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Abstract: Aristotelian diagrams, such as the square of opposition, are well-known in the context of
normal modal logics (i.e., systems of modal logic which can be given a relational semantics in terms
of Kripke models). This paper studies Aristotelian diagrams for non-normal systems of modal logic
(based on neighborhood semantics, a topologically inspired generalization of relational semantics).
In particular, we investigate the phenomenon of logic-sensitivity of Aristotelian diagrams. We distin-
guish between four different types of logic-sensitivity, viz. with respect to (i) Aristotelian families,
(ii) logical equivalence of formulas, (iii) contingency of formulas, and (iv) Boolean subfamilies of
a given Aristotelian family. We provide concrete examples of Aristotelian diagrams that illustrate
these four types of logic-sensitivity in the realm of normal modal logic. Next, we discuss more subtle
examples of Aristotelian diagrams, which are not sensitive with respect to normal modal logics,
but which nevertheless turn out to be highly logic-sensitive once we turn to non-normal systems of
modal logic.

Keywords: Aristotelian diagram; non-normal modal logic; square of opposition; logical geometry;
neighborhood semantics; bitstring semantics

MSC: 03B45; 03A05

1. Introduction

Aristotelian diagrams, such as the so-called square of opposition, visualize a number
of formulas from some logical system, as well as certain logical relations holding between
them. These diagrams have a rich history in philosophy and logic [1–3], and today they are
also widely used in artificial intelligence, to study and compare knowledge representation
formalisms such as the rough set theory [4–6], formal concept analysis and possibility
theory [7–9], formal argumentation theory [10–13], fuzzy set theory [14–17], logical the-
ories of analogical and proportional reasoning [18–23], probabilistic logic [24–26] and
multiple-criterion decision-making [27–29]. Without a doubt, the oldest and most widely
used Aristotelian diagram is the square of opposition for the categorical statements from
syllogistics, such as ‘all Greeks are mortal’ and ‘some Greeks are mortal’. The theoretical
roots of this square can be traced back to the logical works of Aristotle, but the diagram was
actually drawn only from the second century CE onwards [30–32]. It is equally without
any doubt that the second oldest and most widely used Aristotelian diagram is the modal
square of opposition, for statements such as ‘it is necessary that p’ and ‘it is possible that
p’. This diagram, too, has its theoretical roots in Aristotle, and was explicitly drawn from
the 12th century onwards [33–36]. The modal square of opposition continues to be used
quite frequently in contemporary mathematical work on modal logic, and can be found in
well-known textbooks [37–39], as well as research papers [40–44]. Furthermore, in recent
decades, many other, more complex Aristotelian diagrams for modal logic have been
developed, including hexagons, octagons and even three-dimensional diagrams, such as
rhombic dodecahedra [45–50].
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In the research program of logical geometry, we study Aristotelian diagrams as objects
of independent mathematical interest, regardless of the specific details of their concrete
applications in philosophy, artificial intelligence and elsewhere [51–60]. One of the main
insights from logical geometry is that Aristotelian diagrams are highly sensitive to the
details of the logical system with respect to which they are defined [52]. This phenomenon
is usually studied using the technique of bitstring semantics [57], and informally means
that it is possible for one and the same set of formulas to give rise to two completely
different Aristotelian diagrams, when we work in two different logical systems. This
logic-sensitivity of Aristotelian diagrams is also well-known with respect to modal logic.
In particular, it is easy to show that the set {�p,♦p,�¬p,♦¬p} gives rise to a classical
square of opposition in the modal logic KD, but to a degenerate square of opposition in the
modal logic K (cf. Figure 1).

�p �¬p

♦p ♦¬p

(a) Classical square of opposition in the
modal logic KD.

�p �¬ p

♦p ♦¬p

(b) Degenerate square of opposition in the
modal logic K.

Figure 1. Aristotelian diagrams for {�p,♦p,�¬p,♦¬p} with respect to two systems of modal logic.
Full, dashed, and dotted lines visualize contradiction, contrariety, and subcontrariety, respectively;
arrows visualize subalternations.

All existing research on modal Aristotelian diagrams generally, and on their logic-
sensitivity more specifically, has focused exclusively on normal modal logics, such as K,
KD, KT, KD4, S4 and S5. These are logics which can be given a relational semantics in
terms of Kripke models, and are therefore most well-known in the literature. Pizzi [44] is
very explicit about this, for example in his discussion of the logic-sensitivity of the modal
square:

The standard modal square [. . . ] is valid with respect to any modal system at
least as strong as the deontic system KD, but invalid in any normal system strictly
weaker than KD ([44], p. 313, emphasis added).

However, there does not seem to be any deep philosophical or mathematical reason
for restricting ourselves to normal modal logics when studying modal Aristotelian diagrams
and their logic-sensitivity. The goal of this paper will therefore be to present some examples
of Aristotelian diagrams that naturally arise in non-normal systems of modal logic, and to
study various aspects of their logic-sensitivity, which we will show can get quite intricate.
In particular, we will distinguish between four different types of logic-sensitivity, viz. with
respect to (i) Aristotelian families, (ii) logical equivalence of formulas, (iii) contingency of
formulas, and (iv) Boolean subfamilies of a given Aristotelian family.

The paper is organized as follows. Section 2 provides some technical background on
modal logic, logical geometry and bitstring semantics, in order to keep the paper relatively
self-contained. Sections 3–6 consecutively discuss the four types of logic-sensitivity that
were mentioned above. These four sections share roughly the same structure: first, we
introduce the relevant type of logic-sensitivity and provide a concrete example from the
realm of normal modal logic; next, we provide more subtle examples of Aristotelian dia-
grams, which are not sensitive with respect to normal modal logics, but which nevertheless
do turn out to display the relevant type of logic-sensitivity once we turn to non-normal
systems of modal logic. Finally, Section 7 wraps things up, and mentions some questions
for further research.
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2. Technical Background
2.1. Modal Logic

Although we assume that the reader has a basic familiarity with modal logic, its
basic tenets are summarized here for the sake of reference. For more details and proofs,
see [38,39]. Starting from a countably infinite set Prop of atomic propositions, the modal
language L is defined by means of the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �ϕ

(where p ∈ Prop). The other connectives and modal operators can be defined in the usual
way; in particular, we put ♦ϕ := ¬�¬ϕ, ⊥ := p ∧ ¬p and > := ¬⊥. This language is
usually given a relational semantics, that is, it is interpreted on Kripke models:

Definition 1. A Kripke frame F is a tuple 〈W, R〉, where W is a non-empty set (the elements
of which are called ‘states’), and R is a binary relation over W, that is, R ⊆ W ×W. Similarly,
a Kripke model is a tuple 〈F, V〉, where F = 〈W, R〉 is a Kripke frame, and V : Prop→ ℘(W) is
a valuation function.

The class of all Kripke frames will be denoted K. We will often also be interested
in special subclasses of frames. In particular, KD is the class of all serial Kripke frames
(i.e., frames 〈W, R〉 such that for all w ∈W there exists at least one v ∈W such that wRv),
while KF is the class of all partially functional Kripke frames (i.e., frames 〈W, R〉 such that
for all w, v, u ∈ W, if wRv and wRu then v = u). A final class that will be of interest is
KDF := KD∩KF.

Definition 2. Let F = 〈W, R〉 be a Kripke frame, M = 〈F, V〉 a Kripke model, and w ∈ W.
The semantics for the modal language L is inductively defined as follows:

M, w |= p iff w ∈ V(p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= �ϕ iff for all v ∈W: if wRv then M, v |= ϕ.

Given a Kripke frame F = 〈W, R〉, we write F |= ϕ if 〈F, V〉, w |= ϕ for all valuations
V : Prop→ ℘(W) and states w ∈W. Finally, given a class C of Kripke frames, we write |=C ϕ if
F |= ϕ for all F ∈ C.

We now switch from the semantic to the syntactic perspective:

Definition 3. A normal modal logic is a set S ⊆ L that (i) contains all propositional tautologies,
(ii) contains �(p → q) → (�p → �q), (iii) is closed under modus ponens: if ϕ → ψ ∈ S and
ϕ ∈ S then ψ ∈ S, (iv) is closed under necessitation: if ϕ ∈ S then �ϕ ∈ S, (vi) is closed under
uniform substitution: if ϕ ∈ S then ϕ(α1/p1, . . . , αn/pn) ∈ S. We usually write `S ϕ instead of
ϕ ∈ S. The smallest normal modal logic is called K. If a normal modal logic contains some further
axioms A1, . . . ,An ∈ L\K, then it will be called KA1 . . .An.

In Sections 3–6 we will encounter examples from the normal modal logics K, KD, KF
and KDF, which are defined using the axioms D: �p → ♦p and F: ♦p → �p. Note that
expressions such as K and KD are used to denote logics (i.e., sets of formulas) as well as
classes of Kripke frames. This slight abuse of notation is justified by standard soundness
and completeness results:

`K ϕ iff |=K ϕ `KF ϕ iff |=KF ϕ
`KD ϕ iff |=KD ϕ `KDF ϕ iff |=KDF ϕ

For certain applications, normal modal logics and their accompanying relational
semantics are considered to be ‘too strong’. For example, �(p→ q)→ (�p→ �q) belongs
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to every normal modal logic, even though this principle might be undesirable in certain
contexts (cf. [61], p. 12ff. for details). This has led to the development of non-normal modal
logics, which do not have a relational semantics in terms of Kripke models, but rather a
topologically inspired semantics in terms of neighborhood models. Once again, for more
details and proofs, see [61,62] and [63], Chapters 7–9.

Definition 4. A neighborhood frame F is a tuple 〈W, N〉, where W is as in Definition 1,
and N : W → ℘(℘(W)) is a neighborhood function. Similarly, a neighborhood model is a
tuple 〈F, V〉, where F = 〈W, N〉 is a neighborhood frame, and V : Prop→ ℘(W) is a valuation
function.

The class of all neighborhood frames will be denoted E. We will also often be interested
in special subclasses of frames. In particular, EM is the class of all monotone neighborhood
frames (i.e., frames 〈W, N〉 such that for all w ∈ W and X ⊆ Y ⊆ W: if X ∈ N(w) then
Y ∈ N(w)); EC is the class of all neighorhood frames that are closed under intersection
(i.e., frames 〈W, N〉 such that for all w ∈ W and X, Y ⊆ W: if X, Y ∈ N(w) then X ∩ Y ∈
N(w)); EN is the class of all neighorhood frames that contain the unit (i.e., frames 〈W, N〉
such that for all w ∈ W we have W ∈ N(w)). Two further classes are EMC := EM ∩ EC
and EMN := EM ∩ EN. Finally, EMNC is the class of all augmented neighborhood frames
(i.e., frames 〈W, N〉 such that for all w ∈W and X ⊆W: X ∈ N(w) if

⋂
N(w) ⊆ X).

Definition 5. Let F = 〈W, N〉 be a neighborhood frame, M = 〈F, V〉 a neighborhood model,
and w ∈W. The semantics for the modal language L is inductively defined. The cases for p, ¬ and
∧ are identical to those of Definition 2, while the case for � looks as follows:

M, w |= �ϕ iff {v ∈W |M, v |= ϕ} ∈ N(w).

Given a neighborhood frame F = 〈W, N〉, we write F |= ϕ if 〈F, V〉, w |= ϕ for all valuations
V : Prop→ ℘(W) and states w ∈ W. Finally, given a class C of neighborhood frames, we write
|=C ϕ if F |= ϕ for all F ∈ C.

There is a precise sense in which neighborhood semantics is a generalization of
relational semantics: the class of Kripke frames corresponds to a subclass of neighborhood
frames, viz., those that are augmented:

• For every augmented neighborhood frame A = 〈W, N〉, there exists a modally equiv-
alent Kripke frame Ak, that is, for all valuations V : Prop→ ℘(W), states w ∈W and
formulas ϕ ∈ L we have 〈A, V〉, w |= ϕ if 〈Ak, V〉, w |= ϕ;

• For every Kripke frame K = 〈W, R〉, there exists a modally equivalent augmented
neighborhood frame Kn, that is, for all valuations V : Prop → ℘(W), states w ∈ W
and formulas ϕ ∈ L we have 〈Kn, V〉, w |= ϕ if 〈K, V〉, w |= ϕ.

Furthermore, (·)k and (·)n are each other’s inverses, that is, (Ak)n = A and (Kn)k = K,
for every augmented neighborhood frame A and Kripke frame K. We now switch again
from the semantic to the syntactic perspective:

Definition 6. A classical modal logic is a set S ⊆ L that (i) contains all propositional tautologies,
(ii) is closed under modus ponens: if ϕ→ ψ ∈ S and ϕ ∈ S then ψ ∈ S, (iii) is closed under uniform
substitution: if ϕ ∈ S then ϕ(α1/p1, . . . , αn/pn) ∈ S, (iv) is closed under the so-called RE-rule:
if ϕ ↔ ψ ∈ S then �ϕ ↔ �ψ. We usually write `S ϕ instead of ϕ ∈ S. The smallest classical
modal logic is called E. If a classical modal logic contains some further axioms A1, . . . ,An ∈ L\E,
then it will be called EA1 . . .An.

Upon comparison with Definition 3, it is clear that classical modal logics are a strict
generalization of normal modal logics, since they are not required to be closed under
necessitation, while the requirement of containing �(p → q) → (�p → �q) is weak-
ened to being closed under RE. Every normal modal logic is thus a classical modal logic,
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but not vice versa. Non-normal modal logics are precisely those logics that are classical,
but not normal.

In Sections 3–6 we will encounter examples from the non-normal modal logics E, EM,
EC, EMC, EMN and EMNC, which are defined using the further axioms M: �(p ∧ q) →
(�p ∧�q), C: (�p ∧�q)→ �(p ∧ q) and N: �>. Once again, our use of expressions such
as E and EMN to denote logics as well as classes of neighborhood frames is justified by
standard soundness and completeness results:

`E ϕ iff |=E ϕ `EMC ϕ iff |=EMC ϕ
`EM ϕ iff |=EM ϕ `EMN ϕ iff |=EMN ϕ
`EC ϕ iff |=EC ϕ `EMNC ϕ iff |=EMNC ϕ

Given the correspondence between augmented neighborhood frames and Kripke
frames, it should not be surprising that the classical modal logic EMNC coincides with the
smallest normal modal logic K: `EMNC ϕ iff |=EMNC ϕ iff |=K ϕ iff `K ϕ.

Finally, generalizing terminology from Segerberg [62], a classical modal logic S will be
called absurd iff `S �p or `S ¬�p. It is easy to check that all of the modal logics that we
will be interested in here (normal and non-normal alike) are not absurd.

2.2. Logical Geometry

We begin by defining the basic ingredients of logical geometry, that is, Aristotelian
relations and diagrams. For more details and philosophical discussion, see [51,56].

Definition 7. Let S be a logical system with Boolean connectives and a model-theoretic semantics
|=S. The Aristotelian relations for S are defined as follows: two formulas ϕ, ψ ∈ LS are

S-contradictory iff |=S ¬(ϕ ∧ ψ) and |=S ϕ ∨ ψ
S-contrary iff |=S ¬(ϕ ∧ ψ) and 6|=S ϕ ∨ ψ
S-subcontrary iff 6|=S ¬(ϕ ∧ ψ) and |=S ϕ ∨ ψ
in S-subalternation iff |=S ϕ→ ψ and 6|=S ψ→ ϕ

Furthermore, ϕ and ψ are said to be S-unconnected iff (i) 6|=S ¬(ϕ ∧ ψ), (ii) 6|=S ϕ ∨ ψ, (iii)
6|=S ϕ→ ψ and (iv) 6|=S ψ→ ϕ.

Note that unconnectedness is itself not considered to be an Aristotelian relation, but it
can be viewed as the absence of any Aristotelian relations between two formulas ϕ and
ψ. For example, condition (i) entails that ϕ and ψ are not contradictory or contrary, while
conditions (iii) and (iv) entail that there is no subalternation from ϕ to ψ or vice versa.

Definition 8. Let S be a logical system as in Definition 7, and consider a finite fragment F ⊆ LS.
An Aristotelian diagram for (F ,S) is a vertex- and edge-labeled graph: its vertices are labeled
by the formulas from F , while its edges are labeled by the Aristotelian relations. Specifically,
if vertices v and w are labeled by resp. ϕ and ψ, and relative to S these formulas ϕ and ψ stand in
the Aristotelian relation R, then the edge from v to w is labeled by R. Finally, it is required that
(i) S-equivalent formulas from F label the same vertex in the diagram, and (ii) only S-contingent
formulas from F occur as vertex labels in the diagram.

The labeling of edges by means of Aristotelian relations is usually in accordance with
the convention described in the caption of Figure 1, that is, contrariety edges are visualized
as dashed lines, and so forth. This same figure shows Aristotelian diagrams for (F ,KD)
and (F ,K), where F = {�p,♦p,�¬p,♦¬p}. On a terminological level, note that instead
of ‘an Aristotelian diagram for (F ,S)’, we often say ‘an Aristotelian diagram for F in S’.

The requirements regarding (i) S-equivalence and (ii) S-contingency in Definition 8
are an empirical generalization (the vast majority of Aristotelian diagrams found in the
literature indeed satisfy these requirements), but they also have extensive theoretical
and cognitive motivations [51]. For example, it is easy to show that if ϕ and ψ are both
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contingent, they can stand in at most one Aristotelian relation [48]; however, if ϕ and/or ψ is
not contingent, then they stand in multiple Aristotelian relations to each other, thus yielding
more cumbersome diagrams that are harder to process (this will be illustrated later in the
paper). Furthermore, while Definition 8 specifies that Aristotelian diagrams simply do
not contain any non-contingent formulas at all, there also exists an alternative perspective,
based on sound geometrical reasons [53,55,64], which holds that an Aristotelian diagram
can contain non-contingent formulas after all, but that they are (invisibly) collapsed in the
diagram’s center of symmetry. We will revisit this alternative perspective later in the paper.

Aristotelian diagrams are sometimes defined exclusively for those pairs (F ,S) such
that all F -formulas are S-contingent and pairwise non-S-equivalent to begin with. Un-
der this approach, the two conditions (i) and (ii) in Definition 8 are vacuously fulfilled,
and can even be left out of the definition altogether. For our present purposes, however,
it will be better to take the more liberal approach of Definition 8, that is, we allow F to
contain non-S-contingent and/or S-equivalent formulas, and then explicitly say how such
cases are to be dealt with in Aristotelian diagrams for (F ,S).

Definition 9. For i = 1, 2, let Si and Fi be a logical system and a fragment of formulas as in
Definition 8; furthermore, let Ci be the set of Si-contingent formulas. An Aristotelian isomorphism
f : (F1,S1) → (F2,S2) is a surjective function f : F1 ∩ C1 → F2 ∩ C2 such that for all ϕ, ψ ∈
F1 ∩ C1, we have:

• RS1
(ϕ, ψ) iff RS2( f (ϕ), f (ψ)), for all Aristotelian relations R,

• ϕ ≡S1
ψ iff f (ϕ) ≡S2 f (ψ).

Finally, an Aristotelian family is a maximal collection A of Aristotelian diagrams that
is closed under Aristotelian isomorphism: (i) all (F1,S1) and (F2,S2) in A are Aristotelian
isomorphic to each other, and vice versa, (ii) if (F1, S1) ∈ A is Aristotelian isomorphic to (F2, S2),
then (F2,S2) ∈ A as well.

Note that Aristotelian isomorphisms are injective (and thus, also bijective) up to logical
equivalence: if f (ϕ) = f (ψ), then maybe not ϕ = ψ, but at least ϕ ≡S1 ψ. Furthermore,
note that Aristotelian isomorphisms also preserve and reflect unconnectedness: ϕ and ψ
are S1-unconnected iff f (ϕ) and f (ψ) are S2-unconnected. Finally, recall that Aristotelian
diagrams are sometimes defined exclusively for those (F ,S) such that all F -formulas
are S-contingent and pairwise non-S-equivalent; on that approach, Definition 9 can be
simplified significantly: Fi ∩ Ci will simply be equal to Fi, while the condition regarding
≡S1

and ≡S2 will be vacuously fulfilled and can thus be left out (however, the requirement
of surjectivity will have to be strengthened to bijectivity) [57].

One of the main ongoing research efforts in logical geometry is to develop a systematic
typology of Aristotelian families [54,65]. Several hundreds of Aristotelian families are
known to exist; however, only a few dozen of these occur frequently in the literature
(cf. Section 1) and have been studied in depth. In this paper, we will restrict ourselves to
just four families: the so-called PCDs, the classical squares of opposition, the degenerate
squares of opposition, and the JSB hexagons. Examples of the families of classical and
degenerate squares were already given in Figure 1. The term PCD, or ‘pair of contradictory
formulas’, is self-explanatory: PCDs consist of just two formulas which are contradictory to
each other. PCDs constitute the simplest Aristotelian family; a concrete example is shown
in Figure 2a. Finally, the family of JSB hexagons is named after Jacoby [66], Sesmat [67], and
Blanché [68], who were the first to study diagrams belonging to this family; two concrete
examples are shown in Figure 2b,c.
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p

¬p

(a) PCD for {p,¬p}
in K.

�p ∨�¬p

�p �¬p

♦p ♦¬p

♦p ∧♦¬p

(b) Strong JSB hexagon for
{�p,�¬p,♦p ∧ ♦¬p,�p ∨ �¬p,
♦p,♦¬p} in KD.

¬p ∨�p

�p �¬p

♦p ♦¬p

p ∧♦¬p

(c) Weak JSB hexagon for
{�p,�¬p, p ∧♦¬p,¬p ∨�p,♦p,
♦¬p} in KD.

Figure 2. Three further examples of Aristotelian diagrams.

Definition 10. For i = 1, 2, let Si, Fi and Ci be as in Definition 9. The Boolean closure of Fi in
Si, written as BSi

(Fi), is the smallest Boolean subalgebra B of the Lindenbaum–Tarski algebra of
Si, such that Fi ⊆ B. A Boolean isomorphism f : (F1,S1)→ (F2,S2) is a surjective function
f : F1 ∩ Ci → F2 ∩ C2 such that there exists a Boolean algebra isomorphism ϕ : BS1

(F1) →
BS2(F2) and f = ϕ � F1.

Informally, the Boolean closure of F in S consists of all Boolean combinations of
formulas from F , considered up to S-equivalence [54]. A Boolean isomorphism between
two Aristotelian diagrams is a surjective function between those diagrams that can be
extended to a Boolean algebra isomorphism between their respective Boolean closures.
It is easy to show that every Boolean isomorphism is also an Aristotelian isomorphism;
however, there exist Aristotelian isomorphisms that are not Boolean isomorphisms [57].

From a typological perspective, this means that a given Aristotelian family can have
multiple Boolean subfamilies. Diagrams belonging to different Boolean subfamilies of a given
Aristotelian family are not Boolean isomorphic (since they belong to different Boolean
subfamilies), but they are Aristotelian isomorphic to each other (since they belong to the
same Aristotelian family). For example, it is well-known that the Aristotelian family of JSB
hexagons has two Boolean subfamilies, which are usually called the strong and the weak
JSB hexagons [69]. In a strong JSB hexagon, the disjunction of the three pairwise contrary
formulas is a tautology, whereas in a weak JSB hexagon, this disjunction is not a tautology.
For example, Figure 2b shows a strong JSB hexagon (since |=KD �p ∨�¬p ∨ (♦p ∧♦¬p)),
while Figure 2c shows a weak JSB hexagon (since 6|=KD �p ∨�¬p ∨ (p ∧♦¬p)).

2.3. Bitstring Semantics

As a final prerequisite, we introduce the technique of bitstring semantics. This tech-
nique was initially developed within the specific context of logical geometry [70], but in
recent years it has evolved into a powerful tool with applications in logic [65], philoso-
phy [71], psychology [72], business intelligence [73], and so forth. In general, bitstring
semantics allows us to systematically compute combinatorial representations of a system of
concepts or propositions, thus providing a concrete grip on their logical behavior (including
their Aristotelian relations, as well as their Boolean structure). We will now summarize the
main tenets of bitstring semantics; for more details and examples, see [57].

Given a logical system S and fragment F as in Definition 8, the partition induced by F
in S is defined as follows:

ΠS(F ) := {
∧

ϕ∈F
±ϕ |

∧
ϕ∈F
±ϕ is S-consistent},
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where +ϕ = ϕ and −ϕ = ¬ϕ. The elements of ΠS(F ) are called anchor formulas. The set
ΠS(F ) is said to be a partition, because the anchor formulas are (i) jointly exhaustive,
that is, |=S

∨
ΠS(F ), and (ii) mutually exclusive, that is, |=S ¬(α ∧ β) for distinct α, β ∈

ΠS(F ). For some simple examples from classical propositional logic (CPL), note that
ΠCPL({p, q}) = {p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q} and that ΠCPL({p ∧ q, p}) = {p ∧ q, p ∧
¬q,¬p}.

It will sometimes be useful to compare different partitions in terms of their ‘resolution’
or ‘granularity’. In particular, given two partitions Π1 and Π2, we say that Π1 is a coarsening
of Π2 (or equivalently, that Π2 is a refinement of Π1) iff, for all anchor formulas α2 ∈ Π2,
there exists an anchor formula α1 ∈ Π1 such that |=S α2 → α1. Returning to our example
from CPL, note that {p ∧ q, p ∧ ¬q,¬p} is a coarsening of {p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q},
since the last two anchor formulas of the latter partition, that is, ¬p ∧ q and ¬p ∧ ¬q,
have collapsed into a single anchor formula in the former partition, that is, ¬p. Formally:
¬p ≡CPL (¬p ∧ q) ∨ (¬p ∧ ¬q).

It can be shown that every proposition in the Boolean closure of F in S is logically
equivalent to a disjunction of anchor formulas: for every ϕ ∈ BS(F ) we have ϕ ≡S

∨{α ∈
ΠS(F ) | |=S α → ϕ}. The bitstring semantics βFS : BS(F ) → {0, 1}|ΠS(F )| maps every
formula ϕ ∈ BS(F ) onto its bitstring representation βFS (ϕ), which is a sequence of |ΠS(F )|
bits that keeps track of which anchor formulas enter into this disjunction. For example,
if ΠS(F ) = {α1, α2, α3, α4} and ϕ ≡S α1 ∨ α3 ∨ α4, then ϕ is represented by the bitstring
1011. It can be shown that βFS is a Boolean (and thus also an Aristotelian) isomorphism
between BS(F ) and {0, 1}|ΠS(F )|. Consequently, bitstring length can be used to uniquely
characterize the different Boolean subfamilies of a given Aristotelian family. For example,
strong JSB hexagons are represented by bitstrings of length 3, while weak JSB hexagons are
represented by bitstrings of length 4 [57].

3. Logic-Sensitivity and Aristotelian Families
3.1. Introduction

We now begin our exploration of the logic-sensitivity of Aristotelian diagrams with
respect to Aristotelian families. Our starting point is the observation that the Aristotelian
relations themselves are sensitive to the details of the underlying logical system (cf. Defi-
nition 7). For example, consider the formulas �p and �¬p: in the modal logic KD, these
two formulas are contrary to each other (since |=KD ¬(�p ∧�¬p) but 6|=KD �p ∨�¬p),
but in the modal logic KDF, these same two formulas are contradictory to each other (since
|=KDF ¬(�p ∧�¬p) and also |=KDF �p ∨�¬p). Or to give an example from non-normal
modal logic: it is straightforward to check that the formulas �(p ∧ q) and ♦¬p ∨♦¬q are
contraries in EM, but subcontraries in EC.

This observation generalizes from pairs of formulas to arbitrary sets of formulas.
Given a fragment F of formulas and two logical systems S1 and S2, the configuration of
Aristotelian relations among the formulas of F with respect to S1 might be completely
different from the configuration of Aristotelian relations among these same formulas with
respect to S2. The two Aristotelian diagrams for the same set F with respect to the two
logical systems S1 and S2 might thus belong to two different Aristotelian families. Put
more precisely: for some fragments F and logical systems S1 and S2, there does not exist
an Aristotelian isomorphism between (F ,S1) and (F ,S2). This is the standard way of
formally capturing the logic-sensitivity of Aristotelian diagrams [57]. However, we will
soon show that this approach is slightly too narrow in scope, since it does not cover certain
cases in which the two Aristotelian diagrams for F with respect to S1 and S2 belong to
one and the same Aristotelian family, but which we nevertheless do want to count as
genuine examples of logic-sensitivity. A more adequate formulation of logic-sensitivity is
therefore that for some fragments F and logical systems S1 and S2, the identity function
idF : (F ,S1)→ (F ,S2) is not an Aristotelian isomorphism. Unlike the previous one, this
formulation also covers cases of logic-sensitivity in which there does exist an Aristotelian
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isomorphism between (F ,S1) and (F ,S2), as long as this isomorphism is not the identity
function idF .

We are now ready to study some detailed examples of this type of logic-sensitivity.
We will first consider a cluster of examples from normal modal logic, and then one from
non-normal modal logic.

3.2. Examples from Normal Modal Logic

For our first series of examples, we revisit and extend the motivating example that
was already presented in Section 1. For future reference, we define the fragment F1a:

F1a := {�p,♦p,�¬p,♦¬p}.

We first study this fragment relative to K. Recall that K is the smallest normal modal
logic, and is thus quite important for theoretical reasons (e.g., it is sound and complete
with respect to the class of all Kripke frames). It is easy to check that �p and ♦¬p are
K-contradictories, since |=K ¬(�p ∧♦¬p) and |=K �p ∨♦¬p. Similarly, �¬p and ♦p are
K-contradictories. However, relative to K, the formulas of F1a do not enter into any other
Aristotelian relations with each other (and are thus pairwise K-unconnected). For example,
there is no K-subalternation from �p to ♦p, since 6|=K �p→ ♦p. To summarize, the Aris-
totelian diagram for (F1a,K) is a degenerate square of opposition, which was already
shown in Figure 1b, and is repeated here in Figure 3a, for the sake of reference. An easy
computation yields the partition that is induced by F1a in K:

ΠK(F1a) = {�p ∧♦p,♦p ∧♦¬p,�¬p ∧♦¬p,�p ∧�¬p}.

This partition yields bitstrings of length 4. For example, �p is represented as 1001, since
�p ≡K (�p ∧♦p) ∨ (�p ∧�¬p). The bitstring representations of all formulas in F1a can
be found in Figure 3a.

We now turn to KD. The practical importance of this logic cannot be underestimated,
since the D-axiom �p → ♦p holds for many important interpretations of the �- and
♦-operators, such as alethic, epistemic and deontic modalities. Since KD is strictly stronger
than K, the two pairs of K-contradictories are also KD-contradictories. Furthermore, the for-
mulas of F1a enter into four additional Aristotelian relations relative to KD. For example,
�p and �¬p are KD-contraries, since |=KD ¬(�p ∧�¬p) but 6|=KD �p ∨�¬p. To sum-
marize, the Aristotelian diagram for (F1a,KD) is a classical square of opposition, which
was already shown in Figure 1a, and is repeated here in Figure 3b, for the sake of refer-
ence. It is straightforward to check that there does not exist an Aristotelian isomorphism
between (F1a,K) and (F1a,KD), which means that we have obtained our first concrete ex-
ample of the logic-sensitivity of Aristotelian diagrams with respect to Aristotelian families.
Furthermore, an easy computation yields the partition that is induced by F1a in KD:

ΠKD(F1a) = {�p,♦p ∧♦¬p,�¬p}.

In comparison with ΠK(F1a), we find that the first and third anchor formulas have
been simplified and, most importantly, that the fourth anchor formula, that is, �p ∧�¬p,
has been dropped (since it is K-consistent but KD-inconsistent). The partition ΠKD(F1a)
thus yields bitstrings of length 3, which are obtained by deleting the fourth bit from the
ΠK(F1a)-bitstrings. For example, ♦p is represented as 110, since ♦p ≡KD (♦p ∧ ♦¬p) ∨
�¬p. The bitstring representations of all formulas in F1a can be found in Figure 3b.
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1001
�p

0011
�¬p

♦p
1100

♦¬p
0110

(a) Degenerate square of
opposition for F1a in K.

100
�p

001
�¬p

♦p
110

♦¬p
011

(b) Classical square of op-
position for F1a in KD.

100
♦p

010
♦¬p

�p
101

�¬p
011

(c) Classical square of op-
position for F1a in KF.

Figure 3. Aristotelian diagrams for F1a := {�p,♦p,�¬p,♦¬p} in three normal modal logics.

To conclude this cluster of examples, we turn to KF. This logic is less familiar than
KD, but the F-axiom ♦p→ �p is quite important in studying dynamic modalities [48]. It is
once again easy to check that the Aristotelian diagram for (F1a,KF) is a classical square
of opposition, which is shown in Figure 3c. There again does not exist an Aristotelian
isomorphism between (F1a,K) and (F1a,KF), and thus we have obtained another basic ex-
ample of logic-sensitivity with respect to Aristotelian families. However, the situation gets
more subtle when we compare KD and KF: there does exist an Aristotelian isomorphism
f : (F1a,KD) → (F1a,KF), which maps �p onto ♦p, �¬p onto ♦¬p, and so forth—just
compare Figure 3b,c. It is easy to check that this is indeed an Aristotelian isomorphism; for
example, �p and �¬p are KD-contraries, and f (�p) and f (�¬p) are KF-contraries. Nev-
ertheless, the identity function idF1a is not an Aristotelian isomorphism between (F1a,KD)
and (F1a,KF) (e.g., ♦p and ♦¬p are KD-subcontrary but KF-contrary), and hence, we
have obtained a third, more subtle example of logic-sensitivity with respect to Aristotelian
families. Furthermore, an easy computation yields the partition that is induced by F1a
in KF:

ΠKF(F1a) = {♦p,♦¬p,�p ∧�¬p}.

In comparison with ΠK(F1a), we find that the first and third anchor formulas have
been simplified and, most importantly, that the second anchor formula, that is, ♦p ∧♦¬p,
has been dropped (since it is K-consistent but KF-inconsistent). The partition ΠKF(F1a)
thus yields bitstrings of length 3, which are obtained by deleting the second bit from the
ΠK(F1a)-bitstrings. For example, �p is represented as 101, since �p ≡KF ♦p ∨ (�p ∨
�¬p). The bitstring representations of all formulas in F1a can be found in Figure 3c.

3.3. Examples from Non-Normal Modal Logic

For the cluster of examples from non-normal modal logic, we will consider the frag-
ment F1b:

F1b := {�(p ∧ q),�p ∧�q,♦¬p ∨♦¬q,♦(¬p ∨ ¬q)}.

Let’s first briefly consider F1b relative to normal modal logic. In any normal modal logic
Kα, we have �(p ∧ q) ≡Kα �p ∧�q and ♦(¬p ∨ ¬q) ≡Kα ♦¬p ∨ ♦¬q, and the first two
formulas are Kα-contradictory to the last two. The Aristotelian diagram for (F1b,Kα) is
thus a PCD, as shown in Figure 4a. More specifically, for any normal modal logics Kα
and Kβ, the identity function idF1b is an Aristotelian isomorphism between (F1b,Kα) and
(F1b,Kβ). Furthermore, it is easy to compute the partition that is induced by F1b in any
normal modal logic Kα:

ΠKα(F1b) = {�(p ∧ q),♦(¬p ∨ ¬q)}.

This partition yields bitstrings of length 2, which are given in Figure 4a. Within the realm
of normal modal logics, the fragment F1b is thus not at all logic-sensitive: for any normal
modal logic, it gives rise to the same Aristotelian diagram and the same partition. However,
this changes drastically as soon as we move to non-normal modal logics.
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We first consider E. Recall that E is the smallest non-normal modal logic, and is thus
quite important for theoretical reasons (e.g., it is sound and complete with respect to the
class of all neighborhood frames). It is easy to check that �(p ∧ q) and ♦(¬p ∨ ¬q) are
E-contradictories, and similar for �p ∧�q and ♦¬p ∨ ♦¬q. However, relative to E, the
formulas of F1b do not enter into any other Aristotelian relations with each other (and are
thus pairwise E-unconnected). The Aristotelian diagram for (F1b,E) is thus a degenerate
square of opposition, as shown in Figure 4b. The partition that is induced by F1b in E looks
as follows:

ΠE(F1b) = {�(p ∧ q) ∧�p ∧�q, �p ∧�q ∧♦(¬p ∨ ¬q),

(♦¬p ∨♦¬q) ∧♦(¬p ∨ ¬q), �(p ∧ q) ∧ (♦¬p ∨♦¬q)}.

This partition yields bitstrings of length 4, as indicated in Figure 4b.

10
�(p ∧ q)
�p ∧�q

01
♦(¬p ∨ ¬q)
♦¬p ∨♦¬q

(a) PCD for F1b in any normal modal logic.

1001
�(p ∧ q)

0011
♦¬p ∨♦¬q

�p ∧�q
1100

♦(¬p ∨ ¬q)
0110

(b) Degenerate square for F1b in E.

100
�(p ∧ q)

001
♦¬p ∨♦¬q

�p ∧�q
110

♦(¬p ∨ ¬q)
011

(c) Classical square for F1b in EM.

100
�p ∧�q

010
♦(¬p ∨ ¬q)

�(p ∧ q)
101

♦¬p ∨♦¬q
011

(d) Classical square for F1b in EC.

Figure 4. Aristotelian diagrams for F1b := {�(p ∧ q),�p ∧�q,♦¬p ∨ ♦¬q,♦(¬p ∨ ¬q)} in any
normal modal logic and in three non-normal modal logics.

We now turn to EM. The M-axiom �(p ∧ q) → (�p ∧�q) yields some of the most
important applications of non-normal modal logics, for example in game logic and coalition
logic [74]. Since EM is strictly stronger than E, the two pairs of E-contradictories are also EM-
contradictories. Furthermore, the formulas of F1b enter into four additional Aristotelian
relations relative to EM, and hence, the Aristotelian diagram for (F1b,EM) is a classical
square of opposition, as shown in Figure 4c. It is straightforward to check that there does
not exist an Aristotelian isomorphism between (F1b,E) and (F1b,EM), so this constitutes
our first example of logic-sensitivity with respect to Aristotelian families in the realm of
non-normal modal logics. Furthermore, an easy computation yields the partition that is
induced by F1b in EM:

ΠEM(F1b) = {�(p ∧ q),�p ∧�q ∧♦(¬p ∨ ¬q),♦¬p ∨♦¬q}.

In comparison with ΠE(F1b), we find that the first and third anchor formulas have
been simplified and, most importantly, that the fourth anchor formula, that is, �(p ∧ q) ∧
(♦¬p∨♦¬q), has been dropped (since it is E-consistent but EM-inconsistent). The partition
ΠEM(F1b) thus yields bitstrings of length 3, which are obtained by systematically deleting
the fourth bit from the ΠE(F1b)-bitstrings; cf. Figure 4c.
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Finally, we turn to EC. It is once again easy to check that the Aristotelian diagram
for (F1b,EC) is a classical square of opposition, which is shown in Figure 3d. There does
not exist an Aristotelian isomorphism between (F1b,E) and (F1b,EC), and thus we have
another easy example of logic-sensitivity with respect to Aristotelian families. However,
the situation again gets more subtle when we compare EM and EC: there does exist an
Aristotelian isomorphism f : (F1b,EM) → (F1b,EC), which maps �(p ∧ q) onto �p ∧
�q, ♦¬p ∨ ♦¬q onto ♦(¬p ∨ ¬q), and so forth—just compare Figure 4c,d. Nevertheless,
the identity function idF1b is not an Aristotelian isomorphism between (F1b,EM) and
(F1b,EC) (e.g., �(p ∧ q) and ♦¬p ∧♦¬q are EM-contrary but EC-subcontrary), and hence
we have obtained one more example of logic-sensitivity with respect to Aristotelian families.
Finally, an easy computation yields the partition that is induced by F1b in EC:

ΠEC(F1b) = {�p ∧�q,♦(¬p ∨ ¬q),�(p ∧ q) ∧ (♦¬p ∨♦¬q)}.

In comparison with ΠE(F1b), we find that the first and third anchor formulas have
been simplified and, most importantly, that the second anchor formula, that is, �p ∧�q ∧
♦(¬p ∨ ¬q), has been dropped (since it is E-consistent but EC-inconsistent). The partition
ΠEC(F1b) thus yields bitstrings of length 3, which are obtained by systematically deleting
the second bit from the ΠE(F1b)-bitstrings; cf. Figure 4d.

4. Logic-Sensitivity and Logical Equivalence of Formulas
4.1. Introduction

In the previous section, we focused on an aspect of logic-sensitivity that is primar-
ily due to the Aristotelian relations themselves (cf. Definition 7). However, Aristotelian
diagrams are defined up to logical equivalence and should only contain contingent for-
mulas (cf. Definition 8). These diagrammatic requirements are two further sources of
logic-sensitivity. In this section, we will focus on the logical equivalence requirement,
and in Section 5 on the contingency requirement.

Definition 8 specifies that different vertices of an Aristotelian diagram can only contain
formulas that are not logically equivalent to each other. However, of course, two formulas
might be logically equivalent relative to a logical system S1, but not relative to another
logical system S2. Consequently, if F is a fragment containing these formulas, then the
Aristotelian diagram for (F ,S1) will have fewer distinct vertices than the diagram for
(F ,S2), and a fortiori, the two diagrams will not be Aristotelian isomorphic to each
other. This aspect of logic-sensitivity can thus be viewed as a special case of the general
logic-sensitivity that was discussed in Section 3. More concretely, in the general case we
were dealing with Aristotelian diagrams for (F ,S1) and (F ,S2) that are not Aristotelian
isomorphic but that still have the same number of vertices (e.g., a degenerate square and a
classical square both have four distinct vertices; cf. Section 3), whereas the cases that we are
going to study now involve Aristotelian diagrams for (F , S1) and (F , S2) that do not even
have the same number of vertices.

4.2. Examples from Normal Modal Logic

We return to the fragment F1a = {�p,♦p,�¬p,♦¬p}. We already saw in Section 3.2
that the Aristotelian diagram for (F1a,K) is a degenerate square of opposition, which is
repeated here as in Figure 5a, together with the bitstrings corresponding to the induced par-
tition

ΠK(F1a) = {�p ∧♦p,♦p ∧♦¬p,�¬p ∧♦¬p,�p ∧�¬p}.

We also saw that adding either the D- or the F-axiom yielded a classical square of
opposition. A natural next step is now to investigate the effect of adding both axioms
simultaneously, and thus to move from K to KDF. It is trivial that �p ≡KDF ♦p and
�¬p ≡KDF ♦¬p. Furthermore, each of the first two formulas is KDF-contradictory to
each of the last two formulas. To summarize, the Aristotelian diagram for (F1a,KDF) is
not a square (be it degenerate or classical), but rather collapses into a horizontal PCD,
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as shown in Figure 5b. It is easy to see that there does not exist an Aristotelian isomorphism
f : (F1a,K)→ (F1a,KDF). After all, if such an isomorphism f would exist, then the fact that
�p and ♦p are K-unconnected would entail that f (�p) and f (♦p) are KDF-unconnected
as well, but (F1a,KDF) does not contain any pairs of unconnected formulas. The PCD
for (F1a,KDF) is thus not Aristotelian isomorphic to the degenerate square for (F1a,K);
completely analogously, this PCD is not isomorphic to the classical squares for (F1a,KD)
and (F1a,KF) either. Finally, an easy computation yields the partition that is induced by
F1a in KDF:

ΠKDF(F1a) = {�p,�¬p}.

In comparison with ΠK(F1a), we find that the first and third anchor formulas have
been simplified and, most importantly, that the second and fourth anchor formulas, that
is, ♦p ∧ ♦¬p and �p ∧�¬p, have been dropped (since they are K-consistent but KDF-
inconsistent). The partition ΠKDF(F1a) thus yields bitstrings of length 2, which are ob-
tained by systematically deleting the second and fourth bits from the ΠK(F1a)-bitstrings;
cf. Figure 5b.

1001
�p

0011
�¬p

♦p
1100

♦¬p
0110

(a) Degenerate square for F1a in K.

10
�p
♦p

01
�¬p
♦¬p

(b) PCD for F1a in KDF.

Figure 5. Aristotelian diagrams for F1a = {�p,♦p,�¬p,♦¬p} in two normal modal logics.

4.3. Examples from Non-Normal Modal Logic

For an analogous example from non-normal modal logic, we return to the fragment
F1b = {�(p ∧ q),�p ∧�q,♦¬p ∨ ♦¬q,♦(¬p ∨ ¬q)}. We already saw in Section 3.3 that
this fragment does not exhibit any logic-sensitivity within the realm of normal modal logics,
but that it does so once we move to non-normal modal logics. In particular, we saw that the
Aristotelian diagram for (F1b,E) is a degenerate square of opposition, which is repeated
here as in Figure 6a, together with the bitstrings corresponding to the induced partition

ΠE(F1b) = {�(p ∧ q) ∧�p ∧�q, �p ∧�q ∧♦(¬p ∨ ¬q),

(♦¬p ∨♦¬q) ∧♦(¬p ∨ ¬q), �(p ∧ q) ∧ (♦¬p ∨♦¬q)}.

Furthermore, we also saw that adding the M- or the C-axiom yielded a classical square
of opposition. Once again, a natural next step is to investigate the effect of adding both
axioms simultaneously, and thus to move from E to EMC. We again find that the Aristotelian
diagram for (F1b,EMC) is not a square (be it degenerate or classical), but rather collapses
into a horizontal PCD, as shown in Figure 6b. Just as before, the PCD for (F1b,EMC)
is again easily seen not to be Aristotelian isomorphic to either the degenerate square for
(F1b,E) or the classical squares for (F1b,EM) and (F1b,EC), thus yielding more examples of
logic-sensitivity with respect to logical equivalence of formulas. Furthermore, the partition
that is induced by F1b in EMC looks as follows:

ΠEMC(F1b) = {�(p ∧ q),♦(¬p ∨ ¬q)}.

In comparison with ΠE(F1b), we find that the first and third anchor formulas have
been simplified and, most importantly, that the second and fourth anchor formulas, that
is, �p ∧�q ∧ ♦(¬p ∨ ¬q) and �(p ∧ q) ∧ (♦¬p ∨ ♦¬q), have been dropped (since they
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are E-consistent but EMC-inconsistent). The partition ΠEMC(F1b) thus yields bitstrings
of length 2, which are obtained by deleting the second and fourth bits from the ΠE(F1b)-
bitstrings; cf. Figure 6b.

1001
�(p ∧ q)

0011
♦¬p ∨♦¬q

�p ∧�q
1100

♦(¬p ∨ ¬q)
0110

(a) Degenerate square for F1b in E.

10
�(p ∧ q)
�p ∧�q

01
♦¬p ∨♦¬q
♦(¬p ∨ ¬q)

(b) PCD for F1b in EMC.

Figure 6. Aristotelian diagrams for F1b = {�(p ∧ q),�p ∧�q,♦¬p ∨ ♦¬q,♦(¬p ∨ ¬q)} in two
non-normal modal logics.

4.4. Theory and Further Examples

We now take a more theoretical perspective, and show that logic-sensitivity with
respect to logical equivalence (as studied in this section) can be systematically linked to
logic-sensitivity with respect to Aristotelian families (as studied in Section 3). Specifically,
Theorem 1 shows how the logical equivalence or non-equivalence of certain formulas is
related to the Aristotelian families of classical and degenerate squares of oppositions. This
theorem can be proved from first principles (i.e., without appealing to bitstring semantics),
but we present a bitstring-based proof that is easier to follow and is more insightful.

Theorem 1. Consider the function f1 : ℘(L)→ ℘(L), which maps F = {α, β,¬α,¬β} onto

f1(F ) := {α ∧ β, α,¬α,¬α ∨ ¬β}.

For any logical system S as in Definition 7, the following hold:

1. If the Aristotelian diagram for (F ,S) is a degenerate square, then the Aristotelian diagram
for ( f1(F ),S) is a classical square (with an S-subalternation from α ∧ β to α);

2. If the Aristotelian diagram for (F , S) is a classical square (with an S-subalternation from α to
β), then the Aristotelian diagram for ( f1(F ), S) is a PCD (with α ∧ β ≡S α).

Furthermore, in both cases, ΠS( f1(F )) is a coarsening of ΠS(F ).

Proof. 1. If the Aristotelian diagram for (F ,S) is a degenerate square, then ΠS(F ) =
{α∧ β, α∧¬β,¬α∧ β,¬α∧¬β}. The bitstring semantics βFS corresponding to this partition
maps α ∧ β to 1000, α to 1100, ¬α to 0011 and ¬α ∨ ¬β to 0111. These four bitstrings
constitute a classical square (with a subalternation from 1000 to 1100). Since βFS is an
Aristotelian isomorphism, it follows that the four f1(F )-formulas also constitute a classical
square (with a subalternation from α ∧ β to α) in S. Finally, note that ΠS( f1(F )) =
{α∧ β, α∧¬β,¬α} is indeed a coarsening of ΠS(F ), since the two anchor formulas ¬α∧ β
and ¬α ∧ ¬β from ΠS(F ) have collapsed into a single one, ¬α, in ΠS( f1(F )).

2. If the Aristotelian diagram for (F , S) is a classical square (with an S-subalternation
from α to β), then ΠS(F ) = {α,¬α ∧ β,¬β}. The bitstring semantics βFS corresponding to
this partition maps α ∧ β and α to 100, and ¬α and ¬α ∨ ¬β to 011. These two bitstrings
constitute a PCD. Since βFS is an Aristotelian isomorphism, it follows that the four f1(F )-
formulas also constitute a PCD (with α ∧ β ≡S α) in S. Finally, note that ΠS( f1(F )) =
{α,¬α} is indeed a coarsening of ΠS(F ), since the two anchor formulas ¬α ∧ β and ¬β
from ΠS(F ) have collapsed into a single one, ¬α, in ΠS( f1(F )).

This theorem can straightforwardly be applied to yield many more examples of
logic-sensitivity with respect to logical equivalence. For example, consider once again
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F1a = {�p,♦p,�¬p,♦¬p}; applying f1 yields the new fragment f1(F1a) = {�p ∧
♦p,�p,♦¬p,�¬p ∨ ♦¬p}. We already saw in Section 3.2 that (F1a,K) yields a degen-
erate square, while (F1a,KD) yields a classical square. By Theorem 1, it follows imme-
diately that ( f1(F1a),K) yields a classical square, which is shown in Figure 7a, while
( f1(F1a),KD) yields a PCD, which is shown in Figure 7b. Furthermore, easy computations
yield ΠK( f1(F1a)) = {�p ∧ ♦p,�p ∧�¬p,♦¬p} and ΠKD( f1(F1a)) = {�p,♦¬p}; the
corresponding bitstrings of length 3 and 2 are shown in Figure 7a,b, respectively.

100
�p ∧♦p

001
♦¬p

�p
110

�¬p ∨♦¬p
011

(a) Classical square for f1(F1a) in K.

10
�p ∧♦p

�p

01
♦¬p

�¬p ∨♦¬p

(b) PCD for f1(F1a) in KD.

Figure 7. Aristotelian diagrams for f1(F1a) = {�p ∧ ♦p,�p,♦¬p,�¬p ∨ ♦¬p} in two normal
modal logics.

Theorem 1 applies equally straightforwardly in the realm of non-normal modal logics.
For example, consider once again F1b = {�(p ∧ q),�p ∧�q,♦¬p ∨ ♦¬q,♦(¬p ∨ ¬q)};
we already saw in Section 3.3 that (F1b,E) yields a degenerate square, while (F1b,EM)
yields a classical square. By Theorem 1 it follows immediately that ( f1(F1b),E) yields a
classical square, which is shown in Figure 8a, while ( f1(F1b),EM) yields a PCD, which is
shown in Figure 8b. Two further easy computations yield ΠE( f1(F1b)) = {�(p∧ q)∧�p∧
�q,�(p ∧ q) ∧ (♦¬p ∨ ♦¬q),♦(¬p ∨ ¬q)} and ΠEM( f1(F1b)) = {�(p ∧ q),♦(¬p ∨ ¬q)};
the corresponding bitstrings of length 3 and 2 are again shown in Figure 8a,b, respectively.

100
�(p ∧ q)∧
�p ∧�q

001
♦(¬p ∨ ¬q)

�(p ∧ q)
110

♦(¬p ∨ ¬q)∨
♦¬p ∨♦¬q

011

(a) Classical square for f1(F1b) in E.

10
�(p ∧ q)

01
♦(¬p ∨ ¬q)

(b) PCD for f1(F1b) in EM. (For reasons of
space, only a single formula from each equiv-
alence class is displayed.)

Figure 8. Aristotelian diagrams for f1(F1b) = {�(p ∧ q) ∧�p ∧�q,�(p ∧ q),♦(¬p ∨ ¬q),♦(¬p ∨
¬q) ∨♦¬p ∨♦¬q} in two non-normal modal logics.

5. Logic-Sensitivity and Contingency of Formulas
5.1. Introduction

In this section, we continue our exploration of logic-sensitivity due to diagrammatic
requirements. Definition 8 specifies that only contingent formulas can appear in an Aris-
totelian diagram. Of course, a formula might be contingent relative to a logical system S1,
but not relative to another logical system S2. Consequently, if F is a fragment containing
such a formula, then the Aristotelian diagram for (F , S2) will have fewer vertices than the
diagram for (F ,S1), and a fortiori, the two diagrams will not be Aristotelian isomorphic
to each other. This aspect of logic-sensitivity, too, can be viewed as a special case of the
general logic-sensitivity that was discussed in Section 3. More concretely, in the general
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case, we deal with Aristotelian diagrams for (F ,S1) and (F ,S2) that are not Aristotelian
isomorphic but that still have the same number of vertices, whereas now we are going to
deal with Aristotelian diagrams for (F ,S1) and (F ,S2) that do not even have the same
number of vertices.

It is worth pointing out that logic-sensitivity with respect to contingency can also
be viewed as a special case of logic-sensitivity with respect to logical equivalence (which
was discussed in the previous section). After all, recall from Section 2 that the standard
perspective holds that Aristotelian diagrams simply do not contain any non-contingent
formulas, but that there is also an alternative perspective, which holds that an Aristotelian
diagram can contain non-contingent formulas after all, but that they are (invisibly) col-
lapsed in the diagram’s center of symmetry. Now suppose that ϕ ∈ F is S1-contingent but
not S2-contingent. According to the standard perspective, going from (F ,S1) to (F ,S2)
means that ϕ ‘drops out’ of the Aristotelian diagram altogether. According to the alterna-
tive perspective, however, it means that ϕ becomes equivalent to > (or to ⊥), and thus
‘collapses’ with >/⊥ in the diagram’s center of symmetry. This alternative approach
clearly merits further investigation, but in the concrete examples in the remainder of this
section we will stick to the standard approach, and thus draw a clear distinction between
equivalence-based and contingency-based aspects of logic-sensitivity.

5.2. Examples from Normal Modal Logic

Our main example from normal modal logic is based on the fragment F2a:

F2a := {♦p,♦>,�⊥,�¬p}.

It is easy to check that each of these formulas is K-contingent, and the Aristotelian
diagram for (F2a,K) is a classical square of opposition, as shown in Figure 9a. Furthermore,
the partition that is induced by F2a in K looks as follows:

ΠK(F2a) = {♦p,♦>∧�¬p,�⊥}.

This partition yields bitstrings of length 3. For example, �¬p is represented as 011,
since �¬p ≡K (♦>∧�¬p) ∨�⊥. All bitstrings for F2a can be found in Figure 9a.

We now turn to KD. The formulas ♦p and �¬p are still KD-contingent. By contrast,
♦> and �⊥ go from being K-contingent to not being KD-contingent, since |=KD ♦> and
|=KD ¬�⊥. Consequently, these last two formulas are not included in the Aristotelian
diagram for (F2a,KD), which is thus a PCD, as shown in Figure 9b. It is easy to see that
there does not exist an Aristotelian isomorphism f : (F2a,K)→ (F2a,KD). After all, if such
an isomorphism f would exist, then the fact that the K-contingent formulas ♦p and �⊥
are K-contrary would entail that f (♦p) and f (�⊥) are KD-contrary as well, but (F2a,KD)
does not contain any pairs of contraries. The PCD for (F2a,KD) is thus not Aristotelian
isomorphic to the classical square for (F2a,K). The partition that is induced by F2a in KD
looks as follows:

ΠKD(F2a) = {♦p,�¬p}.

In comparison with ΠK(F2a), we find that the second anchor formula has been
simplified and the third one, that is, �⊥, has been dropped (since it is K-consistent but
KD-inconsistent). The partition ΠKD(F2a) thus yields bitstrings of length 2, which are
obtained by systematically deleting the third bit from the ΠK(F2a)-bitstrings; cf. Figure 9b.
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100
♦p

001
�⊥

♦>
110

�¬p
011

(a) Classical square for F2a in K.

10
♦p

�¬p
01

(b) PCD for F2a in KD.

Figure 9. Aristotelian diagrams for F2a = {♦p,♦>,�⊥,�¬p} in two normal modal logics.

To conclude this subsection, note that the Aristotelian diagrams for (F1a,KDF) and
(F2a,KD) are both PCDs—compare Figures 5b and 9b—, and thus belong to the same
Aristotelian family. After all, it is easy to check that the function which maps �p and ♦p
onto ♦p, and �¬p and ♦¬p onto �¬p, is an Aristotelian isomorphism from (F1a,KDF)
to (F2a,KD). However, these two PCDs arise in two completely different ways. On the
one hand, the Aristotelian diagram for (F1a,KDF) contains four KDF-contingent formulas
(which are two by two KDF-equivalent), and can thus be viewed as the result of ‘collaps-
ing’ the degenerate square for (F1a,K) to a single, horizontal PCD. On the other hand,
the Aristotelian diagram for (F2a,KD) contains only two KD-contingent formulas (and no
KD-equivalences), and can thus be viewed as the result of ‘deleting’ half of the classical
square for (F2a,K) to obtain a single, diagonal PCD.

To illustrate this point more vividly, Figure 10 shows two diagrams that ‘approximate’
these two PCDs (together with their ΠKDF(F1a)- and ΠKD(F2a)-bitstrings). These are not
valid Aristotelian diagrams, since they do not satisfy the requirements from Definition 8:
Figure 10a puts logically equivalent formulas on distinct vertices, while Figure 10b contains
non-contingent formulas. The strong differences between these two diagrams clearly illus-
trate how the PCDs for (F1a,KDF) and (F2a,KD) come about in two completely different
ways. Finally, note that these two diagrams also illustrate the reasons for imposing these
two requirements in the first place: the presence of equivalent formulas on distinct vertices
duplicates the contradiction relations, thus making Figure 10a quite redundant, while the
presence of non-contingent formulas leads to four additional Aristotelian relations, thus
making Figure 10b harder to process.

10
�p

01
�¬p

♦p
10

♦¬p
01

(a) Invalid diagram for (F1a,KDF).

10
♦p

00
�⊥

♦>
11

�¬p
01

(b) Invalid diagram for (F2a,KD).

Figure 10. Invalid (!) diagrams that approximate the PCDs for (F1a,KDF) and (F2a,KD).

5.3. Examples from Non-Normal Modal Logic

Consider the following fragment:

F2b := {�p,�>,♦⊥,♦¬p}.

For any (non-absurd) normal modal logic Kα, we find that �p and ♦¬p are Kα-
contingent and Kα-contradictory to each other, while �> and ♦⊥ are not Kα-contingent.
The Aristotelian diagram for (F2b,Kα) is thus a PCD, and the induced partition is
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ΠKα(F2b) = {�p,♦¬p}. Within the large class of non-absurd normal modal logics,
the fragment F2b is thus not at all logic-sensitive. However, this changes drastically as
soon as we move to non-normal modal logics.

With respect to EM, we find that all formulas of F2b are EM-contingent, and constitute
a classical square of opposition. For example, there is an EM-subalternation from �p to �>,
since |=EM �p→ �> and 6|=EM �> → �p. Furthermore, the partition that is induced by
F2b in EM looks as follows:

ΠEM(F2b) = {�p,�>∧♦¬p,♦⊥}.

This partition yields bitstrings of length 3. The classical square for (F2b,EM) and the
corresponding ΠEM(F2b)-bitstrings are shown in Figure 11a.

We now turn to EMN. The formulas �p and ♦¬p are still EMN-contingent. By contrast,
�> and ♦⊥ go from being EM-contingent to not being EMN-contingent, since |=EMN �>
and |=EMN ¬♦⊥. Consequently, these last two formulas are not included in the Aristotelian
diagram for (F2b,EMN), which is thus a PCD, as shown in Figure 11b. It is again easy to see
that there does not exist an Aristotelian isomorphism f : (F2b,EM)→ (F2b,EMN). After all,
if such an isomorphism f would exist, then the fact that the EM-contingent formulas �p
and ♦⊥ are EM-contrary would entail that f (�p) and f (♦⊥) are EMN-contrary as well,
but (F2b,EMN) does not contain any pairs of contraries. The PCD for (F2b,EMN) is thus
not Aristotelian isomorphic to the classical square for (F2b,EM). Another easy calculation
yields the following partition:

ΠEMN(F2b) = {�p,♦¬p}.

In comparison with ΠEM(F2b), we find that the second anchor formula has been
simplified and the third one, that is, ♦⊥, has been dropped (since it is EM-consistent but
EMN-inconsistent). The partition ΠEMN(F2b) thus yields bitstrings of length 2, which are
obtained by deleting the third bit from the ΠEM(F2b)-bitstrings; cf. Figure 11b.

100
�p

001
♦⊥

�>
110

♦¬p
011

(a) Classical square for F2b in EM.

10
�p

♦¬p
01

(b) PCD for F2b in EMN.

Figure 11. Aristotelian diagrams for F2b = {�p,�>,♦⊥,♦¬p} in two non-normal modal logics.

5.4. Theory and Further Examples

Just as in Section 4.4, we now take a more theoretical perspective, and show that logic-
sensitivity with respect to contingency (as studied in this section) can also be systematically
linked to logic-sensitivity with respect to Aristotelian families (as studied in Section 3).
In particular, Theorem 2 shows how the logical contingency or non-contingency of certain
formulas is related to the Aristotelian families of classical and degenerate squares of
oppositions.

Theorem 2. Consider the function f2 : ℘(L)→ ℘(L), which maps F = {α, β,¬α,¬β} onto

f2(F ) := {α ∧ ¬β, α,¬α,¬α ∨ β}.

For any logical system S as in Definition 7, the following hold:
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1. If the Aristotelian diagram for (F ,S) is a degenerate square, then the Aristotelian diagram
for ( f2(F ),S) is a classical square (with an S-subalternation from α ∧ ¬β to α);

2. If the Aristotelian diagram for (F , S) is a classical square (with an S-subalternation from α to
β), then α∧¬β and ¬α∨ β are not S-contingent and the Aristotelian diagram for ( f2(F ), S)
is a PCD.

Furthermore, in both cases, ΠS( f2(F )) is a coarsening of ΠS(F ).

Proof. Completely analogous to the proof of Theorem 1.

This theorem immediately yields further examples of logic-sensitivity with re-
spect to contingency, in normal and non-normal modal logics alike. For an exam-
ple from normal modal logic, we apply f2 to the fragment F1a to obtain f2(F1a) =
{�p ∧�¬p,�p,♦¬p,♦p ∨ ♦¬p}; note that the first and last formula can be simplified
(in any normal modal logic) to resp. �⊥ and ♦>. Recall from Section 3.2 that (F1a,K)
yields a degenerate square, while (F1a,KD) yields a classical square. By Theorem 2,
it follows immediately that ( f2(F1a),K) yields a classical square, which is shown in
Figure 12a, while ( f2(F1a),KD) yields a PCD, which is shown in Figure 12b. Furthermore,
we have ΠK( f2(F1a)) = {�⊥,�p ∧ ♦>,♦¬p} and ΠKD( f2(F1a)) = {�p,♦¬p}; the
corresponding bitstrings of length 3 and 2 are shown in Figure 12a,b, respectively.

100
�⊥

001
♦¬p

�p
110

♦>
011

(a) Classical square for f2(F1a) in K.

01
♦¬p

�p
10

(b) PCD for f2(F1a) in KD.

Figure 12. Aristotelian diagrams for f2(F1a) = {�⊥,�p,♦¬p,♦>} in two normal modal logics.

For an example from non-normal modal logic, note that applying f2 to F1b yields
f2(F1b) = {�(p ∧ q) ∧ (♦¬p ∨♦¬q),�(p ∧ q),♦(¬p ∨ ¬q),♦(¬p ∨ ¬q) ∨ (�¬p ∧�¬q)};
we already saw in Section 3.3 that (F1b,E) yields a degenerate square, while (F1b,EM)
yields a classical square. Theorem 2 now entails that ( f2(F1b),E) yields a classical square,
which is shown in Figure 13a, while ( f2(F1b),EM) yields a PCD, which is shown in
Figure 13b. Finally, we have ΠE( f2(F1b)) = {�(p ∧ q) ∧ (♦¬p ∨♦¬q),�(p ∧ q) ∧�¬p ∧
�¬q,♦(¬p ∨ ¬q)} and ΠEM( f2(F1b)) = {�(p ∧ q),♦(¬p ∨ ¬q)}; the corresponding bit-
strings of length 3 and 2 are again shown in Figure 13a,b, respectively.

100
�(p ∧ q)∧

(♦¬p ∨♦¬q)

001
♦(¬p ∨ ¬q)

�(p ∧ q)
110

♦(¬p ∨ ¬q)∨
(�¬p ∧�¬q)

011

(a) Classical square for f2(F1b) in E.

01
♦(¬p ∨ ¬q)

�(p ∧ q)
10

(b) PCD for f2(F1b) in EM.

Figure 13. Aristotelian diagrams for f2(F1b) = {�(p ∧ q) ∧ (♦¬p ∨ ♦¬q),�(p ∧ q),♦(¬p ∨
¬q),♦(¬p ∨ ¬q) ∨ (�¬p ∧�¬q)} in two non-normal modal logics.
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6. Logic-Sensitivity and Boolean Subfamilies
6.1. Introduction

In this section, we discuss one final type of logic-sensitivity, viz., with respect to
Boolean subfamilies. This is more subtle than the previous three types; as far as we know,
no concrete examples of this type of logic-sensitivity have previously been discussed in the
literature. As explained in Sections 4.1 and 5.1, the equivalence-based and contingency-
based types of logic-sensitivity can be viewed as subtypes of logic-sensitivity with respect
to Aristotelian families, and in that sense, they are not genuinely new kinds of behavior.
By contrast, the type of logic-sensitivity we will discuss in this section is not just another
subtype of logic-sensitivity with respect to Aristotelian families, and thus does represent a
fundamentally new phenomenon.

Roughly speaking, the idea is that Aristotelian diagrams for one and the same frag-
ment with respect to two different logical systems might be completely identical, except
for their Boolean properties. Put more precisely: for some fragments F and logical sys-
tems S1 and S2, (i) there exists an Aristotelian isomorphism between (F ,S1) and (F ,S2),
and this Aristotelian isomorphism can even be taken to be idF , (ii) for all ϕ, ψ ∈ F we have
ϕ ≡S1

ψ iff ϕ ≡S2 ψ, (iii) for all ϕ ∈ F we have that ϕ is S1-contingent iff ϕ is S2-contingent,
but nevertheless, (iv) there does not exist a Boolean isomorphism between (F ,S1) and
(F ,S2). Condition (i) entails that we are not dealing with logic-sensitivity with respect
to Aristotelian families (as discussed in Section 3); condition (ii) entails that we are not
dealing with logic-sensitivity with respect to logical equivalence (as discussed in Section 4);
finally, condition (iii) entails that we are not dealing with logic-sensitivity with respect to
logical equivalence (as discussed in Section 5). Nevertheless, condition (iv) shows that
there are logically relevant differences between the Aristotelian diagrams for (F ,S1) and
(F ,S2), viz., in terms of their Boolean properties. Using more classification-oriented ter-
minology, the diagrams for (F ,S1) and (F ,S2) belong to one and the same Aristotelian
family, but they belong to different Boolean subfamilies of this family.

6.2. Theory and Examples

Rather than first discussing some independent examples, we immediately take a more
theoretical perspective and show how logic-sensitivity with respect to Boolean subfamilies
can once again be systematically linked to logic-sensitivity with respect to Aristotelian
families (as studied in Section 3). In particular, Theorem 3 shows how the two Boolean
subfamilies (strong/weak) of JSB hexagons are related to the two Aristotelian families of
squares (classical/degenerate). Although the proof is analogous to, and thus not harder
than, those of Theorems 1 and 2, it is spelt out in detail precisely to emphasize the high
degree of similarity: logic-sensitivity with respect to Boolean subfamilies is conceptually
speaking quite subtle, but on a mathematical level it is on par with the other types of
logic-sensitivity.

Theorem 3. Consider the function f3 : ℘(L)→ ℘(L), which maps F = {α, β,¬α,¬β} onto

f3(F ) := {α ∧ β,¬α ∧ β,¬α ∧ ¬β, α ∨ β, α ∨ ¬β,¬α ∨ ¬β}.

For any logical system S as in Definition 7, the following hold:

1. If the Aristotelian diagram for (F ,S) is a degenerate square, then the Aristotelian diagram
for ( f3(F ),S) is a weak JSB hexagon (with pairwise S-contrarieties between α ∧ β,¬α ∧ β
and ¬α ∧ ¬β);

2. If the Aristotelian diagram for (F ,S) is a classical square (with an S-subalternation from α
to β), then the Aristotelian diagram for ( f3(F ),S) is a strong JSB hexagon (with the same
pairwise S-contrarieties).

Furthermore, in both cases, ΠS( f3(F )) is identical to ΠS(F ).
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Proof. 1. If the Aristotelian diagram for (F ,S) is a degenerate square, then ΠS(F ) =
{α∧ β, α∧¬β,¬α∧ β,¬α∧¬β}. The bitstring semantics βFS corresponding to this partition
maps α ∧ β to 1000, ¬α ∧ β to 0010, ¬α ∧ ¬β to 0001, α ∨ β to 1110, α ∨ ¬β to 1101 and
¬α ∨ ¬β to 0111. These six bitstrings constitute a JSB hexagon (with pairwise contrarieties
between 1000, 0010 and 0001). Furthermore, this JSB hexagon is a weak one, since 1000∨
0010∨ 0001 6= 1111. Since βFS is a Boolean (and thus also an Aristotelian) isomorphism, it
follows that the six f3(F )-formulas also constitute a weak JSB hexagon (with the required
contrarieties) in S. Finally, an easy computation yields ΠS( f3(F )) = {α ∧ β, α ∧ ¬β,¬α ∧
β,¬α ∧ ¬β} = ΠS(F ).

2. If the Aristotelian diagram for (F , S) is a classical square (with an S-subalternation
from α to β), then ΠS(F ) = {α,¬α ∧ β,¬β}. The bitstring semantics βFS corresponding
to this partition maps α ∧ β to 100, ¬α ∧ β to 010, ¬α ∧ ¬β to 001, α ∨ β to 110, α ∨ ¬β
to 101 and ¬α ∨ ¬β to 011. These six bitstrings constitute a JSB hexagon (with pairwise
contrarieties between 100, 010 and 001). Furthermore, this JSB hexagon is a strong one, since
100∨ 010∨ 001 = 111. Since βFS is a Boolean (and thus also an Aristotelian) isomorphism, it
follows that the six f3(F )-formulas also constitute a strong JSB hexagon (with the required
contrarieties) in S. Finally, an easy computation yields ΠS( f3(F )) = {α,¬α ∧ β,¬β} =
ΠS(F ).

This theorem easily generates concrete examples of logic-sensitivity with respect to
Boolean subfamilies. For an example from normal modal logic, we turn one last time to the
fragment F1a = {�p,♦p,�¬p,♦¬p}. Applying f3 to this fragment yields

f3(F1a) = {�p ∧♦p,♦p ∧♦¬p,�¬p ∧♦¬p,�p ∨♦p,�p ∨�¬p,�¬p ∨♦¬p}.

Recall from Section 3.2 that (F1a,K) yields a degenerate square, while (F1a,KD) yields
a classical square. By Theorem 3 it follows immediately that ( f3(F1a),K) yields a weak JSB
hexagon, which is shown in Figure 14a, while ( f3(F1a),KD) yields a strong JSB hexagon,
which is shown in Figure 14b. Note that in KD, four of the six formulas in f3(F1a) can be
simplified (e.g., �p ∧ ♦p ≡KD �p); the JSB hexagon in Figure 14b is shown using these
simplified formulas. Finally, we have

ΠK( f3(F1a)) = {�p ∧♦p,♦p ∧♦¬p,�¬p ∧♦¬p,�p ∧�¬p} = ΠK(F1a),

ΠKD( f3(F1a)) = {�p,♦p ∧♦¬p,�¬p} = ΠKD(F1a).

The corresponding bitstrings of length 4 and 3 are shown in Figure 14a,b, respectively.

1011
�p ∨�¬p

1000
�p ∧♦p

0010
�¬p ∧♦¬p

�p ∨♦p
1101

�¬p ∨♦¬p
0111

♦p ∧♦¬p
0100

(a) Weak JSB hexagon for f3(F1a) in K.

101
�p ∨�¬p

100
aa�paa

001
aa�¬paa

♦p
110

♦¬p
011

♦p ∧♦¬p
010

(b) Strong JSB hexagon for f3(F1a) in KD.

Figure 14. Aristotelian diagrams for f3(F1a) = {�p ∧ ♦p,♦p ∧ ♦¬p,�¬p ∧ ♦¬p,�p ∨ ♦p,�p ∨
�¬p,�¬p ∨♦¬p} in two normal modal logics.
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For an example from non-normal modal logic, we turn one last time to the fragment
F1b = {�(p ∧ q),�p ∧�q,♦¬p ∨♦¬q,♦(¬p ∨ ¬q)}. Applying f3 yields

f3(F1b) = {�(p ∧ q) ∧�p ∧�q, �p ∧�q ∧♦(¬p ∨ ¬q), (♦¬p ∨♦¬q) ∧♦(¬p ∨ ¬q),

�(p ∧ q) ∨ (�p ∧�q), �(p ∧ q) ∨♦¬p ∨♦¬q, ♦¬p ∨♦¬q ∨♦(¬p ∨ ¬q)}.

Recall from Section 3.3 that (F1b,E) yields a degenerate square, while (F1b,EM) yields
a classical square. By Theorem 3 it follows immediately that ( f3(F1b),E) yields a weak JSB
hexagon, which is shown in Figure 15a, while ( f3(F1b),EM) yields a strong JSB hexagon,
which is shown in Figure 15b. Note that in EM, four of the six formulas in f3(F1b) can be
simplified; the JSB hexagon in Figure 15b is shown using these simplified formulas. Finally,
we have

ΠE( f3(F1b)) = {�(p ∧ q) ∧�p ∧�q, �p ∧�q ∧♦(¬p ∨ ¬q),

(♦¬p ∨♦¬q) ∧♦(¬p ∨ ¬q), �(p ∧ q) ∧ (♦¬p ∨♦¬q)} = ΠE(F1b),

ΠEM( f3(F1b)) = {�(p ∧ q),�p ∧�q ∧♦(¬p ∨ ¬q),♦¬p ∨♦¬q} = ΠEM(F1b).

The corresponding bitstrings of length 4 and 3 are shown in Figure 15a,b, respectively.

1011
�(p ∧ q)∨
♦¬p ∨♦¬q

1000
�(p ∧ q)∧
�p ∧�q

0010
(♦¬p ∨♦¬q)
∧♦(¬p ∨ ¬q)

�(p ∧ q)∨
(�p ∧�q)

1101

♦¬p ∨♦¬q
∨♦(¬p ∨ ¬q)

0111

�p ∧�q∧
♦(¬p ∨ ¬q)

0100

(a) Weak JSB hexagon for f3(F1b) in E.

101
�(p ∧ q)∨
♦¬p ∨♦¬q

100
�(p ∧ q)

001
♦¬p ∨♦¬q

�p ∧�q
110

♦(¬p ∨ ¬q)
011

�p ∧�q∧
♦(¬p ∨ ¬q)

010

(b) Strong JSB hexagon for f3(F1b) in EM.

Figure 15. Aristotelian diagrams for f3(F1b) = {�(p∧ q)∧�p∧�q, �p∧�q∧♦(¬p∨¬q), (♦¬p∨
♦¬q) ∧ ♦(¬p ∨ ¬q), �(p ∧ q) ∨ (�p ∧�q), �(p ∧ q) ∨ ♦¬p ∨ ♦¬q, ♦¬p ∨ ♦¬q ∨ ♦(¬p ∨ ¬q)} in
two non-normal modal logics.

7. Conclusions

In this paper, we have investigated the logic-sensitivity of Aristotelian diagrams
in normal, as well as non-normal modal logics. We have distinguished between four
different types of logic-sensitivity, viz. with respect to (i) Aristotelian families, (ii) log-
ical equivalence of formulas, (iii) contingency of formulas, and (iv) Boolean subfami-
lies of a given Aristotelian family, and explained the differences and relations between
them (cf. Sections 3.1, 4.1, 5.1 and 6.1). For the first three types, we have given examples
that naturally arise in the context of normal modal logic, and shown that these exam-
ples have direct and equally natural counterparts in the context of non-normal modal
logic (cf. Sections 3.2, 3.3, 4.2, 4.3, 5.2 and 5.3). Furthermore, we have also developed a
more theoretical perspective that systematically links logic-sensitivity with respect to
Aristotelian families to the three other types of logic-sensitivity, and we have shown
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that it applies to Aristotelian diagrams for normal and non-normal modal logics alike
(cf. Sections 4.4, 5.4 and 6.2).

It will be interesting to investigate to what extent this theoretical perspective can
be extended and generalized. Theorems 1–3 in the present paper were all based on the
binary distinction between classical and degenerate squares. However, there also exist logic-
sensitivity phenomena that are not binary in nature. For example, the Aristotelian family of
Buridan octagons has three distinct Boolean subfamilies, which are sometimes called weak,
intermediate and strong Buridan octagons; these three subfamilies can be represented
by bitstrings of length 6, 5 and 4, respectively [57,65]. Can this threefold distinction still
be captured in terms of the binary distinction between classical and degenerate squares?
One promising idea is to search for a function f4 : ℘(L)× ℘(L)→ ℘(L) such that for any
logical system S as in Definition 7, we have:

• If (F1, S) and (F2, S) are both degenerate squares, then ( f4(F1,F2), S) is a weak Buri-
dan octagon;

• If exactly one of (F1, S) and (F2, S) is a degenerate square and the other is a classical
square, then ( f4(F1,F2),S) is an intermediate Buridan octagon;

• If (F1, S) and (F2, S) are both classical squares, then ( f4(F1,F2), S) is a strong Buridan
octagon.

The precise details have to be left for future research. However, the present paper has
clearly demonstrated that however the details of f4 may turn out, it will be applicable to
normal and non-normal modal logics alike.
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