures, achieving good results against the state-of-the-art
architectures. In Ma et al. [8], the authors present an analysis of different methodologies
based on evolutionary computing techniques to optimize CNN architectures, these were
tested on benchmark data sets and achieved competitive results. Baldominos et al. [9] im-
plement an approach to automatically design CNN architectures, using genetic algorithms
(GA) in conjunction with grammatical evolution.

In the state of the art, we can find a variety of meta-heuristics that are applied to
optimize CNN hyper-parameters, including the FGSA [10–12], harmonic search (HS) [13],
differential evolution (DE) [14], microcanonical optimization algorithm [15], Whale opti-
mization algorithm [16] and tree growth algorithm framework [17] to mention a few.

In other research works, the PSO algorithm is used to optimize CNN architectures,
obtaining favorable results in the solution of different applications. In Sun et al. [18],
Singh et al. [19] and Wang et al. [20], PSO is applied to automatically design CNN ar-
chitectures; these approaches are tested on known benchmark datasets, and the results
obtained are competitive against the state-of-the-art architectures. Besides this, PSO has
been implemented in other fields of machine learning, including the optimization of differ-
ent types of artificial neural network architectures, given favorable solutions for a plethora
of problems [21,22]. In [23], PSO optimizes models of modular neural networks and is
applied to obtain the blood pressure trend. In [24], a hybrid ANN-PSO method is applied
to model the electricity price forecasting for the Indian energy exchange. As well as in [25],
the PSO variants are applied to generate optimal modular neural network architectures
obtaining competitive results for human recognition. In [26], the PSO algorithm is used
to optimize deep neural network architectures and is tested in image classification tasks.
In [27] a new paradigm of hybrid classification based on PSO is presented, which is applied
for the prediction of medical diagnoses and prognoses. Furthermore, in [28] the artificial
bee colony (ABC) [29] and PSO are used to optimize multilayer perceptron neural networks
(MLP); the approach is applied to estimate the heating load and cooling load of energy
efficient buildings; and the authors report that PSO outperforms ABC, improving the
MLP performance. In the listed works, we can note the advantages that PSO offers in the
optimization process, increasing performance in different tasks.

In research related to CNN approaches applied to the recognition of sign language, we
find the work presented in [30] where a CNN model with stochastic pooling is implemented
in the recognition of the Chinese sign language spelling, achieving a rate of 89.32 ± 1.07%
recognition. In [31] a CNN method for Arabic sign language (ArSL) recognition was
applied, where the authors report a value of 90.02% precision. In [32] a 3D-CNN approach
is applied to sign language recognition for extensive vocabulary, images are captured
through a Kinect, the authors report effectiveness of 88.7%.

The contribution of this research work focuses on implementing a hybrid methodol-
ogy, where the PSO algorithm is applied to find the optimal design of parameters for CNN
architectures. This work presents two optimization approaches; in both, the parameters
considered are the number of convolution layers, the filter size used in each convolutional
layer, the convolution filters number and, the batch size. In the first approach, the consis-
tency of the parameters between each layer is maintained in the same conditions and the
objective function is given by the recognition rate. In the second approach, the aim is to
find more random searches in the architectures that the PSO produces; in this case, the
values for each convolution layer are completely different, and the objective function is
given by the highest recognition rate, and the lowest Akaike information criterion (AIC);
the latter helps to obtain more robust performance of the network with the minimum
parameters as the AIC allows penalizing the number of parameters used in each training.
The optimized architectures are tested with three sign language databases, including the
Mexican Sign Language (MSL) alphabet, the American Sign Language (ASL) alphabet [33],
and the American Sign Language MNIST (ASL MNIST) [34]. This research aims to impulse



Axioms 2021, 10, 139 3 of 24

the investigation in the soft computing area for the development of tools to help the deaf
community for a more inclusive society [35].

The structure of this work is organized as follows. Section 2 presents the general
theory about convolutional neural networks. Section 3 introduces PSO theory, including
definitions, functionality, and the main equations. Section 4 details the methodology for
developing the two PSO-CNN optimization approaches. Section 5 describes an analysis
of the experimental results achieved after the optimized architectures are implemented
for the three databases. Additionally, Section 5 presents a statistical test to compare the
two optimization proposals, and we also show a comparative analysis against other CNN
approaches focused on sign language recognition. Finally, Section 6 gives important
conclusions and future works.

2. Convolutional Neural Networks

Biologically inspired computational models are capable of far outperforming previous
forms of common artificial intelligence of machine learning. One of the most impressive
forms of ANN (artificial neural network) architecture is that of CNN, which is mainly
implemented to solve difficult image-based pattern recognition tasks.

CNNs are a specialized type of ANN with supervised learning, which process their
layers by emulating the visual cortex of the human eye. This procedure allows the recogni-
tion of characteristic patterns in the input data, which makes it possible to identify objects
through a set of hidden layers, which have a hierarchy and are specialized. The first layers
are capable of detecting curves and lines and to the extent that you work with deeper
layers, it is possible to achieve the recognition of more complex shapes, such as a silhouette
or peoples’ faces.

These types of networks are designed to operate specifically with image processing.
The design of its architecture emulates the behavior of the visual cortex of the brain
when processing and recognizing images [36]. Its main function is to locate and learn
the information characteristic patterns, such as curves, lines, color tones, etc., through
the application of convolution layers, which facilitate the process of identification and
classification of objects [37,38].

The basic CNN architecture is presented in Figure 1, which consists of five layers: the
input, convolution, non-linearity (ReLu), pooling, and classification layer [39,40], these are
described in the following subsections.

Figure 1. The minimal architecture of a CNN.

CNNs are widely implemented in applications that need the use of artificial vision
techniques. Although the results that have been obtained are very promising, the reality is
that they incur high computational costs; therefore it is essential to implement techniques
that allow your performance to be increased. For this reason, an optimization of the CNN
parameters is presented to improve the recognition percentage and reduce computational
cost. In Figure 2, we can appreciate some parameters that can be optimized in each CNN
layer [41].



Axioms 2021, 10, 139 4 of 24

Figure 2. Layers and the parameters per layer of a CNN.

2.1. Input Layer

It is the first layer of a CNN, here the images or videos are entered that are going
to be processed by the neural network to extract their characteristics. All information is
stored in two-dimensional matrices. To increase the effectiveness of the algorithms and
reduce the computational cost, it is recommended to carry out a previous preprocessing of
the images to be trained, such as segmentation, normalization of pixel values, extraction
of characteristics of the objects or the background to keep the most relevant information,
working them in grayscale, etc.

2.2. Convolution Layer

One of the most distinctive processes of this type of network is convolutions. It
consists of taking a group of pixels from the input image and making a dot product with a
kernel to produce numerous images that are the feature maps; these maps are distinct and
depend on the type and size of the convolution filter implemented in the image.

Among the important characteristics that it gives to the kernel, is to detect lines, edges,
focus, blur, curves, colors, among others. This is achieved by performing the convolution
between the image and the kernel, multiplying the filter values pixel by pixel with those of
the image, by traveling the filter from left to right; this representation can be appreciated in
Figure 3 [42], where * stands the convolution operation.

Figure 3. Feature maps generated by the convolution process.

2.3. Non-Linearity Layer

The activation function in the convolutional layer has the same proposal that the
activation used in any neural network, commonly a non-linearity function is used to
normalize the images. There exist different activation functions; one of the most used in
this type of models is the rectified linear unit (ReLU) function which brings back a value of
zero if it receives a value less than zero as input, nevertheless for any value greater than
zero the same parameter comes back [41,42].



Axioms 2021, 10, 139 5 of 24

2.4. Pooling Layer

The pooling task is used to reduce the dimensionality of the network, in other words,
allows the reduction of the number of parameters, which shortens training time and
combats over-fitting [41]. Among the most used types of grouping, we can mention the
following: (1) mean, select the arithmetic mean of the values, (2) max pooling, select the
pixel with the largest value in the feature map and (3) sum, take the sum of all the elements
present in the feature map.

The pooling operation is usually done using a 2 × 2 filter, assuming that we have a
4 × 4 future map (obtained after the convolution layer), and this operation is carried out;
first, the future map is divided into 4 segments with the size of the filer (2 × 2), second, in
each segment an pixel value is selected according to pooling type (mean, max, sum). An
example is illustrated in Figure 4.

Figure 4. Examples of pooling using the mean, max and sum operation.

2.5. Classifier Layer

This layer appears in the CNN architecture after total convolutional and pooling
layers; this is a fully connected layer that interprets the feature representations obtained
by the previous layers and performs the high-level reasoning function. It has a similar
principle to the conventional multilayer perceptron neural system, and in this layer, the
CNN recognizes and classifies the images that are part of the output. In a multiclass
classification problem, this fully connected layer has the same number of outputs as the
classes defined in the study case to be solved. The Softmax function has become one of the
most popular options for the classification task, due to its effectiveness [42].

3. Particle Swarm Optimization

It is a stochastic algorithm established on the intelligence of the swarm and inspired
by the way birds forage for food; each bird is represented using particles which “move” in
a multidimensional search space and “adjust” based on the experience of neighbors and
your own.

The possible solution to the problem is depicted by the particle, which can be con-
sidered as “an individual element in a flock” [43]. PSO uses local and global information
to find the best solution using a fitness function and the speeds at which the particles
are moving.



Axioms 2021, 10, 139 6 of 24

PSO is very prone to premature convergence and falls into local optimum, so since its
introduction in 1995 by Kennedy and Eberhart [44], various optimization variants have
been proposed [45–48].

Algorithm 1. The PSO algorithm

Initialize the parameter of the problem (a random population).
while (completion criteria are not met)
begin
For each particle i do
begin
Update the position pi using (1).
Update the velocity xi using (2).
Evaluate the fitness value of the particle
If is necessary using (3)(4)
Update pbesti(t) and gbesti(t).
end
end

Algorithm 1 describes the process carried out by the PSO. This algorithm is defined by
the equations that allow updating of the velocity with Equation (2) and the position with
Equation (1).

pi(t + 1) = pi(t) + xi(t + 1), (1)

In Equation (1), pi(t) is the position of particle i in a time t, within the search space.
By adding a velocity xi(t) it is possible to change the position of the particle [45].

xi(t + 1) = xi(t)ω + c1r1[yi − pi(t)] + c2r2[ŷ− pi(t)], (2)

In Equation (2), x represents the velocity and i the particle. The parameters c1 and
c2 define the cognitive and social factors, respectively. The random values in the interval
[0,1] are depicted by r1 and r2,ω is an inertia weight and the best position of the particle
(pbesti ) is determined by yi and the best global position (gbest ) by ŷ.

The swarm is assumed to consist of n particles, so an objective function f is imple-
mented to perform the computation of particle fitness with a maximization task. The
personal and global best values are updated using Equations (3) and (4), respectively, at a
time t [48].

Thus, i ∈ 1 . . . n

pbesti(t + 1) =
{

pbesti(t) i f f (pbesti(t)) ≤ f (p(t + 1))
pi(t + 1) i f f (pbesti(t)) > f (pi(t + 1))

(3)

gbest(t + 1) = max{ f (y), f (gbest(t))}
where, y ∈ pbest0(t), pbest1(t), . . . , pbestn(t)

(4)

According to Equations (1) and (2), the movements of the particle in the search space
are illustrated in Figure 5.

The red and yellow circles represent the movement that a particle makes when the
parameters c1 and c2 are updated. When c1 > c2, the particle moves in the direction of the
yellow circle. When this condition is met, it means that the swarm performs the exploration
process, so they “fly” in the search space to find the area that allows it to find the global
optimum.

This movement allows the particles to perform long displacements, thus covering the
whole search space. In the case of c2 > c1 then, the particle motion will be towards the red
circle. It is here that the exploitation process takes place; it consists of the swarm “flying”
in the best area of the search space, making small motions, which allow an intensive
search [49].



Axioms 2021, 10, 139 7 of 24

Figure 5. Representation of the movement of the particle.

4. Convolutional Neural Network Architecture Optimized by PSO

This Section presents two optimization approaches where the PSO algorithm is applied
to optimize the parameters of CNN architectures, these approaches are denoted as PSO-
CNN-I and PSO-CNN-II. The first objective is to select the most relevant parameters that
have influence to obtain good performance of CNN and then implement the PSO algorithm
to find these optimal parameters.

The parameters to be optimized were selected after evaluating the performance of
a CNN with an experimental study, where the parameters were changed manually. As
mentioned above, different CNN parameter values produce a variety of results for the
same task; for this reason, the aim is to find the optimal architectures. The parameters
listed below were chosen to be optimized in this work.

• The number of convolutional layers;
• The filter size or filter dimension used in each convolutional;
• The number of filters to extract the future maps (the convolution filter number);
• The batch size number: this value represents the number of images that are entered

into CNN in each training block.

The general methodology of the proposal is presented in Figure 6, as the “training
and optimization” block is the most important part of the whole process, where the CNN
is initialized to integrate the parameter optimization by applying the PSO algorithm. In
this process, the PSO is initialized according to the parameter given for the execution (the
parameters are explained below) and this generates the particles. Each particle is a possible
solution and its position has the parameter to be optimized, so each solution represents a
complete CNN training.



Axioms 2021, 10, 139 8 of 24

Figure 6. General CNN optimization process using the PSO algorithm. The letters A, B, and C stand the illustrated sign
language in image form.

The training process is an iterative cycle that ends when all the particles generated by
the PSO are evaluated for each generation. The computational cost is higher and, it depends
on the database size, the size of particles, the number of iterations of the PSO and, the
number of particles in each iteration. That is to say, if the PSO is executed with 10 particles
and 10 iterations, the CNN training process is executed 100 times. The steps to optimize
the CNN by the PSO algorithm are illustrated in Figure 7 and explained as follows.

1. Input database to train the CNN. This step consists of selecting the database to be
processed and classified for the CNN (ASL alphabet, ASL MINIST and MSL alphabet).
Is important to mention that all the elements of each database need to keep a similar
structure or characteristics. In other words, images with the same scale and color
gamma (grayscale, RGB, CMYK); additionally, with the same dimensions of pixels
and a similar format of file (JPGE, PNG, TIFF, BMP, etc.).

2. Generate the particle population for the PSO algorithm. The PSO parameters are set
to include the number of iterations, the number of particles, inertial weight, cognitive
constant (W1), and social constant (W2); the parameters used in the experimentation
are presented in Table 8. This step involves the design of the particles; the structures
of these are presented in Tables 1 and 3 according to the two optimization architecture
proposals in this paper.

3. Initialize the CNN architecture, with the parameter obtained by the PSO (convolution
layers number, the filter size, number of convolution filters, and the batch size) the
CNN is initialized and in conjunction with the additional parameter specified in Table
8, the CNN is ready to train the input database.

4. CNN training and validation. The CNN reads and processes the input databases
taking the images for training, validation, and testing; this step produces a recognition
rate and the AIC value. These values return to the PSO as part of the objective function.

5. Evaluate the objective function. The PSO algorithm evaluates the objective function
to determine the best value. As in this research, we are considering two approaches,
in the first, the objective function is only the recognition rate (Equation (5)) and in
the second, the objective function consists of the recognition rate and the AIC value
(Equation (6)).



Axioms 2021, 10, 139 9 of 24

6. Update PSO parameters. At each iteration, each particle updates its velocity and
position depending on its own best-known position (Pbest) in the search-space and
the best-known position in the whole swarm (Gbest).

7. The process is repeated, evaluating all the particles until the stop criteria are found
(in this case, it is the number of iterations).

8. Finally, the optimal solution is selected. In this process, the particle represented by
Gbest is the optimal one for the CNN model.

Figure 7. Flowchart of CNN optimization process using PSO.

4.1. PSO-CNN Optimization Process (PSO-CNN-I)

This first approach, which we are going to identify as PSO-CNN-I, consists of imple-
menting a particle with four positions, one position for each parameter to be optimized
(Figure 8). Table 1 presents the detail of the particle composition where the position x1
corresponds to the number of layers with a search space from 1 to n, that is to say, that
method can produce architectures with a minimum of one layer and maximum n, for
the purposes of this work, we are using n = 3. The x2 position represents the number of
convolution filters used to extract the characteristics, with a search space of 32 to 18 filters.
Position x3 is the filter size; the search space is from 1 to 4 where this values represents a
position, the value reached is mapped with the values of Table 2 to obtain the filter size
(i.e., if the particle generates a value of 1 this represents a filter size of [3 × 3], to get a value
of 2 the filter size will be [5 × 5] and so on, respectively, for each value. The last position
represents the batch size (x4), this is initialized considering the search space ranges from 32
to 256. In this optimization process, the consistency of the parameters between the layers is
maintained in the same conditions, that is, if after the PSO execution it generates a particle
with 3 convolutional layers (x1), 50 filters (x2), a filter dimension of 3 × 3 (x3) and batch
size of 50 (x4). The same values of filter numbers (x2) and filter size (x3) will apply to the
three convolution layers of the CNN.



Axioms 2021, 10, 139 10 of 24

Figure 8. Structure of the particle used in the PSO-CNN-I approach.

Table 1. Search spaces used to define the particle in the PSO-CNN-I approach.

Particle Coordinate Hyper-Parameter Search Space

x1
Number of convolutional
layers [1, 3]

x2 Filter number [32, 128]
x3 Filter size [1, 4]
x4 Batch size in the training [32, 256]

Table 2. Convolutional filter dimensions for the x3 position.

x3 Value Search Space

1 [3, 3]
2 [5, 5]
3 [7, 7]
4 [9, 9]

In this process, the objective function defined by Equation (5) is given by the recogni-
tion rate (precision) that the CNN returns after it is trained with the parameters generated
by the PSO.

Objective f unction = Recognition Rate, (5)

4.2. PSO-CNN Optimization Process (PSO-CNN-II)

In this second proposal, identifying as PSO-CNN-II, the particle structure consists of
eight positions whose structure is presented in Figure 9, where each position represents
the parameter to be optimized. The difference from the previous approach (PSO-CNN-I in
Section 4.1) is finding more random searches in the architectures that the PSO produces;
because in this case, the values for each convolution layer are completely different. Table 3
presents the detail of the particle composition, the description of each position, and the
search space used. As we can see in Table 3, the positions x3, x5 and x7 represent an index
with an integer value between 1 to 4, and depending on the value taken by the PSO, a
mapping is made with values presented in Table 2.

Figure 9. Structure of the particle used in the PSO-CNN-II approach.

Table 3. Search spaces used to define the particle in the PSO-CNN-II approach.

Particle Coordinate Hyper-Parameter Search Space

x1 Convolutional layer number [1, 3]
x2 Filter number (layer 1) [32, 128]
x3 Filter size (layer 1) [1, 4]
x4 Filter number (layer 2) [32, 128]
x5 Filter size (layer 2) [1, 4]
x6 Filter number (layer 3) [32, 128]
x7 Filter size (layer 3) [1, 4]
x8 Batch size in the training [32, 256]



Axioms 2021, 10, 139 11 of 24

According to the values to optimize in this new approach, the x1 position is used to
control the number of convolution layers and the activation of the positions x2 to x7. If PSO
generates a particle with a value of one for x1, only the position x2 and x3 will be activated
to generate the number of filters of the convolutional layer 1 and the filter size to use in this
layer. In other words, if PSO produces a particle with a value of three in the x1 position,
the positions from x2 to x7 will be activated to generate the number of filters to use in the
convolutional layer 1 (x2), the filter size of layer 1 (x3), the number of filters of layer 2 (x4),
the filter size for layer 2 (x5), the number of filters of layer 3 (x6), and the filter size for layer
3 (x7), respectively; these values are completely different from each other, therefore this
methodology helps to produce more heterogeneous CNN architectures.

Another difference between this proposal and the previous one (PSO-CNN-I) is that
the objective function changes, for this we are using the recognition rate together with
the Akaike information criteria (AIC). The AIC penalizes the architectures according to
the number of parameters used; that is to say, the model is penalized when it needs more
parameters. The objective function is considered the highest recognition rate and the lowest
AIC. The AIC is defined in Equation (6).

AIC = 2k− 2ln(L), (6)

According to our problem, in Equation (6) k is the number of parameters of the model
(number of layers and filter number) and L is the maximum value of the recognition that
the CNN can reach; in this case, the value is 100. Figure 10 illustrates an example of a
particle generated by PSO.

Figure 10. Example of a particle generated by PSO.

Based on the structure of Figure 10, we have a three-layer convolutional architecture,
where the first layer consists of 100 convolution filters with a filter size of 3 × 3. The second
layer has 85 convolution filters with a filter size of 5 × 5 and the third convolution layer
has 50 convolutional filters with a filter size of 7 × 7. Finally, the batch size is 32. The CNN
is training with these values, and the recognition rate is calculated, additionally the AIC is
obtained based on the parameters of the positions x1, x2, x4 and x6 which represents the
number of convolution layers and the number of filters for each convolutional layer. After
applying Equation (6), this architecture produces the AIC defined in Equation (7).

AIC = 2(3 + 100 + 85 + 50)− 2ln (100),
AIC = 466.7897,

(7)

Assuming that there are two architectures with the same recognition rate but with
different AICs (Table 4), the model will take the architecture with the lowest AIC, as this
would help penalize the parameters that are needed to train the network and thus produce
optimized and simpler architectures.

Table 4. Objective function values based on the recognition rate and the AIC value.

Architecture Number Recognition Rate (%) AIC Value

1 98.50 466.78
2 98.50 350.85

5. Experiments and Results

This section describes the three databases implemented in the case studies (ASL
alphabet, ASL MNIST, and MSL alphabet), the static parameters used to set the PSO
algorithm and the CNN process, the experimental results obtained in the two optimization



Axioms 2021, 10, 139 12 of 24

approaches that were performed (PSO-CNN-I and PSO-CNN-II), as well as the comparison
analysis against other approaches.

5.1. Sign Language Databases Used in the Study Cases

The characteristics of the sign databases are described below.

5.1.1. American Sign Language (ASL Alphabet)

The ASL alphabet consists of 87,000 images in color format, with a dimension of
200 × 200 pixels. This database contains 29 classes, these are labeled in a range of 0 to 28,
with a one-to-one assignment for each letter of the American alphabet A–Z (0 to 25 for the
alphabet; that is, 0 = A and 25 = Z) the other three classes correspond to the space symbols,
delete, and null (26 to 28; i.e., 26 = space, 27 = delete and, 28 = null). Table 5 presents the
general description of the ASL alphabet database and Figure 11 illustrates a sample of
the images.

Table 5. ASL Alphabet database description.

Name ASL Alphabet Detail

Total images 87,000
Images for training 82,650

Images for test 4350
Images size 32 × 32

Database format JPGE

Figure 11. A sample of the ASL alphabet database.

5.1.2. American Sign Language (ASL MNIST)

ASL MNIST consists of a collection of 34,627 grayscale images with a dimension of
28 × 28 pixels. This database has 24 labeled classes in a range from 0 to 25 with assignment
for each letter of the alphabet A–Z (the class 9 = J and 25 = Z, were excluded due to gestural
movements). Table 6 presents a description of this database and Figure 12 illustrates a
sample of the sign images.



Axioms 2021, 10, 139 13 of 24

Table 6. ASL MNIST database description.

Name ASL MNIST Detail

Total images 34,627
Images for training 24,239

Images for test 10,388
Images size 28 × 28

Database format CSV

Figure 12. A sample of the ASL MNIST database.

5.1.3. Mexican Sign Language (MSL Alphabet)

The MSL alphabet database was obtained from a group of 18 people, including deaf
students and sign language translation teachers. Students are part of an inclusive group in
a high school in Mexico. This database consists of 21 classes with the alphabet of the MSL
without movement as illustrated in Figure 13. Ten images were captured for each letter,
achieving a total of 3780 grayscale images with a dimension of 32 by 32. Table 7 displays a
general overview of the MSL alphabet database.

Figure 13. Sample of the MSL alphabet database.



Axioms 2021, 10, 139 14 of 24

Table 7. MSL alphabet database description.

Name MSL Alphabet Detail

Total images 3780
Images for training 2646

Images for test 1134
Images size 32 × 32

Database format JPG

5.2. Parameters Used in the Experimentation

In the CNN parameter settings, some static parameters were used, including the
learning function, the activation function in the classifying layer, the non-linearity activation
function, and the epoch number. The fixed parameters considered in the PSO configuration
are the number of particles, the iterations number, the inertial weight, and the social and
cognitive constants. The static parameters used for PSO and CNN are presented in Table 8.
The dynamic parameters optimized by PSO are the number of convolutional layers, the
size of the filters used in each convolutional layer, the number of convolutional filters, and
the batch size (Tables 1 and 3).

Table 8. Static parameters for CNN and PSO.

Parameters of CNN

Learning function Adam
Activation function (classifying layer) Softmax
Non-linearity activation function ReLU
Epochs 5

Parameters of PSO

Particles 10
Iterations 10
Inertial weight (W) 0.85
Social constant (W2) 2
Cognitive constant (W1) 2

5.3. Optimization Results Obtained by the PSO-CNN-I Approach

This section presents the simulation results produced after the CNN architecture is
optimized considering the approach described in Section 4.1. The experimentation consists
of 30 executions carried out on the three databases; the aim is to obtain the optimal CNN
architecture, that is, minimum parameters necessary to maximize the recognition rate.

The first experiment was applied in the ASL alphabet (Table 5), using a distribution of
80% of the total images for training and 20% for testing. Table 9 shows the values achieved
after 30 executions, where the higher recognition rate was a value of 99.87% and the mean
was 99.58%. Based on the results, we can see that the optimal architecture achieved by the
PSO was as follows: three convolutional layers, 128 filters per layer with a filter size of
7 × 7, and the batch size with a value of 256.

In another test, the PSO-CNN-I approach was applied to the ASL MNIST database;
Table 10 presents the results achieved by the CNN where the best recognition rate was a
value of 98.82% and the mean of 99.53%. According to this analysis, the optimal architecture
for this study case is two convolutional layers, with 117 convolutional filters in both layers
with a filter size of 7 × 7 and the batch size with a value of 129.



Axioms 2021, 10, 139 15 of 24

Table 9. Results achieved by the PSO-CNN-I in ASL alphabet database.

No. No.
Layers

No.
Filters

Filter
Size

Batch
Size

Recognition
Rate (%)

1 3 99 [7 × 7] 107 98.85
2 3 104 [9 × 9] 256 99.66
3 3 128 [9 × 9] 256 99.70
4 3 128 [7 × 7] 256 99.79
5 3 128 [9 × 9] 256 99.72
6 3 128 [7 × 7] 256 99.62
7 2 32 [7 × 7] 256 98.18
8 3 109 [7 × 7] 256 99.73
9 3 128 [7 × 7] 197 99.75

10 3 128 [7 × 7] 256 99.81
11 3 66 [7 × 7] 181 99.31
12 3 118 [7 × 7] 256 99.87
13 3 128 [9 × 9] 256 99.67
14 3 128 [7 × 7] 256 99.85
15 3 128 [9 × 9] 256 99.61
16 3 128 [9 × 9] 256 99.63
17 3 90 [9 × 9] 256 99.66
18 3 128 [7 × 7] 256 99.82
19 3 128 [7 × 7] 256 99.79
20 3 128 [7 × 7] 256 99.76
21 3 128 [9 × 9] 256 99.68
22 3 128 [9 × 9] 256 99.67
23 3 128 [7 × 7] 256 99.75
24 3 123 [7 × 7] 32 98.38
25 3 128 [9 × 9] 256 99.64
26 3 128 [7 × 7] 256 99.82
27 3 128 [9 × 9] 215 99.56
28 3 128 [7 × 7] 256 99.87
29 3 100 [9 × 9] 256 99.64
30 3 128 [7 × 7] 256 99.84

Mean 99.58

Table 10. Results achieved by the PSO-CNN-I in ASL MNIST database.

No. No.
Layers

No.
Filters

Filter
Size

Batch
Size

Recognition
Rate (%)

1 3 128 [9 × 9] 137 99.27
2 2 128 [9 × 9] 218 99.54
3 2 128 [7 × 7] 205 99.52
4 3 128 [7 × 7] 136 99.33
5 2 128 [9 × 9] 232 99.59
6 3 96 [9 × 9] 107 98.82
7 2 118 [7 × 7] 189 99.36
8 2 128 [9 × 9] 256 99.59
9 2 112 [9 × 9] 256 99.49

10 2 128 [9 × 9] 256 99.60
11 2 128 [7 × 7] 256 99.59
12 2 128 [7 × 7] 256 99.61
13 2 128 [9 × 9] 220 99.67
14 2 128 [9 × 9] 256 99.57
15 2 128 [9 × 9] 256 99.51
16 2 128 [7 × 7] 237 99.55
17 2 128 [7 × 7] 256 99.61



Axioms 2021, 10, 139 16 of 24

Table 10. Cont.

No. No.
Layers

No.
Filters

Filter
Size

Batch
Size

Recognition
Rate (%)

18 2 128 [9 × 9] 256 99.58
19 2 128 [9 × 9] 256 99.53
20 2 128 [9 × 9] 256 99.65
21 2 128 [7 × 7] 148 99.42
22 2 128 [9 × 9] 256 99.51
23 2 128 [9 × 9] 215 99.53
24 2 128 [9 × 9] 255 99.56
25 2 128 [9 × 9] 256 99.65
26 2 128 [7 × 7] 256 99.57
27 2 128 [9 × 9] 256 99.53
28 2 117 [7 × 7] 129 99.98
29 3 128 [5 × 5] 242 99.87
30 2 128 [7 × 7] 256 99.55

Mean 99.53

Table 11 presents the experimental results obtained when the approach is applied in
the MSL alphabet database. As we can see in Table 11, the best accuracy reached by the
CNN was 99.37% with a mean of 99.10%. In this case, the optimal architecture is as follows:
one convolutional layer with 122 convolutional filters, filter size of 3 × 3, and batch size
of 128.

Table 11. Results achieved by the PSO-CNN-I in MSL alphabet database.

No. No.
Layers

No.
Filters

Filter
Size

Batch
Size

Recognition
Rate (%)

1 2 101 [7 × 7] 93 98.95
2 1 128 [3 × 3] 56 98.95
3 1 110 [3 × 3] 52 98.82
4 1 128 [3 × 3] 121 99.20
5 1 128 [3 × 3] 128 99.32
6 1 128 [3 × 3] 128 99.07
7 1 128 [3 × 3] 110 99.24
8 1 101 [5 × 5] 114 98.82
9 1 128 [3 × 3] 128 99.24

10 1 74 [3 × 3] 88 98.95
11 1 128 [3 × 3] 128 99.32
12 1 128 [3 × 3] 32 98.48
13 1 128 [3 × 3] 93 99.28
14 1 128 [3 × 3] 97 99.11
15 1 128 [3 × 3] 32 98.74
16 1 128 [3 × 3] 72 99.32
17 1 128 [3 × 3] 93 99.37
18 1 63 [3 × 3] 47 98.44
19 1 128 [3 × 3] 128 99.20
20 1 126 [3 × 3] 128 99.28
21 1 128 [3 × 3] 128 99.32
22 1 128 [3 × 3] 83 99.20
23 1 128 [3 × 3] 63 99.20
24 1 122 [3 × 3] 128 99.37
25 1 128 [3 × 3] 128 99.32
26 1 114 [3 × 3] 84 99.32
27 1 128 [3 × 3] 32 98.74
28 1 128 [3 × 3] 89 99.28
29 1 43 [3 × 3] 53 97.81
30 1 128 [3 × 3] 72 98.99

Mean 99.10



Axioms 2021, 10, 139 17 of 24

5.4. Optimization Results Obtained by the PSO-CNN-II Approach

The results presented in this section consist of 30 executions of the PSO-CNN-II
approach applied in the ASL alphabet, ASL MNIST, and MSL alphabet databases; the
objective is to maximize the recognition rate and minimize the value of AIC.

The experimental results obtained from the ASL alphabet database after applying the
PSO-CNN-II optimization approach (Section 4.2) are presented in Table 12. In this test, the
database was distributed so that 70% of the data were kept for the training phase and 30%
of the data for testing. Table 12 shows the best recognition rate with a value of 99.23% and
a mean of 98.69%. The best architecture found by the PSO for the CNN had the following
structure: three convolutional layers where the first layer had 84 convolutional filters and
3 × 3 size filters; the second layer with 128 convolutional filters with the size of 9 × 9
and the third layer with 128 convolutional filters and 7 × 7 size filters. In this approach,
the objective function is composed of the recognition rate and the AIC value; that is, the
best recognition rate is evaluated first and then the AIC value, if it was the case that CNN
achieved two or more architectures with the same recognition rate, the process takes the
architecture with the minimum AIC, with the goal of achieving an optimal architecture
with the fewest parameters and the highest recognition rate.

Table 12. Results achieved by the PSO-CNN-II in ASL alphabet database.

No.
No.

Layers

Layer 1 Layer 2 Layer 3
Batch
Size

AIC
Value

(%)
Recogn.

Rate
No.

Filters
Filter
Size

No.
Filters

Filter
Size

No.
Filters

Filter
Size

1 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 98.99
2 3 128 [5 × 5] 121 [5 × 5] 128 [5 × 5] 213 750.78 98.73
3 3 84 [3 × 3] 128 [7 × 7] 128 [5 × 5] 84 676.78 99.23
4 2 45 [5 × 5] 128 [7 × 7] 0 0 0 340.78 98.15
5 3 32 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 572.78 98.86
6 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 98.96
7 3 84 [5 × 5] 128 [5 × 5] 128 [3 × 3] 256 676.78 98.85
8 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.02
9 3 32 [5 × 5] 128 [5 × 5] 128 [3 × 3] 256 572.78 98.9

10 3 124 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 756.78 98.64
11 3 32 [3 × 3] 128 [7 × 7] 128 [7 × 7] 256 572.78 98.93
12 3 32 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 572.78 98.53
13 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.01
14 3 73 [7 × 7] 128 [7 × 7] 108 [3 × 3] 256 614.78 97.91
15 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.06
16 2 128 [3 × 3] 128 [7 × 7] 0 0 0 506.78 98.23
17 2 88 [7 × 7] 128 [7 × 7] 0 0 0 426.78 97.4
18 3 32 [5 × 5] 128 [7 × 7] 128 [5 × 5] 256 572.78 99.06
19 2 128 [5 × 5] 119 [7 × 7] 0 0 0 488.78 98.1
20 3 116 [3 × 3] 128 [5 × 5] 128 [7 × 7] 252 740.78 98.96
21 3 49 [5 × 5] 128 [7 × 7] 128 [7 × 7] 256 606.78 98.93
22 2 128 [3 × 3] 128 [7 × 7] 0 0 0 506.78 98.19
23 3 32 [5 × 5] 128 [7 × 7] 128 [5 × 5] 256 572.78 98.96
24 2 32 [5 × 5] 128 [7 × 7] 0 0 0 314.78 98.04
25 2 128 [5 × 5] 81 [5 × 5] 0 0 0 412.78 98.92
26 3 32 [5 × 5] 128 [7 × 7] 128 [3 × 3] 256 572.78 98.58
27 3 32 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 572.78 98.88
28 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.02
29 3 128 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 764.78 99.08
30 3 128 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 764.78 98.71

Mean 98.69

In Table 13, we present the results where the PSO-CNN-II was implemented in the
ASL MNIST database. In this test, the best recognition rate was 99.80%, an AIC value
of 506.79 and, a mean of 99.48%. The optimal parameters found by the PSO were the



Axioms 2021, 10, 139 18 of 24

following: two-layer CNN architecture, the first layer had 128 filters of convolution and a
filter size of 5 × 5; the second layer had 128 convolutional filters with a filter size of 9 × 9,
and the batch size was 128.

Table 13. Results achieved by the PSO-CNN-II in ASL MNIST database.

No.
No.

Layers

Layer 1 Layer 2 Layer 3
Batch
Size

AIC
Value

(%)
Recogn.

Rate
No.

Filters
Filter
Size

No.
Filters

Filter
Size

No.
Filters

Filter
Size

1 2 128 [5 × 5] 128 [9 × 9] 0 0 128 506.79 99.80
2 2 74 [9 × 9] 114 [9 × 9] 0 0 174 370.79 99.42
3 3 32 [5 × 5] 128 [9 × 9] 128 [5 × 5] 122 572.79 99.53
4 2 125 [5 × 5] 125 [9 × 9] 0 0 147 503.79 99.58
5 2 90 [5 × 5] 128 [9 × 9] 0 0 256 500.79 99.68
6 3 32 [3 × 3] 128 [9 × 9] 128 [9 × 9] 148 572.79 99.51
7 2 121 [7 × 7] 95 [9 × 9] 0 0 100 426.79 99.26
8 3 32 [7 × 7] 128 [9 × 9] 125 [9 × 9] 256 569.79 99.6
9 2 32 [9 × 9] 126 [9 × 9] 0 0 106 310.79 99.4

10 3 115 [7 × 7] 102 [9 × 9] 128 [7 × 7] 215 686.79 99.42
11 2 32 [9 × 9] 128 [9 × 9] 0 0 256 314.79 99.44
12 2 77 [7 × 7] 100 [9 × 9] 0 0 183 348.79 99.59
13 2 87 [7 × 7] 128 [9 × 9] 0 0 256 424.79 99.7
14 2 32 [9 × 9] 128 [9 × 9] 0 0 256 314.79 99.53
15 3 32 [5 × 5] 103 [9 × 9] 125 [9 × 9] 256 516.79 99.53
16 2 70 [9 × 9] 126 [9 × 9] 0 0 256 386.79 99.63
17 2 64 [7 × 7] 128 [9 × 9] 0 0 256 378.79 99.7
18 3 32 [7 × 7] 77 [9 × 9] 128 [9 × 9] 256 470.79 99.36
19 2 128 [7 × 7] 128 [9 × 9] 0 0 256 506.79 99.74
20 3 32 [3 × 3] 128 [9 × 9] 128 [5 × 5] 32 572.79 98.95
21 3 32 [7 × 7] 128 [9 × 9] 123 [7 × 7] 162 577.79 99.33
22 2 51 [9 × 9] 128 [9 × 9] 0 0 194 352.79 99.47
23 2 50 [7 × 7] 128 [9 × 9] 0 0 256 350.79 99.63
24 2 128 [7 × 7] 128 [9 × 9] 0 0 162 506.79 99.67
25 2 100 [5 × 5] 76 [5 × 5] 0 0 76 346.79 98.23
26 2 52 [9 × 9] 128 [7 × 7] 0 0 256 354.79 99.54
27 2 128 [5 × 5] 128 [9 × 9] 0 0 142 506.79 99.53
28 3 83 [3 × 3] 125 [9 × 9] 0 0 136 410.79 99.38
29 3 128 [5 × 5] 128 [9 × 9] 128 [9 × 9] 256 764.79 99.57
30 2 74 [7 × 7] 120 [9 × 9] 0 0 256 382.79 99.72

Mean 99.48

In another experiment, the optimization approach was applied to the MSL alphabet
database after 30 simulations. The results obtained are presented in Table 14, where the
best recognition rate was 99.45% with an AIC of 248.79. The general mean for this study
case was a value of 98.91%. In this optimization, one-layer CNN architecture was achieved,
with 128 convolutional filters, 3 × 3 filter sizes, and 154 batch sizes.

5.5. Statistical Test between PSO-CNN-I and PSO-CNN-II Optimization Process

Table 15 presents a summary of the results obtained after the two approaches were
applied to the three databases. We can see that good results were achieved in all the cases;
we can analyze that for the ASL alphabet and the ASL MNIST, the PSO-CNN-I optimization
approach was better with mean values of 99.58% and 99.53%, respectively. For the MSL
alphabet database, the PSO-CNN-II optimization method achieved a better recognition rate
with a mean value of 98.91%. Although, if the results were analyzed with respect to the
AIC value, for the ASL MNIST and the MSL alphabet, the PSO-CNN-I reached the lowest
values with AIC of 462.79 and 236.80, respectively, and for ASL alphabet, the PSO-CNN-II
achieved a better AIC value. A low AIC value means that the CNN architecture required
fewer parameters, so it is important to determine what is most relevant to any problem,



Axioms 2021, 10, 139 19 of 24

the CNN accuracy, or to configure the CNN architectures with minimal parameters that
can be implemented in real-time systems.

Table 14. Results achieved by the PSO-CNN-II in MSL alphabet.

No.
No.

Layers

Layer 1 Layer 2 Layer 3
BATCH

SIZE
AIC

Value

(%)
Recogn.

Rate
No.

Filters
Filter
Size

No.
Filters

Filter
Size

No.
Filters

Filter
Size

1 1 128 [3 × 3] 0 0 0 0 32 248.79 98.74
2 1 128 [3 × 3] 0 0 0 0 163 248.79 99.28
3 1 116 [3 × 3] 0 0 0 0 105 224.79 98.99
4 1 81 [3 × 3] 0 0 0 0 32 154.79 98.44
5 1 128 [3 × 3] 0 0 0 0 149 248.79 98.90
6 1 128 [3 × 3] 0 0 0 0 221 248.79 98.57
7 1 128 [3 × 3] 0 0 0 0 57 248.79 99.24
8 1 67 [3 × 3] 0 0 0 0 246 126.73 97.77
9 1 118 [3 × 3] 0 0 0 0 113 228.79 99.16

10 1 128 [3 × 3] 0 0 0 0 154 248.79 99.45
11 1 103 [3 × 3] 0 0 0 0 92 198.79 99.03
12 1 65 [3 × 3] 0 0 0 0 32 122.79 98.32
13 1 128 [3 × 3] 0 0 0 0 94 248.79 99.07
14 1 128 [3 × 3] 0 0 0 0 90 248.79 99.11
15 1 112 [3 × 3] 0 0 0 0 97 216.79 99.24
16 1 128 [3 × 3] 0 0 0 0 32 248.79 98.74
17 1 128 [3 × 3] 0 0 0 0 46 248.79 98.65
18 1 128 [3 × 3] 0 0 0 0 199 248.79 98.32
19 1 128 [3 × 3] 0 0 0 0 244 248.79 99.03
20 1 120 [3 × 3] 0 0 0 0 32 232.79 99.07
21 1 128 [3 × 3] 0 0 0 0 105 248.79 99.16
22 1 128 [3 × 3] 0 0 0 0 77 248.79 99.03
23 1 108 [3 × 3] 0 0 0 0 84 208.79 99.07
24 1 54 [3 × 3] 0 0 0 0 32 100.79 98.44
25 1 102 [3 × 3] 0 0 0 0 102 196.79 99.03
26 1 128 [3 × 3] 0 0 0 0 114 248.79 99.20
27 1 119 [3 × 3] 0 0 0 0 256 230.79 98.61
28 1 98 [3 × 3] 0 0 0 0 122 188.79 99.20
29 1 128 [3 × 3] 0 0 0 0 83 248.79 99.07
30 1 128 [3 × 3] 0 0 0 0 135 248.79 99.37

Mean 98.91

Table 15. Summary of the results obtained in the PSO-CNN-I and PSO-CNN-II approaches.

Database
PSO-CNN-I PSO-CNN-II

Best Mean AIC Best Mean AIC

ASL
alphabet 99.87% 99.58% 764.79 99.23% 98.69% 676.78

ASL
MNIST 99.98% 99.53% 462.79 99.80% 99.48% 506.79

MSL
alphabet 99.37% 99.05% 236.80 99.45% 98.91% 248.79

To confirm if significant evidence exists between the architectures and to identify
which is better, the Wilcoxon signed-rank test was applied [50]; this is a non-parametric test
that is recommended to be applied when the numerical data are not normally distributed,
as is the case with the experimental results of metaheuristic algorithms. The Wilcoxon
test was performed to compare the PSO-CNN-I and PSO-CNN-II optimization processes,
considering the results presented in Tables 9–14. The general description of the values used
to execute the Wilcoxon test is presented in Table 16 and described below:



Axioms 2021, 10, 139 20 of 24

• A confidence level of 95% (α = 0.05).
• The null hypothesis is given that (H0): the PSO-CNN-I architecture (µ1) is equal to

PSO-CNN-II architecture (µ2), expressed as H0 : µ1 = µ2.
• The alternative hypothesis is (H1): affirm that PSO-CNN-I architecture (µ1) is greater

than that PSO-CNN-II architecture (µ2), expressed as H1 : µ1 > µ2(Affirmation).
• The objective is to reject the hypothesis null (H0) and support the alternative hypothe-

sis (H1).

Table 16. General description of the Wilcoxon test.

Description Hypothesis

Null hypothesis PSO-CNN-I architecture (µ1) =
PSO-CNN-II architecture (µ2) H0 : µ1 = µ2

Alternative hypothesis PSO-CNN-I architecture (µ1) >
PSO-CNN-II architecture (µ2), H1 : µ1 > µ2(Affirmation)

The first Wilcoxon test was applied for the ASL alphabet results (Tables 9 and 12).
Table 17 shows the R+, R−, and the p-value (the p-values have been computed by using
SPSS), where R+ represents the sum of ranks for the problems in which the first algorithm
outperformed the second, and R− the sum of ranks for the opposite. The results obtained
indicate an R+ of 455, an R− of 10 and the p-value of <0.001. Because the p-value is less
than the alpha value of α = 0.05, then we support the alternative hypothesis with a 95%
level of evidence, and we can affirm that the PSO-CNN-I architecture is better than the
PSO-CNN-II.

Table 17. Wilcoxon test results for the ASL alphabet.

Comparison
PSO-CNN-I (µ1)—PSO-CNN-II (µ2)

R+ R− p-Value

ASL alphabet 455 10 <0.001

Table 18 presents the results after the Wilcoxon test was applied for the ASL MNIST
results (Tables 10 and 13). This test obtains the values R+ = 245.5, R− = 189.5, and the
p-value = 0.545. Since the p-value is greater than the alpha value of α = 0.05, the null
hypothesis is accepted with a 95% level of evidence; therefore, we can affirm that evidence
does not exist to determine that the PSO-CNN-I architecture is better than the PSO-CNN-II.

Table 18. Wilcoxon test results for the ASL MNIST.

Comparison
PSO-CNN-I (µ1)—PSO-CNN-II (µ2)

R+ R− p-Value

ASL MNIST 245.5 189.5 0.545

Finally, Table 19 presents the Wilcoxon test for the results of the MSL alphabet
(Tables 11 and 14). The results obtained indicate the values R+ = 291, R− = 115, and
the p-value = 0.045. We can see that the p-value is less than the alpha value of α = 0.05;
therefore, we support the alternative hypothesis with a level of evidence of 95%, and we
can affirm that the PSO-CNN-I architecture is better than the PSO-CNN-II.

Table 19. Z-test results for the ASL MNIST.

Comparison
PSO-CNN-I (µ1)—PSO-CNN-II (µ2)

R+ R− p-Value

MSL alphabet 291 115 0.045



Axioms 2021, 10, 139 21 of 24

5.6. State-of-the-Art Analysis Comparison

To obtain more evidence about the performance of the optimization approaches
presented in this paper, we make a comparative analysis (Table 20) against the state-of-
art research, where CNN models are implemented in Alphabet Sign Language database
recognition. The results presented in Table 20 represent the best recognition rate values
reported by the authors, the detail of which is explained as follows: Zhao et al. [51] reports
an accuracy of 89.32%, the CNN architecture has two convolutional layers, two pooling
layers, the batch size is 150, and 80 iterations. The authors generated their own ASL
database, this was captured in five people covering 24 letters of the alphabet, and each
person’s letters had about 528 photos.

Table 20. State-of-the-Art Comparison.

Reference Recognition Rate (%) Dataset

Y. Zhao and L.Wang [40] 89.32 ASL own
D.Rathi [41] 95.03 ASL MNIST

L.Y.Bin y Y.Huann [42] 95.00 ASL own
R. Dionisio [39] 97.64 ASL MNIST

PSO-CNN-I 99.98 ASL MNIST
PSO-CNN-II 99.80 ASL MNIST

Rathi [52] presents an optimization of the transfer learning model (based on CNN)
and it was applied to the ASL MNIST database, using 27,455 images of 24 letters of the
ASL alphabet. The data split was as follows, 80% of the data was for training, 10% for
testing, and 10% of data for validation purposes with a training batch size of 100. The best
recognition rate evidenced by the author was a value of 95.03%.

In Bin et al. [53], an architecture of four convolutional layers and two pooling layers
was presented. The database was generated by the researchers themselves, taking charac-
teristics of the ASL MINIST and consisting of 4800 images; the best accuracy reported by
the authors was 95.00%.

Dionisio et al. [54], reported a recognition rate of 97.64% for the ASL MNIST with a
six-layer convolutional architecture, three pooling layers, a filter size of 3 × 3, and a batch
size of 128. The database was divided using 10% of data for phase testing, 10% for phase
validation, and 80% for training.

Finally, we present the recognition rate achieved by our two approaches PSO-CNN-I
and PSO-CNN-II with the best values of recognition rates of 99.98% and 99.80%, respec-
tively. In the PSO-CNN-II, the best architecture obtained for the ASL MINIST was of two
layers with 117 filters per layer with a size filter of 7 × 7 and batch size of 129. For the
PSO-CNN-I, it was of two layers with 117 filters per layer with a size filter of 7 × 7 and
batch size of 129.

As one can observe in Table 20, the highest performance was obtained by the proposed
model (PSO-CNN-I) with a value of 99.98%, achieving an advantage over the rest of
the approaches.

6. Conclusions and Future Work

In summary, in this paper, we present two approaches to optimize CNN architectures
by implementing the PSO algorithm, these being applied to sign language recognition. The
main contribution was to find some CNN hyper-parameters; in the proposals the number
of convolutional layers, the size of the filter used in each convolutional layer, the number of
convolutional filters, and the batch size were included. According to the experimentation
and the results obtained in the two PSO-CNN optimization methodologies, we can conclude
that the recognition rate increased in all case studies carried out, providing a robust
performance with the minimum parameters. Overall, the recognition rates achieved by
the three databases were as follows: for the ASL MNIST database, the best value was
99.98% and an average of 99.53% with the PSO-CNN-I approach. For the ASL alphabet



Axioms 2021, 10, 139 22 of 24

database, the best accuracy was 99.87% and an average of 99.58% with PSO-CNN-I, and for
the MSL alphabet, the best value was 99.45% and an average of 98.91% after applying the
PSO-CNN-II approach. After a comparative analysis against other state-of-the-art works
focused on sign language recognition (ASL and MSL), we can confirm that the optimization
approaches of this work present competitive results.

This research focused on optimizing the number of convolutional layers, the filter size
used in each convolutional layer, the number of convolutional filters, and the batch size.
The results provide evidence of the importance of applying optimization algorithms to
find the optimal parameters of convolutional neural network architectures.

As future work, the PSO algorithm could be applied to optimize other CNN hyper-
parameters, implement another version of the PSO algorithm or explore different evolu-
tionary computational techniques, to produce more robust CNN architectures that will
be implemented in different sign language datasets used in other countries. In the experi-
mental test, the images were introduced as static images, but we are considering working
with input images in real-time or capturing them through video. On the other hand, our
idea is to be able to implement the use of this proposal in the development of assisted
communication tools and to contribute to human−computer iteration applications that
can be of support to the deaf community.

Author Contributions: Individual contributions by the authors are the following: formal analysis,
C.I.G.; conceptualization, writing—review and editing G.E.M. and C.I.G.; methodology, G.E.M.;
investigation, software, data curation, and writing—original draft preparation, J.F. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We thank CONACYT for the financial support provided with the scholarship
number: 954950 and our gratitude to the program of the Division of Graduate Studies and Research
of the Tijuana Institute of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hemanth, J.D.; Deperlioglu, O.; Kose, U. An enhanced diabetic retinopathy detection and classification approach using deep

convolutional neural network. Neural Comput. Appl. 2020, 32, 707–721. [CrossRef]
2. Li, P.; Li, J.; Wang, G. Application of Convolutional Neural Network in Natural Language Processing. IEEE Access 2018, 64–70.

[CrossRef]
3. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556.
4. Liang, S.D. Optimization for Deep Convolutional Neural Networks: How Slim Can It Go? IEEE Trans. Emerg. Top. Comput. Intell.

2020, 4, 171–179. [CrossRef]
5. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016.
6. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. Evolving Deep Convolutional Neural Networks for Image Classification. IEEE Trans. Evol.

Comput. 2020, 24, 394–407. [CrossRef]
7. Sun, Y.; Yen, G.G.; Yi, Z. Evolving Unsupervised Deep Neural Networks for Learning Meaningful Representations. IEEE Trans.

Evol. Comput. 2019, 23, 89–103. [CrossRef]
8. Ma, B.; Li, X.; Xia, Y.; Zhang, Y. Autonomous deep learning: A genetic DCNN designer for image classification. Neurocomputing

2020, 379, 152–161. [CrossRef]
9. Baldominos, A.; Saez, Y.; Isasi, P. Evolutionary convolutional neural networks: An application to handwriting recognition.

Neurocomputing 2018, 283, 38–52. [CrossRef]
10. Poma, Y.; Melin, P.; Gonzalez, C.I.; Martinez, G.E. Optimization of Convolutional Neural Networks Using the Fuzzy Gravitational

Search Algorithm. J. Autom. Mob. Robot. Intell. Syst. 2020, 14, 109–120. [CrossRef]
11. Poma, Y.; Melin, P.; Gonzalez, C.I.; Martinez, G.E. Filter Size Optimization on a Convolutional Neural Network Using FGSA.

In Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms; Springer: Cham, Switzerland, 2020;
Volume 862, pp. 391–403.

12. Poma, Y.; Melin, P.; Gonzalez, C.I.; Martinez, G.E. Optimal Recognition Model Based on Convolutional Neural Networks and
Fuzzy Gravitational Search Algorithm Method. In Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine; Springer:
Cham, Switzerland, 2020; Volume 827, pp. 71–81.

13. Lee, W.-Y.; Park, S.-M.; Sim, K.-B. Optimal hyperparameter tuning of convolutional neural networks based on the parameter-
setting-free harmony search algorithm. Optik 2018, 172, 359–367. [CrossRef]

http://doi.org/10.1007/s00521-018-03974-0
http://doi.org/10.1109/ICISCAE.2018.8666928
http://doi.org/10.1109/TETCI.2018.2876573
http://doi.org/10.1109/TEVC.2019.2916183
http://doi.org/10.1109/TEVC.2018.2808689
http://doi.org/10.1016/j.neucom.2019.10.007
http://doi.org/10.1016/j.neucom.2017.12.049
http://doi.org/10.14313/JAMRIS/1-2020/12
http://doi.org/10.1016/j.ijleo.2018.07.044


Axioms 2021, 10, 139 23 of 24

14. Wang, B.; Sun, Y.; Xue, B.; Zhang, M. A hybrid differential evolution approach to designing deep convolutional neural networks
for image classification. In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Wellington, New Zealand,
11–14 December 2018; Springer: Cham, Switzerland, 2018; pp. 237–250.

15. Gülcü, A.; KUş, Z. Hyper-Parameter Selection in Convolutional Neural Networks Using Microcanonical Optimization Algorithm.
IEEE Access 2020, 8, 52528–52540. [CrossRef]

16. Zhang, N.; Cai, Y.; Wang, Y.; Tian, Y.; Wang, X.; Badami, B. Skin cancer diagnosis based on optimized convolutional neural
network. Artif. Intell. Med. 2020, 102, 101756. [CrossRef]

17. Tuba, E.; Bacanin, N.; Jovanovic, R.; Tuba, M. Convolutional Neural Network Architecture Design by the Tree Growth Algorithm
Framework. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 17–19
July 2019; pp. 1–8.

18. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. A particle swarm optimization based flexible convolutional autoencoder for image
classification. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2295–2309. [CrossRef] [PubMed]

19. Singh, P.; Chaudhury, S.; Panigrahi, B.K. Hybrid MPSO-CNN: Multi-level Particle Swarm optimized hyperparameters of
Convolutional Neural Network. Swarm Evol. Comput. 2021, 63, 100863. [CrossRef]

20. Wang, B.; Sun, Y.; Xue, B.; Zhang, M. Evolving deep convolutional neural networks by variable-length particle swarm optimization
for image classification. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil,
8–13 July 2018; Volume 1–8.

21. Gonzalez, B.; Melin, P.; Valdez, F. Particle Swarm Algorithm for the Optimization of Modular Neural Networks in Pattern
Recognition. Hybrid Intell. Syst. Control Pattern Recognit. Med. 2019, 827, 59–69.

22. Varela-Santos, S.; Melin, P. Classification of X-Ray Images for Pneumonia Detection Using Texture Features and Neural Networks.
In Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications; Springer: Cham,
Switzerland, 2020; Volume 862, pp. 237–253.

23. Miramontes, I.; Melin, P.; Prado-Arechiga, G. Particle Swarm Optimization of Modular Neural Networks for Obtaining the
Trend of Blood Pressure. In Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and
Applications; Springer: Cham, Switzerland, 2020; Volume 862, pp. 225–236.

24. Peter, S.E.; Reglend, I.J. Sequential wavelet-ANN with embedded ANN-PSO hybrid electricity price forecasting model for Indian
energy exchange. Neural Comput. Appl. 2017, 28, 2277–2292. [CrossRef]

25. Sánchez, D.; Melin, P.; Castillo, O. Comparison of particle swarm optimization variants with fuzzy dynamic parameter adaptation
for modular granular neural networks for human recognition. J. Intell. Fuzzy Syst. 2020, 38, 3229–3252. [CrossRef]

26. Fernandes, F.E.; Yen, G.G. Particle swarm optimization of deep neural networks architectures for image classification. Swarm Evol.
Comput. 2019, 49, 62–74. [CrossRef]

27. Santucci, V.; Milani, A.; Caraffini, F. An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis.
Mathematics 2019, 7, 1051. [CrossRef]

28. Zhou, G.; Moayedi, H.; Bahiraei, M.; Lyu, Z. Employing artificial bee colony and particle swarm techniques for optimizing a
neural network in prediction of heating and cooling loads of residential buildings. J. Clean. Prod. 2020, 254, 120082. [CrossRef]

29. Karaboga, D.; Gorkemli, B.; Ozturk, C.; Karaboga, N. A comprehensive survey: Artificial bee colony (ABC) algorithm and
applications. Artif. Intell. Rev. 2014, 42, 21–57. [CrossRef]

30. Xianwei, J.; Lu, M.; Wang, S.-H. An eight-layer convolutional neural network with stochastic pooling, batch normalization and
dropout for fingerspelling recognition of Chinese sign language. Spinger Multimed. Tools Appl. 2019, 79, 15697–15715.

31. Hayami, S.; Benaddy, M.; El Meslouhi, O.; Kardouchi, M. Arab Sign language Recognition with Convolutional Neural Networks.
In Proceedings of the 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), Agadir, Morocco,
22–24 July 2019.

32. Huang, J.; Zhou, W.; Li, H.; Li, W. Attention-Based 3D-CNNs for Large-Vocabulary Sign Language Recognition. IEEE Trans. Circ.
Syst. Video Technol. 2019, 29, 2822–2832. [CrossRef]

33. Kaggle. American Sign Language Dataset. 2018. Available online: https://www.kaggle.com/grassknoted/asl-alphabet (accessed
on 10 February 2020).

34. Kaggle. Sign Language MNIST. 2017. Available online: https://www.kaggle.com/datamunge/sign-language-mnist (accessed
on 8 February 2020).

35. Rastgoo, R.; Kiani, K.; Escalera, S. Sign Language Recognition: A Deep Survey. Expert Syst. Appl. 2021, 164, 113794. [CrossRef]
36. Hubel, D.H.; Wiesel, T.N. Receptive fields of single neurons in the cat’s striate cortex. J. Physiol. 1959, 148, 574–591. [CrossRef]
37. Kim, P. Matlab Deep Learning; Apress: Seoul, Korea, 2017.
38. Cheng, J.; Wang, P.-s.; Li, G.; Hu, Q.-h.; Lu, H.-q. Recent advances in efficient computation of deep convolutional neural networks.

Front. Inf. Technol. Electron. Eng. 2018, 19, 64–77. [CrossRef]
39. Zou, Z.; Shuai, B.; Wang, G. Learning Contextual Dependence with Convolutional Hierarchical Recurrent Neural Networks.

IEEE Trans. Image Process. 2016, 25, 2983–2996.
40. Fukushima, K. A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.

Biol. Cybern. 1980, 36, 193–202. [CrossRef]
41. Schmidhuber, J. Deep learning in neural networks: An overview. Elsevier Neural Netw. 2015, 61, 85–117. [CrossRef]
42. Aggarwal, C.C. Neural Networks and Deep Learning; Springer Nature: Cham, Switzerland, 2018.

http://doi.org/10.1109/ACCESS.2020.2981141
http://doi.org/10.1016/j.artmed.2019.101756
http://doi.org/10.1109/TNNLS.2018.2881143
http://www.ncbi.nlm.nih.gov/pubmed/30530340
http://doi.org/10.1016/j.swevo.2021.100863
http://doi.org/10.1007/s00521-015-2141-3
http://doi.org/10.3233/JIFS-191198
http://doi.org/10.1016/j.swevo.2019.05.010
http://doi.org/10.3390/math7111051
http://doi.org/10.1016/j.jclepro.2020.120082
http://doi.org/10.1007/s10462-012-9328-0
http://doi.org/10.1109/TCSVT.2018.2870740
https://www.kaggle.com/grassknoted/asl-alphabet
https://www.kaggle.com/datamunge/sign-language-mnist
http://doi.org/10.1016/j.eswa.2020.113794
http://doi.org/10.1113/jphysiol.1959.sp006308
http://doi.org/10.1631/FITEE.1700789
http://doi.org/10.1007/BF00344251
http://doi.org/10.1016/j.neunet.2014.09.003


Axioms 2021, 10, 139 24 of 24

43. Jang, J.; Sun, C.; Mizutani, E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence;
Prentice-Hall: Upper Saddle River, NJ, USA, 1997.

44. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks
IV, Washington, DC, USA, 27 November–1 December 1995; pp. 1942–1948.

45. Sandeep, R.; Sanjay, J.; Rajesh, K. A review on particle swarm optimization algorithms and their applications to data clustering. J.
Artif. Intell. 2011, 35, 211–222.

46. Hasan, J.; Ramakrishnan, S. A survey: Hybrid evolutionary algorithms for cluster analysis. Artif. Intell. Rev. 2011, 36, 179–204.
[CrossRef]

47. Fielding, B.; Zhang, L. Evolving Image Classification Architectures with Enhanced Particle Swarm Optimisation. IEEE Access
2018, 6, 68560–68575. [CrossRef]

48. Sedighizadeh, D.; Masehian, E. A particle swarm optimization method, taxonomy and applications. Proc. Int. J. Comput. Theory
Eng. 2009, 5, 486–502. [CrossRef]

49. Gaxiola, F.; Melin, P.; Valdez, F.; Castro, J.R.; Manzo-Martínez, A. PSO with Dynamic Adaptation of Parameters for Optimization
in Neural Networks with Interval Type-2 Fuzzy Numbers Weights. Axioms 2019, 8, 14. [CrossRef]

50. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]

51. Zhao, Y.; Wang, L. The Application of Convolution Neural Networks in Sign Language Recognition. In Proceedings of the 2018
Ninth International Conference on Intelligent Control and Information Processing (ICICIP), Wanzhou, China, 9–11 November
2018; pp. 269–272.

52. Rathi, D. Optimization of Transfer Learning for Sign Language Recognition Targeting. Int. J. Recent Innov. Trends Comput. Commun.
2018, 6, 198–203.

53. Bin, L.Y.; Huann, G.Y.; Yun, L.K. Study of Convolutional Neural Network in Recognizing Static American Sign Language. In
Proceedings of the 2019 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur,
Malaysia, 17–19 September 2019; pp. 41–45.

54. Rodriguez, R.; Gonzalez, C.I.; Martinez, G.E.; Melin, P. An improved Convolutional Neural Network based on a parameter
modification of the convolution layer. In Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications;
Springer: Cham, Switzerland, 2021; pp. 125–147.

http://doi.org/10.1007/s10462-011-9210-5
http://doi.org/10.1109/ACCESS.2018.2880416
http://doi.org/10.7763/IJCTE.2009.V1.80
http://doi.org/10.3390/axioms8010014
http://doi.org/10.1016/j.swevo.2011.02.002

	Introduction 
	Convolutional Neural Networks 
	Input Layer 
	Convolution Layer 
	Non-Linearity Layer 
	Pooling Layer 
	Classifier Layer 

	Particle Swarm Optimization 
	Convolutional Neural Network Architecture Optimized by PSO 
	PSO-CNN Optimization Process (PSO-CNN-I) 
	PSO-CNN Optimization Process (PSO-CNN-II) 

	Experiments and Results 
	Sign Language Databases Used in the Study Cases 
	American Sign Language (ASL Alphabet) 
	American Sign Language (ASL MNIST) 
	Mexican Sign Language (MSL Alphabet) 

	Parameters Used in the Experimentation 
	Optimization Results Obtained by the PSO-CNN-I Approach 
	Optimization Results Obtained by the PSO-CNN-II Approach 
	Statistical Test between PSO-CNN-I and PSO-CNN-II Optimization Process 
	State-of-the-Art Analysis Comparison 

	Conclusions and Future Work 
	References

