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Abstract: The paper is a survey of the recent results of the author on the perturbations of matrices. A
part of the results presented in the paper is new. In particular, we suggest a bound for the difference
of the determinants of two matrices which refines the well-known Bhatia inequality. We also derive
new estimates for the spectral variation of a perturbed matrix with respect to a given one, as well
as estimates for the Hausdorff and matching distances between the spectra of two matrices. These
estimates are formulated in the terms of the entries of matrices and via so called departure from
normality. In appropriate situations they improve the well-known results. We also suggest a bound
for the angular sectors containing the spectra of matrices. In addition, we suggest a new bound for the
similarity condition numbers of diagonalizable matrices. The paper also contains a generalization of
the famous Kahan inequality on perturbations of Hermitian matrices by non-normal matrices. Finally,
taking into account that any matrix having more than one eigenvalue is similar to a block-diagonal
matrix, we obtain a bound for the condition numbers in the case of non-diagonalizable matrices,
and discuss applications of that bound to matrix functions and spectrum perturbations. The main
methodology presented in the paper is based on a combined usage of the recent norm estimates for
matrix-valued functions with the traditional methods and results.
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1. Introduction

This paper is a survey of the recent results of the author on perturbations of the
eigenvalues and determinants of matrices.

Finding the eigenvalues of a matrix is not always an easy task. In many cases it is
easier to calculate the eigenvalues of a nearby matrix and then to obtain the information
about the eigenvalues of the original matrix.

The perturbation theory of matrices has been developed in the works of R. Bhatia,
C. Davis, L. Elsner, A.J. Hoffman, W. Kahan, T. Kato, L. Mirsky, A. Ostrowski, G.W. Stewart,
J.G. Sun, H.W. Wielandt, and many other mathematicians.

To recall some basic results of the perturbation theory, which will be discussed below,
let us introduce the notations.

Let Cn be the n-dimensional complex Euclidean space with a scalar product (., .), the
norm ‖.‖ =

√
(., .) and unit matrix I. Cn×n denotes the set of complex n× n-matrices. For an

A ∈ Cn×n, A∗ is the adjoint matrix, A−1 is the inverse one, ‖A‖ is the spectral norm: ‖A‖ =
supx∈Cn ,‖x‖=1 ‖Ax‖, λk(A) are the eigenvalues of A taken with their multiplicities, σ(A)

is the spectrum, Rλ(A) = (A− λI)−1 (λ 6∈ σ(A)) is the resolvent, trace (A) is the trace,
det A is the determinant, rs(A) is the spectral radius, and Np(A) := (trace (AA∗)p/2)1/p

(1 ≤ p < ∞) is the Schatten-von Neumann norm; in particular, N2(A) = ‖A‖F is the
Hilbert-Schmidt (Frobenius) norm.
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Let A and Ã be n× n-matrices whose eigenvalues counted with their multiplicities
are λk = λk(A) and λ̃k = λk(Ã) (k = 1, . . . , n), respectively. The following result is
well-known.

|det A− det Ã| ≤ nMn−1‖A− Ã‖ (A, Ã ∈ Cn×n), (1)

where M = max{‖A‖, ‖Ã‖}, cf. [1] (p. 107). The spectral norm is unitarily invariant,
but often it is not easy to compute that norm, especially if the matrix depends on many
parameters. In Section 4 below we present a bound for |det A− det Ã| in terms of the
entries of matrices in the standard basis. That bound can be directly calculated. Moreover,
under some conditions our bound is sharper than (1).

Recall some definitions from matrix perturbation theory (see [2] (p. 167)).
The spectral variation of Ã with respect to A is svA(Ã) := maxi minj |λ̃i − λj|.
The Hausdorff distance between the eigenvalues of A and Ã is

hd(A, Ã) := max{svA(Ã), svÃ(A)}.

The matching (optimal) distance between eigenvalues of A and Ã is

md(A, Ã) := min
π

max
i
|λ̃π(i) − λi|, (2)

where π is taken over all permutations of {1, 2, . . . , n}.
The quantity svA(Ã) is not a metric: it may be zero, even when the eigenvalues of A

and Ã are different (e.g., when n = 2 and λ1 = λ̃1 = λ̃2 = 0 while λ2 = 1).
Geometrically, the spectral variation has the following interpretation. If

Di = {s ∈ C : |s− λi| ≤ svA(Ã)}, i = 1, . . . , n,

then
σ(Ã) ⊂ ∪n

i=1Di.

In other words, the eigenvalues of Ã lie in the union of disks of radius svA(Ã) centered
at the eigenvalues of A.

The Hausdorff distance hounds the spectral variation and is actually a metric. The
matching distance bounds the Hausdorff distance and is also a metric. The “smallness”
of the matching distance means that the eigenvalues of a matrix and its perturbation are
“close” and they can be grouped into nearby pairs. In some cases bounds on the spectral
variation or the Hausdorff distance can be converted into bound on the matching distance.

One of the well-known bounds for svA(Ã) is the Elsner inequality

svA(Ã) ≤ ‖A− Ã‖1/n(‖A‖+ ‖Ã‖)1−1/n (3)

References [1–3]. Since the right hand part of this inequality is symmetric, we have

hd(A, Ã) ≤ ‖A− Ã‖1/n(‖A‖+ ‖Ã‖)1−1/n.

As it was mentioned, the calculations and estimating of the spectral norm is often a
not easy task. Below we suggest bounds for the spectral variation and Hausdorff distance
explicitly expressed via the entries of the considered matrices. In some cases our bounds
are sharper than (3).

By inequality (3) the following result called the Ostrowski–Elsner theorem has been
proved:

md(A, Ã) ≤ (2n− 1)‖Ã− A‖1/n(‖A‖+ ‖Ã‖)1−1/n,

cf. [2] (p. 170, Theorem IV.1.4). In Section 7, we consider also other bounds for md(A, Ã).
Put

mp(A, Ã) := min
π

n

∑
k=1
|λπ(k) − λ̃k|p (p ≥ 1),
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where π ranges over all permutations of the integers 1, 2, . . . , n.
One of the famous results on m2(A, Ã) is the Hoffman-Wiellandt theorem proved

in [4] (see also [2] (p. 189) and [5] (p. 126)), which asserts the following: for all normal
matrices A and Ã, the inequality m2(A, Ã) ≤ N2(A− Ã) is valid.

In [6], L. Mirsky has proved that for all Hermitian matrices A and Ã,

mp(A, Ã) ≤ Np(A− Ã) (1 ≤ p < ∞)

(see also [2] (p. 194) and [5] (p. 126)). In 1975, W. Kahan [7] (see also [2] (Theorem IV.5.2, p.
213)) has derived the following result: let A be a Hermitian matrix and Ã an arbitrary one
in Cn, and

λ1 ≤ λ2 ≤ · · · ≤ λn and Re λ̃1 ≤ Re λ̃2 ≤ · · · ≤ Re λ̃n.

Then

[
n

∑
k=1

(Re λ̃k − λk)
2]1/2 ≤ N2(ER) + [N2

2 (EI)−
n

∑
k=1

(Im λk)
2]1/2 ≤

√
2N2(E). (4)

Here and below E := Ã − A, ER := (E + E∗)/2, EI := (E − E∗)/2i. The Kahan
theorem generalizes the Mirsky result in the case p = 2. In Section 14 we present an
analogous result for a p ∈ [2, ∞).

Furthermore, as is well-known, the Hilbert identity

Rλ(Ã)− Rλ(A) = Rλ(A)(A− Ã)Rλ(Ã) (λ 6∈ σ(A) ∪ σ(Ã))

plays an important role in the perturbation theory. In Section 15, we suggest a new identity
for resolvents and show that it refines the results derived with the help of the Hilbert
identity, if the commutator AÃ− ÃA has a sufficiently small norm.

A few words about the contents of the paper. It consists of 17 Sections.
In Section 2, we recall some classical results which are needed our proofs. In Section 3,

we present norm estimates for resolvents of matrices which will be applied in the sequel.
In Sections 4 and 5, we derive the perturbation bound for determinants in terms of the

entries of matrices and consider some its applications. Section 6 deals with perturbation
bounds for determinants expressed via rather general norms.

Sections 7–10 are devoted to the spectral variations. Besides, the relevant bounds are
obtained in terms of the departure from normality and via the entries of matrices.

Sections 11 and 12 deal with angular localization of matrices. The results of Section 12
are new.

Section 13 is devoted to perturbations of diagonalizable matrices. Besides, we suggest
a bound for the condition numbers. Besides, Corollary 14 is new.

As it was above mentioned, in Section 14 we generalize the Kahan result.
In Sections 16 and 17, taking into account that any matrix having more than one

eigenvalue is similar to a block-diagonal matrix, we obtain a bound for the condition
numbers in the case of non-diagonalizable matrices, and discuss applications of that bound
to matrix functions and spectrum perturbations. The material of Sections 16 and 17 is new.

2. Preliminaries

Recall the Schur theorem Section I.4.10.2 of [8], By that theorem there is an orthogonal
normal (Schur’s) basis {ek}n

k=1, in which A has the triangular representation

Aek =
k

∑
j=1

ajkej with ajk = (Aek, ej) (k = 1, . . . , n).

Schur’s basis is not unique. We can write

A = D + V ( σ(A) = σ(D)) (5)
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with a normal (diagonal) operator D defined by

Dej = λj(A)ej (j = 1, . . . , n)

and a nilpotent operator V defined by

Vek =
k−1

∑
j=1

ajkej (k = 2, . . . , n), Ve1 = 0.

Equality (5) is called the triangular representation of A; D and V are called the diagonal part
and nilpotent part of A, respectively. Put

Pj =
j

∑
k=1

(., ek)ek (j = 1, . . . , n), P0 = 0.

{Pk}n
k=1 is called the maximal chain of the invariant projections of A. It has the properties

0 = P0Cn ⊂ P1Cn ⊂ · · · ⊂ PnCn = Cn

with dim (Pk − Pk−1)Cn = 1 and

APk = Pk APk; VPk = Pk−1VPk; DPk = DPk (k = 1, . . . , n).

So A, V and D have the joint invariant subspaces. We can write

D =
n

∑
k=1

λk(A)∆Pk,

where ∆Pk = Pk − Pk−1 (k = 1, . . . , n).
Let us recall also the famous Gerschgorin theorem [2] and Section III.2.2.1 of [8],

which is an important tool for the analysis of the location of the eigenvalues.

Theorem 1. The eigenvalues of A = (ajk) ∈ Cn×n lie in the union of the discs

{z ∈ C : |z− akk| ≤
n

∑
j=1,j 6=k

|ajk|}, k = 1, . . . , n.

The Gerschgorin theorem implies the following inequality for the spectral radius:

rs(A) ≤ max
k

n

∑
j=1
|ajk|.

3. Norm Estimates for Resolvents

The following quantity (the departure for normality) of A plays an essential role hereafter:

g(A) = [N2
2 (A)−

n

∑
k=1
|λk(A)|2 ]1/2.

By Lemma 3.1 from [9] g(A) = N2(V), where V is the nilpotent part of A (see equality
(5)). Therefore, if A is a normal matrix, then g(A) = 0. The following relations are checked
in Section 3.1 of [9]:

g2(A) ≤ N2
2 (A)− |trace (A2)|, (6)

g2(A) ≤
N2

2 (A− A∗)
2

(7)



Axioms 2021, 10, 99 5 of 35

and
g(eiτ A + zI) = g(A) (z ∈ C, τ ∈ R). (8)

By the inequality between the arithmetic and geometric means we have

(
1
n

n

∑
k=1
|λk(A)|2)n ≥

n

∏
k=1
|λk(A)|2 = |det A|2.

Hence,
g2(A) ≤ N2(A)− n|det A|2/n. (9)

If A1 ∈ Cn×n and A2 ∈ Cn×n are commuting matrices, then g(A1 + A2) ≤ g(A1) +
g(A2). Indeed, since A1 and A2 commute, they can have a joint basis of the triangular
representation. So the nilpotent part of A1 + A2 is equal to V1 + V2 where V1 and V2 are
the nilpotent parts of A1 and A2, respectively. Therefore,

g(A1 + A2) = N2(V1 + V2) ≤ N2(V1) + N2(V2) = g(A1) + g(A2).

We will need the following

Theorem 2 (Theorem 3.1 of [9]). Let A ∈ Cn×n. Then

‖Rλ(A)‖ ≤
n−1

∑
k=0

gk(A)√
k!ρk+1(A, λ)

(λ 6∈ σ(A)),

where
ρ(A, λ) := inf

s∈ σ(A)
|λ− s|.

This Theorem sharp: if A is a normal matrix, then g(A) = 0 and we obtain ‖Rλ(A)‖ =
1

ρ(A,λ) . Here and below we put 00 = 1.
Let us recall an additional norm estimate for the resolvent, which is sharper than

Theorem 2 but more cumbersome. To this end, for an integer n ≥ 2 introduce the numbers

ψn,k =

√
(n−1

k )

(n− 1)k (k = 1, . . . , n− 1) and γn,0 = 1.

Here
(n

k ) =
n!

(n− k)!k!

are binomial coefficients. Evidently, for all n > 2,

ψ2
n,k =

(n− 1)(n− 2) . . . (n− k)
(n− 1)kk!

≤ 1
k!

(k = 1, 2, . . . , n− 1).

Theorem 3 (Theorem 3.10 of [9]). Let A ∈ Cn×n. Then

‖Rλ(A)‖ ≤
n−1

∑
k=0

gk(A)ψn,k

ρk+1(A, λ)
(λ 6∈ σ(A)).

Moreover, the following result is valid.

Theorem 4 (Theorem 3.4 of [9]). Let A ∈ Cn×n. Then

‖(Iλ− A)−1)‖ ≤ 1
ρ(A, λ)

[
1 +

1
n− 1

(
1 +

g2(A)

ρ2(A, λ)

) ](n−1)/2

(λ 6∈ σ(A)).
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Let us point to an inequality between the resolvent and determinant.

Theorem 5. For any A ∈ Cn×n and all regular λ of A one has

‖(Iλ− A)−1 det (λI − A)‖ ≤[
N2

2 (A)− 2Re (λ trace (A)) + n|λ|2
n− 1

](n−1)/2

.

For the proof see, for example Corollary 3.4 of [9].

4. Perturbation Bounds for Determinants in Terms of the Entries of Matrices

The following theorem is valid.

Theorem 6 (Reference [10]). Let A, Ã ∈ Cn×n, {dk} be an arbitrary orthonormal basis in Cn

and qd = maxj ‖(A− Ã)dj‖. Then

|det A− det Ã| ≤ qd

n

∏
k=1

(
1
2
‖(A + Ã)dk‖+ (

1
2
+

1
qd

)‖(A− Ã)dk‖
)

(10)

and, therefore,

|det A− det Ã| ≤ qd

n

∏
k=1

(
1 +

1
2
(‖(A + Ã)dk‖+ ‖(A− Ã)dk‖)

)
. (11)

Proof. By the Hadamard inequality

|det A| ≤
n

∏
k=1
‖Adk‖, (12)

(see Section 2). Put

Z(λ) = det(
1
2
(A + Ã) + λ(A− Ã)) (λ ∈ C).

It is not hard to check that Z(λ) is a polynomial in λ and

det(A)− det(Ã) = Z(
1
2
)− Z(−1

2
).

Thanks to the Cauchy integral,

Z(1/2)− Z(−1/2) =
1

2πi

∫
|z|= 1

2+r

Z(z)dz
(z− 1/2)(z + 1/2)

(r > 0).

Hence,

|Z(1/2)− Z(−1/2)| ≤ (1/2 + r) sup
|z|= 1

2+r

|Z(z)|
|z2 − 1

4 |
.

Take into account that

inf
|z|= 1

2+r
|z2 − 1

4
| = inf

0≤t<2π
|(1/2 + r)2e2it − 1/4|

≥ (1/2 + r)2 − 1/4 = r2 + r > r.
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Consequently,

|Z(1/2)− Z(−1/2)| ≤ 1
r

sup
|z|=1/2+r

|Z(z)|. (13)

In addition, according to (10)

|Z(z)| = |det
(

1
2
(A + Ã) + z(A− Ã)

)
| ≤

n

∏
k=1
‖[1

2
(A + Ã) + z(A− Ã)]dk‖

≤
n

∏
k=1

[
1
2
‖(A + Ã)dk‖+ |z|‖(A− Ã)dk‖].

Therefore, due to (13),

|det(A)− det(Ã)| = |Z(1/2)− Z(−1/2)|

≤ 1
r

n

∏
k=1

[
1
2
‖(A + Ã)dk‖+ (r + 1/2)‖(A− Ã)dk‖].

Taking r = 1
q , we get (10), as claimed.

Obviously ‖(A + Ã)dk‖, ‖(A− Ã)dk‖ (k = 1, . . . , n) are directly calculated. Below we
also show that in the concrete situations Theorem 6 is sharper than (1) and enables us to
establish sharp upper and lower bounds for the determinants of matrices that are “close”
to triangular matrices.

Furthermore, making use of the inequality between the arithmetic and geometric
means, from (11) we get

|det A− det Ã| ≤ qd(1 +
1

2n

n

∑
k=1

(‖(A + Ã)dk‖+ ‖(A− Ã)dk‖))n.

Put A1 = cA, Ã1 = cÃ (c = const > 0). Then by the latter inequality

|det A1 − det Ã1| ≤ cqd(1 +
1

2n

n

∑
k=1
‖(A1 + Ã1)dk‖+ ‖(A1 − Ã1)dk‖)n.

Or
cn|det A− det Ã| ≤ cqd(1 + cb)n,

where

b =
1

2n

n

∑
k=1

(‖(A + Ã)dk‖+ ‖(A− Ã)dk‖).

Denote x = bc. Then

|det A− det Ã| ≤ qd
(1 + x)n

xn−1 bn−1.

Let us check that

min
x≥0

(1 + x)n

xn−1 =
nn

(n− 1)n−1 . (14)

Indeed, the derivative of the function on the left-hand-side is

n(1 + x)n−1x1−n + (1 + x)n(1− n)x−n = (1 + x)n−1x−n(nx + (1− n)(1 + x)).

Hence it follows that the infimum is reached at x = n− 1. This proves (14).
So we can write

|det A− det Ã| ≤ qdnn

(n− 1)n−1 bn−1.
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We thus arrive at our next result.

Corollary 1. Let A, Ã ∈ Cn×n and {dk} be an arbitrary orthonormal basis in Cn. Then we have

|det A− det Ã| ≤ nqd
(n− 1)n−1(2n)n−1

(
n

∑
k=1

(‖(A + Ã)dk‖+ ‖(A− Ã)dk‖)
)n−1

.

5. Perturbations of Triangular Matrices and Comparison with Inequality (1)

In this section, A = (ajk)
n
j,k=1, Ã = (ãjk)

n
j,k=1, and {dk} is the standard basis. Clearly,

‖(A− Ã)dk‖ = tk(A− Ã), where tk(A− Ã) := (
n

∑
j=1
|ajk − ãjk|2)1/2

and

‖(A + Ã)dk‖ = tk(A + Ã), where tk(A + Ã) := (
n

∑
j=1
|ajk + ãjk|2)1/2.

Now Theorem 6 implies

Corollary 2. One has
|det A− det Ã|

≤ max
j

tj(A− Ã)
n

∏
k=1

((
1
2
+

1
maxj tj(A− Ã)

)
tk(A− Ã) +

1
2

tk(A + Ã)

)
and, therefore,

|det A− det Ã| ≤ max
j

tj(A− Ã)
n

∏
k=1

(
1 +

1
2
(tk(A− Ã) + tk(A + Ã))

)
.

Furthermore, let A+ be the upper triangular part of A, i.e.,

A+ = (a+jk)
n
j,k=1,

where a+jk = ajk if j ≤ k and a+jk = 0 for j > k. Then

‖(A− A+)dk‖ = t−k (A) := (
n

∑
j=k+1

|ajk|2)1/2 (k < n), t−n (A) = 0 and

‖(A + A+)dk‖ = t+k (A) := (
n

∑
j=1
|ajk + a+jk |

2)1/2.

Clearly,

det(A+) =
n

∏
j=1

ajj.

Making use of Corollary 2, we arrive at our next result.

Corollary 3. One has

|det A−
n

∏
j=1

ajj| ≤ δ(A),

where

δ(A) := max
j

t−j
n

∏
k=1

(
(

1
2
+

1
maxj t−j

)t−k +
1
2

t+k

)
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≤ max
j

t−j
n

∏
k=1

(
1 +

1
2
(t−k + t+k )

)
.

From this corollary we have

|det A| <
n

∏
j=1
|ajj|+ δ(A). (15)

Moreover, if
n

∏
j=1
|ajj| > δ(A) (16)

then

|det A| >
n

∏
j=1
|ajj| − δ(A). (17)

Inequalities (15) and (17) are sharp: they are attained if A is triangular.
Recall that ‖A‖F = N2(A) is the Frobenius norm of A.
The following lemma taken from Lemma 3.3 of [10] gives us simple conditions, under

which (11) is sharper than (1).

Lemma 1. If

qde(‖A‖2
F + ‖Ã‖2

F)
(n−1)/2 ≤ ‖Ã− A‖(

√
nM)n−1 (n ≥ 2), (18)

then (11) is sharper than (1).

Proof. By the Cauchy inequality,

(
n

∑
k=1

(‖(A + Ã)dk‖+ ‖(A− Ã)dk‖))2 ≤ n
n

∑
k=1

(‖(A + Ã)dk‖+ ‖(A− Ã)dk‖)2

≤ 2n
n

∑
k=1

(‖(A + Ã)dk‖2 + ‖(A− Ã)dk‖2) = 2n(‖A + Ã‖2
F + ‖A− Ã‖2

F).

Since ‖A‖2
F = trace (A∗A), we easily have

‖A + Ã‖2
F + ‖A− Ã‖2

F = 2‖A‖2
F + 2‖Ã‖2

F.

Thus,

(
n

∑
k=1

(‖(A + Ã)dk‖+ ‖(A− Ã)dk‖))2 ≤ 4n(‖A‖2
F + ‖Ã‖2

F).

Now Corollary 3 implies

|det A− det Ã| ≤ nq
(n− 1)n−1(2n)n−1 2n−1(

√
n)n−1(‖A‖2

F + ‖Ã‖2
F))

(n−1)/2

=
nqnn−1

(n− 1)n−1(
√

n)n−1 (‖A‖2
F + ‖Ã‖2

F))
(n−1)/2.

Since
nn−1

(n− 1)n−1 = (1 +
1

n− 1
)n−1 ≤ e (n ≥ 2),

We get

|det A− det Ã| ≤ e
nq

(
√

n)n−1 (‖A‖2
F + ‖Ã‖2

F)
(n−1)/2.
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Thus, if (18) holds, then (17) improves (1).

It should be noted that the determinants of diagonally dominant and double di-
agonally dominant matrices are very well explored, cf. [11–14]. At the same time the
determinants of matrices “close” to triangular ones are investigated considerably less than
the determinants of diagonally dominant matrices. About bounds for determinants of
matrices close to the identity matrix see the papers [15].

6. Perturbation Bounds for Determinants in Terms of an Arbitrary Norm

Let ‖A‖0 be an arbitrary fixed matrix norm of A ∈ Cn×n, i.e., the the function from
Cn×n into [0, ∞), defined by the usual relations: ‖0̂‖0 = 0 for the zero matrix 0̂, ‖A‖0 > 0
if A 6= 0̂, ‖zA‖0 = |z|‖A‖0, and

‖A + B‖0 ≤ ‖A‖0 + ‖B‖0 (A, B ∈ Cn×n, z ∈ C).

In addition, ‖Ah‖ ≤ ‖A‖0‖h‖ (h ∈ Cn). So, |λk(A)| ≤ ‖A‖0 (k = 1, . . . , n). Therefore,
there is a number αn > 0, such that

|det A| ≤ αn‖A‖n
0 . (19)

We need the following result.

Theorem 7 (Theorem 1.7.1 of [16]). Let A, B ∈ Cn×n and condition (19) hold. Then

|det A− det B| ≤ γn ‖A− B‖0 (‖A− B‖0 + ‖A + B‖0)
n−1,

where
γn :=

αnnn

2n−1(n− 1)n−1 .

Recall that Np(.) is the Schatten-von Neumann norm. Making use of the inequality
between the arithmetic and geometric mean values, we obtain

|det A|p =
n

∏
k=1
|λk(A)|p ≤

(
1
n

n

∑
k=1
|λk(A)|p

)n

.

Due to the Weyl inequalities

n

∑
k=1
|λk(A)|p ≤ Np

p (A), (20)

cf. Corollary II.3.1 of [17], Lemma 1.1.4 of [16], we get

|det A| ≤ 1
nn/p Nn

p (A).

So in this case
αn =

1
nn/p and γn = η̂n,p,

where

η̂n,p :=
nn(1−1/p)

2n−1(n− 1)n−1 .

Now Theorem 7 implies

Corollary 4. Let A, B ∈ Cn×n. Then for any finite p ≥ 1,

|det A− det B| ≤ η̂n,pNp(A− B) (Np(A− B) + Np(A + B))n−1.
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Note that Theorem 8.1.1 from the book [16] refines the Weyl inequality with the help
of the self-commutator.

Furthermore, let

A =



a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . .
. . . . . .
. . . . . .

an1 a12 . . . ann

 and W =



0 a12 . . . a1n
a21 0 . . . a2n
. . . . . .
. . . . . .
. . . . . .

an1 a12 . . . 0

.

i.e., W is the off-diagonal part of A: W = A− diag (ajj). Then taking B = diag (ajj) and
making use of the previous corollary, we arrive at the following result.

Corollary 5. Let A = (ajk) ∈ Cn×n. Then

|det A−
n

∏
k=1

akk| ≤ η̂n,pNp(W) (Np(W) + Np(A + diag A))n−1.

7. Bounds for the Spectral Variations in Terms of the Departure from Normality

In this section, we estimate the spectral variation of two matrices in terms of the
departure from normality g(A) introduced in Section 3. The results of the present section
are based on the norm estimates for resolvents presented in Section 3 and the following
technical lemma.

Lemma 2. Let A and Ã be linear operators in Cn and q := ‖A− Ã‖. In addition, let

‖Rλ(A)‖ ≤ F
(

1
ρ(A, λ)

)
(λ 6∈ σ(A)),

where F(x) is a monotonically increasing continuous function of a non-negative variable x, such
that F(0) = 0 and F(∞) = ∞. Then svA(Ã) ≤ z(F, q), where z(F, q) is the unique positive root
of the equation

qF(1/z) = 1.

For the proof see Section 1.8 of [9]. Lemma 2 and Theorem 2 with

F(x) =
n−1

∑
j=0

gj(A)xj+1√
j!

imply

Theorem 8. Let A and Ã be n× n-matrices and q = ‖Ã− A‖. Then svA(Ã) ≤ zn(A, q), where
zn(A, q) is the unique positive root of the equation

q
n−1

∑
j=0

gj(A)√
j!zj+1

= 1. (21)

Since g(A) ≤
√

2N2(AI), where AI = (A− A∗)/2i (see Section 2), one can replace
g(A) in (21) by

√
2N2(AI).

If A is normal, then g(A) = 0, we have zn(A, q) = q and, therefore, Theorem 8 gives us
the well-known inequality svA(Ã) ≤ q, cf. [1,2]. Thus, Theorem 8 refines the Elsner inequality
(3) if A is “close” to normal.
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Equation (21) can be written as

zn = q
n−1

∑
j=0

gj(A)√
j!

zn−j−1. (22)

To estimate zn(A, q) one can apply the well-known known bounds for the roots of
polynomials. For instance, consider the algebraic equation

zn = p(z) (n > 1), where p(z) =
n−1

∑
j=0

cjzn−j−1 (23)

with non-negative coefficients cj (j = 0, . . . , n− 1).

Lemma 3. The unique positive root ẑ0 of (23) satisfies the inequality

ẑ0 ≤
{

p(1) if p(1) > 1,
p1/n(1) if p(1) ≤ 1.

Proof. Since all the coefficients of p(z) are non-negative, it does not decrease as z > 0
increases. If p(1) ≤ 1, then ẑ0 ≤ 1 and p(ẑ0) ≤ p(1). Hence ẑn

0 ≤ p(1). If p(1) ≥ 1, then

ẑ0 ≥ 1, ẑn
0 = p(ẑ0) ≤ ẑn−1

0 p(1)

and ẑ0 ≤ p(1), as claimed.

Substitute z = g(A)x into (22), assuming that A is non-normal, i.e., g(A) 6= 0. Then
we obtain the equation

xn =
q

g(A)

n−1

∑
j=0

xn−j−1√
j!

. (24)

Putting

p̂n =
n−1

∑
j=0

1√
j!

and applying Lemma 3 for the unique positive root x0 of (24), we obtain

x0 ≤


qp̂n

g(A)
if qp̂n > g(A),(

qp̂n
g(A)

)1/n
if qp̂n ≤ g(A).

But zn(A, q) = g(A)x0; consequently, according to Theorem 8, we get

svA(Ã) ≤
{

qp̂n if qp̂n > g(A),
(qp̂n)1/ng1−1/n(A) if qp̂n ≤ g(A).

(25)

Furthermore, put
ĝ(Ã, A) = max{g(A), g(Ã)}.

Then Theorem 8 implies

Corollary 6. One has hd(A, Ã) ≤ ẑ(A, Ã), where ẑ(A, Ã) is the unique positive root of the equation

zn = q
n−1

∑
j=0

ĝj(Ã, A)√
j!.

zn−1−k.

Replacing in Corollary 6 g(A) by ĝ(Ã, A), we obtain the following result.
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Corollary 7. We have

hd(A, Ã) ≤
{

qp̂n if qp̂n > ĝ(A, Ã),
(qp̂n)1/n ĝ1−1/n(A, Ã) if qp̂n ≤ ĝ(A, Ã).

Now we are going to derive an estimate for the matching distance md(A, Ã) intro-
duced in Section 1. To this end we need the following well-known result.

Theorem 9 (Theorem IV.1.5, p. 170 in [2]). Let t > 0 and E = Ã− A. If β(t) is a nondecreasing
bound on svA(A + tE), then

md(A, Ã) ≤ (2n− 1)β(1).

If β(t) is a nondecreasing bound on hd(A, A + tE), then

md(A, Ã) ≤ 2[n/2]β(1).

Here [n/2] is the integer part of n/2.
Note that ‖A− (A + tE)‖ ≤ tq for any t ∈ [0, 1]. By (25),

svA(A + tE) ≤ (tqp̂n)
1/ng1−1/n(A) if tqp̂n ≤ g(A).

Hence,
svA(A + tE) ≤ (qp̂n)

1/ng1−1/n(A) if qp̂n ≤ g(A) (0 ≤ t ≤ 1).

Making use of Theorem 9, we arrive at

Corollary 8. Let qp̂n ≤ g(A). Then

md(A, Ã) ≤ (2n− 1)(qp̂n)
1/ng1−1/n(A).

Since for a normal matrix A, g(A) = 0, Corollary 8 refines the Ostrowski–Elsner
theorem mentioned in Section 1 for matrices close to normal ones.

8. A Bound for the Spectral Variation Via the Entries of Matrices

As mentioned above, the spectral norm is unitarily invariant, but the calculations and
estimating of the spectral norm is often a not easy task, especially if the matrix depends on
many parameters. In the paper [18], a bound for the spectral variation has been explicitly
expressed via the entries of the considered matrices. In the paper [19], we have established
a new bound via the entries. In the appropriate situations it considerably improves Elsner’s
inequality and the main result from [18]. In this section we present the main results
from [19].

Theorem 10. Let A = (ajk)
n
j,k=1 and Ã = (ãjk)

n
j,k=1 be n× n matrices. Then with the notations

q := max
k

(
n

∑
j=1
|ãjk − ajk|2

)1/2

and h(Ã) := max
k

(
n

∑
j=1,j 6=k

|ãjk|2
)1/2

one has
(svA(Ã))n ≤ ∆A(Ã),

where

∆A(Ã) := q
n

∏
k=1

1 +

(
h2(Ã) +

n

∑
j=1,j 6=k

|ãjk|2
)1/2

+

(
n

∑
j=1
|ãjk − ajk|2

)1/2
.
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The proof of this theorem is presented in the next section. Simple calculations
show that

∆A(Ã) ≤ q
n

∏
k=1

[
1 + h(Ã) +

n

∑
j=1,j 6=k

|ãjk|+
n

∑
j=1
|ãjk − ajk|

]
.

Furthermore, let A+ be the upper triangular part of A. i.e., A+ = (a+jk)
n
j,k=1, where

a+jk = ajk if j ≤ k and a+jk = 0 for j > k. To illustrate Theorem 10 apply it with A = A+ and

Ã = A, taking into account that

(
n

∑
j=1
|ajk − a+jk |

2)1/2 = t−k (A), where t−k (A) := (
n

∑
j=k+1

|ajk|2)1/2 (k < n), t−n (A) = 0,

q = q+, where q+ := maxk t−k (A). In addition, ∆A+(A) = ∆0(A), where

∆0(A) := q+
n

∏
k=1

1 +

(
h2(A) +

n

∑
j=1,j 6=k

|ajk|2
)1/2

+ t−k (A)

.

Now Theorem 10 implies.

(svA+(A))n ≤ ∆0(A). (26)

Put
Wk(A) := {z ∈ C : |z− akk| ≤ ∆1/n

0 (A)}.

Since A+ is triangular, we have λj(A+) = ajj (j = 1, . . . , n). Making use of (26), we
arrive at

Corollary 9. All the eigenvalues of A ∈ Cn×n lie in the set ∪n
k=1Wk(A).

This corollary is sharp: if A is triangular, then A = A+, ∆0(A) = 0 and Corollary 9
gives us the equalities λj(A) = ajj (j = 1, . . . , n).

9. Proof of Theorem 10

In this section for the brevity put λj(A) = λj and λj(Ã) = λ̃j.

Lemma 4. Let A, Ã ∈ Cn×n and {dk} be an arbitrary orthonormal basis in Cn. Then for any
eigenvalue λ̃j of Ã we have

min
k
|λ̃j − λk|n ≤ ∆(λ̃j),

where

∆(z) := q0

n

∏
k=1

(
1 +

1
2
‖(2zI − A− Ã)dk‖+

1
2
‖(A− Ã)dk‖)

)
(z ∈ C)

and q0 = maxk ‖(A− Ã)dk‖.

Proof. Due to Theorem 6,

|det A− det Ã| ≤ q0

n

∏
k=1

(
1 +

1
2
(‖(A + Ã)dk‖+ ‖(A− Ã)dk‖)

)
. (27)

Hence,
|det(zI − A)− det(zI − Ã)| ≤ ∆(z) (z ∈ C). (28)

Since det(λ̃j I − Ã) = 0, (28) implies

|det(Iλ̃j − A)| ≤ ∆(λ̃j).



Axioms 2021, 10, 99 15 of 35

Consequently,

min
k
|λ̃j − λk|n ≤

n

∏
k=1
|λ̃j − λk| = |det(Iλ̃j − A)| ≤ ∆(λ̃j), (29)

as claimed.

Proof of Theorem 10. Obviously,

‖(2zI − A− Ã)dk‖ ≤ 2‖(zI − Ã)dk‖+ ‖(A− Ã)dk‖.

Therefore,

∆(z) ≤
n

∏
k=1

(
1 + ‖(zI − Ã)dk‖+ ‖(A− Ã)dk‖

)
(z ∈ C). (30)

Now let {dk} be the standard basis, and A and Ã be represented in that basis by
matrices (ajk)

n
j,k=1 and (ãjk)

n
j,k=1, respectively. Clearly,

‖(A− Ã)dk‖2 =
n

∑
j=1
|ajk − ãjk|2.

So q0 = q. By the Gerschgorin theorem (see Section 2), we have |λ̃j − ãkk| ≤ h(Ã)
(j, k = 1, . . . , n). Thus,

‖(λ̃j I − Ã)dk‖2 = |λ̃j − ãkk|2 +
n

∑
j=1,j 6=k

|ãjk|2 ≤ h2(Ã) +
n

∑
j=1,j 6=k

|ãjk|2.

Consequently, under consideration ∆(λ̃j) ≤ ∆A(Ã). Now Lemma 4 implies

min
k
|λ̃j − λk|n ≤ ∆A(Ã).

Since the right-hand part does not depend on j, this finishes the proof. �

10. Comments and Examples to Theorem 10

Again ‖A‖ is the spectral norm of A. To compare Theorem 10 with the Elsner inequal-
ity (3) consider the following examples.

Example 1. Let A = diag (1, 2, . . . , n), Ã = diag (2, 3 . . . , n + 1).

Then ‖A‖ = n, ‖Ã‖ = n + 1, ‖Ã− A‖ = 1. Now the Elsner inequality implies

(sv(Ã))n ≤ (2n + 1)n−1. (31)

Since h(Ã) = 0, q = 1, Theorem 10 yields the inequality

(sv(Ã))n ≤
n

∏
k=1

(1 + 1) = 2n. (32)

Obviously, (32) is sharper than (31).

Example 2. Let
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A =

(
1 0.1

0.2 2

)
and Ã =

(
1.1 0.1
0.2 2.1

)
.

Simple calculations give us the following results: λ1(A) = 0.98, λ2(A) = 2.02,
λ1(Ã) = 1.08 and λ2(Ã) = 2.12. Hence, svA(Ã) = 0.1. To apply Theorem 10 note that in
the considered example q = 0.1, h(Ã) = 0.2. So Theorem 10 gives us the following result:

(svA(Ã))2 ≤ q(1 + (h2(Ã) + ã2
21)

1/2 + |ã11 − a11|)(1 + (h2(Ã) + ã2
12)

1/2 + |ã22 − a22|)

= 0.1(1 + (0.22 + 0.22)1/2 + 0.1)(1 + (0.22 + 0.12)1/2 + 0.1) ≈ 0.183, (33)

and, therefore, svA(Ã) ≤ 0.427.
Furthermore, under consideration ‖Ã‖ ≈ 2.12, ‖A‖ ≈ 2.02, ‖Ã− A‖ = 0.1, and thus

the Elsner inequality implies

(svA(Ã))2 ≤ ‖Ã− A‖(‖Ã‖+ ‖A‖) ≈ (2.12 + 2.02) · 0.1 = 0.414.

So (33) is sharper than this result.

Example 3. Let

A =

(
5 0.2

0.1 6

)
and Ã =

(
5.05 0.2
0.1 6.05

)
.

By the standard calculations we get λ1(A) = 4.98, λ2(A) = 6.02, λ1(Ã) = 5.03 and
λ2(Ã) = 6.07. Hence, svA(Ã) = 0.05. In the considered example q = 0.05, h(Ã) = 0.2.
Omitting simple calculations, by Theorem 8.1, we get (svA(Ã))2 ≤ 0.09, and, therefore,
svA(Ã) ≤ 0.3.

11. Angular Localization of the Eigenvalues of Perturbed Matrices

In this section we consider the following problem: let the eigenvalues of a matrix lie
in a certain sector. In what sector do the eigenvalues of a perturbed matrix lie?

Not too many works are devoted to the angular localization of matrix spectra. The
papers [20,21] should be mentioned. In these papers it is shown that the test to determine
whether all eigenvalues of a complex matrix of order n lie in a certain sector can be replaced
by an equivalent test to find whether all eigenvalues of a real matrix of order 4n lie in the
left half-plane. Below we also recall the well-known results from Chapter 1, Exercise 32
of [22].

To the best of our knowledge, the problem just described of angular localization of the
eigenvalues of perturbed matrices was not considered in the available literature, although
it is important for various applications, cf. [22].

The results of this section are adopted from the paper [23].
Again, ‖A‖ is the spectral norm of A ∈ Cn×n. For a Y ∈ Cn×n we write Y > 0, if Y is

positive definite, i.e., infx∈Cn ,‖x‖=1(Yx, x) > 0.
Without loss of the generality, we assume that

β(A) := min
k=1,...,n

Re λk(A) > 0. (34)

If this condition does not hold, instead of A we can consider perturbations of the
matrix B = A + cI with a constant c > |β(A)|.

By the Lyapunov theorem, cf. Theorem I.5.1 of [22], condition (34) implies that there
exists a positive definite Y ∈ Cn×n, such that (YA)∗ + YA > 0. Define the angular Y-
characteristic τ(A, Y) of A by

cos τ(A, Y) := inf
x∈Cn ,‖x‖=1

Re (YAx, x)
|(YAx, x)| .
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The set
S(A, Y) := {z ∈ C : | arg z| ≤ τ(A, Y)}

will be called the Y-spectral-sector of A. Let λ = reit (r > 0, 0 ≤ t < 2π) be an eigenvalue of
A and d the corresponding eigenvector: Ad = λd. Then

Re (YAd, d)
|(YAd, d)| =

Re reit(Yd, d)
r(Yd, d)

= cos t.

We, thus, get

Lemma 5. For an A ∈ Cn×n, let condition (34) hold and Y be a positive definite matrix, such that
(YA)∗ + YA > 0. Then, any eigenvalue of A lies in the Y-spectral-sector of A.

Example 4. Let A = A∗ > 0. Then condition (34) holds. For any Y > 0 commuting with
A (for example Y = I) we have (YA)∗ + YA = 2YA and Re (YAx, x) = |(YAx, x)|. Thus
cos τ(A, Y) = 1 and S(A, Y) = {z ∈ C : arg z = 0}.

So Lemma 5 is sharp.

Remark 1. Suppose that A is invertible. Recall that the quantity dev(A) defined in the finite-
dimensional case by

cos dev(A) := inf
x∈Cn ,x 6=0

Re (Ax, x)
‖Ax‖‖x‖

is called the angular deviation of A, cf. Chapter 1, Exercise 32 of [22]. For example, for a positive
definite operator A one has

cos dev(A) =
2
√

λM(A)λm(A)

λM(A) + λm(A)
,

where λM(A), λm(A) are the boundary of the spectrum of A (see Chapter 1, Exercise 33 of [22]).

In Exercise 32, it is shown that the spectrum of A lies in the sector | arg z| ≤ dev(A).
Since |(Ax, x)| ≤ ‖Ax‖‖x‖, Lemma 5 refines the that inequality.

Furthermore, by the above mentioned Lyapunov theorem, there exists a positive
definite X ∈ Cn×n solving the Lyapunov equation

2Re (AX) = XA + A∗X = 2I. (35)

Hence,

cos τ(A, X) = inf
x∈Cn ,‖x‖=1

(x, x)
|(XAx, x)| =

1
supx∈Cn ,‖x‖=1 |(XAx, x)| ≥

1
‖AX‖ . (36)

Put
J(A) = 2

∫ ∞

0
‖e−At‖2dt.

Now we are in a position to formulate the main result of this section.

Theorem 11. Let A, Ã ∈ Cn×n, condition (34) hold and X be a solution of (35). Then, with the
notation q = ‖A− Ã‖, one has

cos τ(Ã, X) ≥ cos τ(A, X)
(1− qJ(A))

(1 + qJ(A))
,

provided
qJ(A) < 1. (37)
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The proof of this theorem is based on the following lemma

Lemma 6. Let A, Ã ∈ Cn×n, condition (34) hold and X be a solution of (35). If, in addition,

q‖X‖ < 1, (38)

then

cos τ(Ã, X) ≥ cos τ(A, X)
(1− ‖X‖q)
(1 + ‖X‖q) .

Proof. Put E = Ã− A. Then q = ‖E‖ and due to (35), with ‖x‖ = 1 we obtain

Re (X(A + E)x, x) ≥ Re (XAx, x)− |(XEx, x)| = (x, x)− |(XEx, x)|

≥ (x, x)− ‖X‖‖E‖‖x‖2 = 1− ‖X‖q. (39)

In addition,
|(X(A + E)x, x)| ≤ |(XAx, x)|+ ‖X‖‖E‖‖x‖2

= |(XAx, x)|(1 + ‖X‖q
|(XAx, x)| ) (‖x‖ = 1).

But
|(XAx, x)| ≥ |Re (XAx, x)| = Re (XAx, x) = (x, x) = 1.

Hence

|(X(A + E)x, x)| ≤ |(XAx, x)|(1 + ‖X‖q
(XAx, x)| ) ≤ |(XAx, x)|(1 + ‖X‖q).

Now (39) yields.

Re (XÃx, x)
|(XÃx, x)|

≥ 1
|(XAx, x)|

(1− ‖X‖q)
(1 + ‖X‖q) (‖x‖ = 1),

provided (38) holds. Since

cos τ(Ã, X) = inf
x∈Cn ,‖x‖=1

Re (XÃx, x)
|(XÃx, x)|

,

according to (36) we arrive at the required result.

Proof of Theorem 11. Note that X is representable as

X = 2
∫ ∞

0
e−A∗tCe−Atdt

Section 1.5 of [22]. Hence, we easily have ‖X‖ ≤ ‖C‖J(A). Now the latter lemma
proves the theorem. �

12. An Estimate for J(A) and Examples to Theorem 11

Recall that N2(A) = ‖A‖F is the Frobenius (Hilbert-Schmidt) norm of A: ‖A‖F =
(trace (AA∗))1/2, and

g(A) = [‖A‖2
F −

n

∑
k=1
|λk(A)|2 ]1/2

(see Section 3).
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Lemma 7. Let condition (34) hold. Then J(A) ≤ Ĵ(A), where

Ĵ(A) :=
n−1

∑
j,k=0

gj+k(A)(k + j)!
2j+kβj+k+1(A)(j! k!)3/2

.

Proof. By virtue of Example 3.2 from [9],

‖e−At‖ ≤ exp[−β(A)t]
n−1

∑
k=0

gk(A)tk

(k!)3/2 (t ≥ 0).

Then

J(A) ≤ 2
∫ ∞

0
exp[−2β(A)t]

( n−1

∑
k=0

gk(A)tk

(k!)3/2

)2dt

= 2
∫ ∞

0
exp[−2β(A)t]

(
n−1

∑
j,k=0

gk+j(A)tk+j

(j!k!)3/2

)
dt

=
n−1

∑
j,k=0

2(k + j)!gj+k(A)

(2β(A))j+k+1(j! k!)3/2
,

as claimed.

If A is normal, then g(A) = 0 and, taking 00 = 1 we have Ĵ(A) = 1
β(A)

.
The latter lemma and Theorem 11.1 imply

Corollary 10. Let A, Ã ∈ Cn×nand the conditions (34) and qĴ(A) < 1 hold. Then

cos τ(Ã, X) ≥ (1− qĴ(A))

(1 + qĴ(A))
cos τ(A, X).

Now consider the angular localization of the eigenvalues of matrices “close” to trian-
gular ones. Let A+ be the upper triangular part of A. i.e., A+ = (a+jk)

n
j,k=1, where a+jk = ajk

if j ≤ k and a+jk = 0 for j > k. To illustrate our results apply Corollary 10 with A instead of

Ã and with A+ instead of A.
Since A+ is triangular, we have λj(A+) = ajj (j = 1, . . . , n),

g(A+) = g+(A) := (
n

∑
k=2

k−1

∑
j=1
|ajk|2)1/2

and β(A+) = β+(A) := mink Re akk. Assuming that β+(A) > 0, we can write

Ĵ(A+) =
n−1

∑
j,k=0

gj+k
+ (A)(k + j)!

2j+kβ
j+k+1
+ (A)(j! k!)3/2

.

In addition, q = q+ = ‖A− A+‖. Now Corollary 12.2 implies.

Corollary 11. Let β+(A) > 0 and the condition

q+ Ĵ(A+) < 1

hold. Let the diagonal entries of A lie in the sector | arg z| ≤ φ (φ < π/2). Then the eigenvalues
of A lie in the sector | arg z| ≤ ψ with ψ satisfying

cos ψ ≥ (1− q+ Ĵ+(A))

(1 + q+ Ĵ+(A))
cos φ
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Example 5. Consider the matrix

A =

(
4 + 2i 0.1

0.2 8 + 4i

)
.

Then

A+ =

(
4 + 2i 0.1

0 8 + 4i

)
.

We have arg a11 = arg a22 = φ, where φ = arctan(1/2). and, therefore, cos φ = 2√
5

. In
addition, q+ = 0.2, β+(A) = 4, g+(A) = 0.1 and consequently,

Ĵ+(A) ≈ 0.3125 ≤ 0.313.

Hence,
1− q+ Ĵ+(A)

1 + q+ Ĵ+(A)
≥ 1− 0.2 · 0.313

1 + 0.2 · 0.313
≈ 0.8821.

Now Corollary 11 implies that the eigenvalues of the considered matrix A lie in the
sector | arg z| ≤ ψ with ψ satisfying

cos ψ ≥ 0.882 cos φ =
2√
5

0.882 ≈ 0.787.

The direct calculations show that cos ψ ≈ 0.893.

13. Perturbations of Diagonalizable Matrices

An eigenvalue is said to be simple, if its geometric multiplicity is equal to one. In this
section, we consider a matrix A whose all the eigenvalues are simple. As it is well known,
in this case there is an invertible matrix T, such that

T−1 AT = D̂, (40)

where D̂ is a normal matrix. Besides, A is called a diagonalizable matrix. The condition
number κ(A, T) := ‖T‖‖T−1‖ is very important for various applications. We obtain a
bound for the condition number and discuss applications of that bound to matrix functions
and spectral variations.

If A ∈ Cn×n (n ≥ 2) is diagonalizable, it can be written as

A =
n

∑
k=1

λkQ̂k ∈ Cn×n (λk = λk(A) ∈ σ(A)),

where Q̂k are one-dimensional eigen-projections. If f (z) is a scalar function defined on the
spectrum of A, then f (A) is defined as

f (A) =
n

∑
k=1

f (λk)Q̂k

Let

r(z) =
n

∑
k=0

ckzk (z ∈ C)

be the interpolation Lagrange-Sylvester polynomial, such that r(λk) = f (λk). and

f (A) = r(A) =
n

∑
k=0

ck Ak,
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cf. Section V.1 of [24]. From (40) it follows

f (A) =
n

∑
k=0

ck Ak =
n

∑
k=0

ckT−1D̂kT = T−1 f (D̂)T.

Since D̂ is normal, ‖ f (D̂)‖ = maxk | f (λk)|. We thus arrive at

Lemma 8. Let A be diagonalizable and f (z) be a scalar function defined on the σ(A) for an
A ∈ Cn×n. Then

‖ f (A)‖ ≤ κ(A, T)max
k
| f (λk)|.

In particular,
‖Am‖ ≤ κ(A, T)rm

s (A) (m = 1, 2, . . . ),

‖eAt‖ ≤ κ(A, T)eα(A)t (α(A) = max
k

Re λk, t ≥ 0),

‖(A− λI)−1‖ ≤ κ(A, T)
ρ(A, λ)

(λ 6∈ σ(A)). (41)

Inequality (41) and Lemma 7.1 imply.

Corollary 12. Let A, Ã ∈ Cn×n and A be diagonalizable. Then

svA(Ã) ≤ ‖A− Ã‖κ(A, T).

Now we are going to estimate the condition number of A assuming that all the
eigenvalues λj of A are different:

λj 6= λm whenever j 6= m (j, m = 1, . . . , n). (42)

In other words the algebraic multiplicity of each eigenvalue is is equal to one. Recall that

g(A) := (N2
2 (A)−

n

∑
k=1
|λk|2)1/2

(see Section 3) and put

δj := min
k=1,...,n; k 6=j

|λj − λk|, τj(A) :=
n−2

∑
k=0

gk(A)√
k!δk+1

j

and

γ(A) :=

1 +
g(A)

n− 1

√√√√n−1

∑
j=1

τ2
j (A)

2(n−1)

.

Theorem 12. Let condition (42) be fulfilled. Then there is an invertible matrix T, such that (40)
holds with

κ(A, T) ≤ γ(A). (43)

The proof of this theorem can be found in Theorem 6.1 of [9] and [25]. Theorem
12 is sharp: if A is normal, then g(A) = 0 and γ(A) = 1. Thus we obtain the equality
κ(A, T) = 1.

Lemma 8 and Theorem 12 immediately imply.
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Corollary 13. Let condition (42) hold and f (z) be a scalar function defined on the σ(A) for an
A ∈ Cn×n. Then

‖ f (A)‖ ≤ γ(A)max
k
| f (λk)|.

Moreover, making use of Theorem 12 and Corollary 12, we arrive at the following
result.

Corollary 14. Let A, Ã ∈ Cn×n and condition (42) hold. Then

svA(Ã) ≤ ‖A− Ã‖γ(A).

About additional inequalities for condition numbers via norms of the eigen-projections
see [26,27]. About the functions of diagonalzable matrices see also [28].

14. Sums of Real Parts of Eigenvalues of Perturbed Matrices

The aim of the present section is to generalize the Kahan inequality (4). Again,
put AR := (A + A∗)/2 = Re A, AI := (A − A∗)/2i = Im A and E = Ã − A. Let
cm (m = 1, 2, . . . ) be a sequence of positive numbers defined by the recursive relation

c1 = 1, cm = cm−1 +
√

c2
m−1 + 1 (m = 2, 3, . . . ). (44)

For a p ∈ [2m, 2m+1] (m = 1, 2, . . . ), put

bp = ct
mc1−t

m+1 with t = 2− 2−m p.

As it is proved in Corollary 1.3 of [29],

bp ≤
pe1/3

2
≤ p (p ≥ 2). (45)

Now we in a position to formulate and prove the main result of this section.

Theorem 13. Let A ∈ Cn×n be a Hermitian operator and Ã be an arbitrary n× n matrix. Let
the conditions

λ1 ≤ λ2 ≤ · · · ≤ λn and Re λ̃1 ≤ Re λ̃2 ≤ · · · ≤ Re λ̃n (46)

hold. Then for any p ∈ [2, ∞),

[
n

∑
k=1
|Re λ̃k − λk|p]1/p ≤ Np(ER) + 2bpNp(EI). (47)

Proof. According to the Schur theorem (see Section 2), we can write

Ã = QT̃Q−1

where T̃ is an upper triangular matrix. Since T̃ and Ã are similar, they have the same
eigenvalues, and without loss of generality we can assume that Ã is already upper triangu-
lar, i.e.,

Ã = D̃ + Ṽ ( σ(Ã) = σ(D̃)) (48)

where D̃ is the diagonal matrix and Ṽ is the strictly upper triangular matrix.
Here and below σ(A) denotes the spectrum of A. We have Ã = D̃R + iD̃I + Ṽ and

thus, the real and imaginary part of A are

ÃR = A + ER = D̃R + ṼR and ÃI = EI = D̃I + ṼI ,
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respectively. Since A and D̃R are Hermitian, by the Mirsky inequality mentioned in the
Introduction, we obtain

[
n

∑
k=1
|Re λ̃k − λk|p]1/p ≤ Np(A− D̃R) = Np(A− AR + ṼR) =

Np(ER + ṼR) (1 ≤ p < ∞).

Thus

[
n

∑
k=1
|Re λ̃k − λk|p]1/p ≤ Np(ER) + Np(ṼR) (1 ≤ p < ∞). (49)

Making use of Lemma 1.5 from [29], we get the inequality

Np(ṼR) ≤ bpNp(ṼI) (2 ≤ p < ∞) (50)

(see also Section 3.6 of [30] and [31]). In addition, by (48) ṼI = ÃI − D̃I and, therefore,

Np(ṼI) ≤ Np(ÃI) + Np(D̃I) (1 ≤ p < ∞).

Thanks to the above mentioned Weyl inequalities,

Np(D̃I) ≤ Np(ÃI) and Np(D̃R) ≤ Np(ÃR) (1 ≤ p < ∞).

Thus,
Np(ṼI) ≤ 2Np(ÃI) (1 ≤ p < ∞).

Now (50) implies the inequality

Np(ṼR) ≤ 2bpNp(ÃI) (2 ≤ p < ∞).

So by (49) we get the desired inequality

[
n

∑
k=1
|Re λ̃k − λk|p]1/p ≤ Np(ER) + Np(ṼR) ≤ Np(ER) + 2bpNp(EI).

The just proved theorem is sharp in the following sense: if Ã is Hermitian, then
Np(EI) = 0 and inequality (47) becomes the Mirsky result, presented in Section 1.

Corollary 15. Let a matrix Ã = (ajk)
n
j,k=1 have the real diagonal entries. Let W be the off-diagonal

part of Ã: W = Ã− diag (a11, . . . , ann). Then for any p ∈ [2, ∞),

[
n

∑
k=1
|Re λ̃k − akk|p]1/p ≤ Np(WR) + 2bpNp(WI)

and, therefore,

[
n

∑
k=1
|Re λ̃k|p]1/p ≥ [

n

∑
k=1
|akk|p]1/p − Np(WR)− 2bpNp(WI). (51)

Indeed, this result is due to the previous theorem with A = diag [ajj].
Certainly, inequality (51) has a sense only if its right-hand side is positive.
The case 1 ≤ p < 2 should be considered separately from the case p ≥ 2, since the

relations between Np(ṼR) and Np(ṼI) similar to inequality (50) are unknown if p = 1,
and we could not use the arguments of the proof of Theorem 13. The case 1 ≤ p < 2 is
investigated in [32].
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15. An Identity for Resolvents

Let A, Ã ∈ Cn×n and E = Ã− A. The Hilbert identity for resolvents mentioned in
Section 1 gives the following important result: if a λ ∈ C is regular for A and

‖E‖‖Rλ(A)‖ < 1, (52)

then λ is also regular for Ã. In this section we suggest a new identity for resolvents of
matrices. It gives us new perturbation results which in appropriate situations improve
condition (52). Put Z = ÃE− EA.

Theorem 14. Let a λ ∈ C be regular for A and Ã. Then,

Rλ(Ã)− Rλ(A) = Rλ(Ã)ZR2
λ(A)− ER2

λ(A). (53)

Proof. We have
Rλ(Ã)(ÃE− EA)R2

λ(A)− ER2
λ(A) =

(Rλ(Ã)(ÃE− EA)− E)R2
λ(A) = Rλ(Ã)(ÃE− EA− (Ã− λ)E)R2

λ(A) =

Rλ(Ã)(−Eλ + EA)R2
λ(A) = −Rλ(Ã)ERλ(A) =

−Rλ(Ã)(Ã− λ− (A− λ))Rλ(A) = −(I − Rλ(Ã)(A− λ))Rλ(A) =

Rλ(Ã)− Rλ(A),

as claimed. �

Denote
η(A, E, λ) := sup

0≤t≤1
t‖(AE− EA + tE2)R2

λ(A)‖.

Lemma 9. Let λ ∈ C be a regular point of A and η(A, E, λ) < 1. Then λ 6∈ σ(Ã) and identity
(53) holds. Moreover,

‖Rλ(Ã)‖ ≤
‖Rλ(A)− ER2

λ(A)‖
1− η(A, E, λ)

.

Proof. Put At = A + tE (t ∈ [0, 1]). Since the regular sets of operators are open, for t small
enough, λ is a regular point of At. By the previous lemma we get

Rλ(At)− Rλ(A) = Rλ(At)(t(A + tE)E− tEA)R2
λ(A)− tER2

λ(A).

Hence,

‖Rλ(At)‖ − ‖Rλ(A)− tER2
λ(A)‖ ≤ ‖Rλ(At)‖‖[t(EA− AE) + t2E2]R2

λ(A)‖ ≤

‖Rλ(At)‖η(A, E, λ).

Thus, with the notation

c(λ) :=
1− η(A, E, λ)

‖Rλ(A)‖+ ‖ER2
λ(A)‖

,

We have
‖Rλ(At)‖ ≤

1
c(λ)

(λ 6∈ σ(At)). (54)

Take an integer m > c0(λ)/‖E‖ and put tk = k/m (k = 1, . . . , m). For m large enough,
λ is a regular point of At1 and due to (54) we can write

‖At1 x− λx‖ ≥ c0(λ) (x ∈ Dom(A); ‖x‖ = 1).



Axioms 2021, 10, 99 25 of 35

Hence,

‖At2 x− λx‖ ≥ ‖At1 x− λx‖ − 1
m
‖E‖ = γ > 0 (x ∈ Cn; ‖x‖ = 1), (55)

where γ = c0 − ‖E‖m . Due to inequality (55) we can assert that λ 6∈ σ(At2). So in our
arguments we can replace At1 by At2 and obtain the relations

‖At3 x− λx‖ ≥ γ.

Therefore, λ 6∈ σ(At3). Continuing this process for k = 4, . . . , m, we get λ 6∈ σ(Atm) =
σ(Ã). Now (54) implies the required result.

It is clear that η(A, E, λ) ≤ ζ2(A, E)‖R2
λ(A)‖, where

ζ(A, E) :=
√
‖AE− EA‖+ ‖E2‖.

Now the previous lemma yields the following result.

Corollary 16. Let λ 6∈ σ(A) and ζ(A, E)‖Rλ(A)‖ < 1. Then λ 6∈ σ(Ã) and relation (53) holds.

Example 6. Let us consider the matrices

A =

(
a 0
0 a

)
and Ã =

(
a c
0 a

)
with arbitrary non-zero numbers a and c. It is clear that ‖A− Ã‖ = |c|, σ(A) = σ(Ã). In
this example we easily have AE− EA = 0 and E2 = 0 and, therefore, Corollary 16 gives us
the sharp result.

At the same time (52) gives us the invertibility condition |c| < |a|.

Example 7. Let us consider the block matrices

T =

(
B 0
0 B

)
and T̃ =

(
B C
0 B

)
,

where C and B are commuting n× n-matrices. It is simple to check that

T(T̃ − T)− (T̃ − T)T = 0, (T̃ − T)2 = 0.

Corollary 16 gives us the equality σ(T) = σ(T̃). At the same time, due to (52), if λ 6∈ σ(T)
we can assert that λ 6∈ σ(T̃) only if ‖T̃ − T‖‖Rλ(T)‖ < 1.

If A is invertible, then due to Theorem 5,

‖A−1‖ ≤
Nn−1

2 (A)

(n− 1)(n−1)/2|det (A)|
.

Now Corollary 16 implies

Corollary 17. Suppose A is invertible, and

ζ(A, E)Nn−1
2 (A) < (n− 1)(n−1)/2|det (A)|,

then Ã is also invertible.

Recall that the quantity g(A) is introduced in Section 2. Theorems 2 and Corollary 16
imply our next result.
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Corollary 18. If λ is regular for A and

ζ(A, E)
n−1

∑
k=0

gk(A)√
k!ρk+1(A, λ)

< 1,

then λ is regular for Ã.

The following theorem gives us the bound for the spectral variation via the identity
for resolvents considered in this section.

Theorem 15. Let A and Ã be n× n matrices. Then svA(Ã) ≤ x1, where x1 is the unique positive
root of the algebraic equation

xn = ζ(A, E)
n−1

∑
k=0

gk(A)xn−k−1
√

k!
(56)

Proof. For any µ ∈ σ(A), due to Corollary 18 we have

ζ(A, E)
n−1

∑
k=0

gk(A)√
k!ρk+1(A, λ)

≥ 1.

Hence, it follows that ρ(A, µ) ≤ x1, where x1 is the unique positive root of the equation

ζ(A, E)
n−1

∑
k=0

gk(A)√
k!xk+1

= 1,

which is equivalent to (56). But svA(Ã) = maxj ρ(A, λj(Ã)). This proves the theorem. �
To estimate x1 one can apply Lemma 13.

16. Similarity of an Arbitrary Matrix to a Block Diagonal Matrix
16.1. Preliminary Results

Again, ‖A‖ is the spectral norm. and ‖A‖F is the Frobenius norm of A ∈ Cn×n, λj
(j = 1, . . . , m; m ≥ 2) are the different eigenvalues of A and µj is the algebraic multiplicity
of λj. So

δ := min
j,k=1,...,m; k 6=j

|λj − λk| > 0 (57)

and µ1 + · · ·+µm = n. The aim of this section is to show that there are matrices Aj ∈ Cµj×µj

(j = 1, . . . , m) and an invertible matrix T ∈ Cn×n, such that

T−1 AT = D̂, where D̂ = diag (A1, A2, . . . , Am). (58)

Besides, each block Aj has the unique eigenvalue λj. In addition, we obtain an estimate
for the (block-condition) number κT := ‖T‖‖T−1‖ and consider some applications of
that estimate,

Put
λ̂1 = λ̂2 = · · · = λ̂µ1 = λ1,

λ̂µ1+1 = λ̂µ1+2 = · · · = λ̂µ1+µ2 = λ2, . . . ,

λ̂µ1+µ2+···+µm−1+1 = λ̂µ1+µ2+···+µm−1+2 = · · · = λ̂µ1+µ2+···+µm = λm.
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By the Schur theorem (see Section 2) there is a non-unique unitary transform, such
that A can be reduced to the triangular form:

A =


a11 a12 a13 . . . a1,n−1 a1n
0 a22 a23 . . . a2,n−1 a2n
. . . . . . .
0 0 0 . . . an−1,n−1 an−1,n
0 0 0 . . . 0 ann

.

Besides, the diagonal entries are the eigenvalues ordered enumerated as

a11 = a22 = · · · = aµ1,µ1 = λ1,

aµ1+1,µ1+1 = aµ1+2,µ1+2 = · · · = aµ1+µ2,µ1+µ2 = λ2, . . .

aµ1+µ2+···+µm−1+1,µ1+µ2+···+µm−1+1 = aµ1+µ2+···+µm−1+2,µ1+µ2+···+µm−1+2

= · · · = aµ1+µ2+···+µm ,µ1+µ2+···+µm = λm.

Let {ek}n
k=1 be the corresponding orthonormal basis of the upper-triangular represen-

tation (the Schur basis). Denote

Qi =
i

∑
k=1

(., ek)ek (i = 1, . . . , n); ∆Qk = (., ek)ek (k = 1, . . . , n);

P0 = 0, P1 =
µ1

∑
k=1

∆Qk, P2 =
µ1+µ2

∑
k=1

∆Qk, . . . , Pj =

µ1+µ2+···+µj

∑
k=1

∆Qk

and

∆Pj = Pj − Pj−1 =

νj

∑
k=νj−1+1

∆Qk , where ν0 = 0, νj = µ1 + µ2 + · · ·+ µj (j = 1, . . . , m).

In addition, put Ajk = ∆Pj A∆Pk (j 6= k) and Aj = ∆Pj A∆Pj (j, k = 1, . . . , m). We can
see that each Pj is an orthogonal invariant projection of A and

A =


A1 A12 A13 . . . A1m
0 A2 A23 . . . A2m
. . . . . . .
0 0 0 . . . Am

. (59)

Besides, if µj = 1, then Aj = λj∆Pj and ∆Pj is one dimensional. If µj > 1, then

Aj =

νj

∑
k=νj−1+1

∆Qk A
µj

∑
i=µj−1

∆Qi =

νj

∑
k=νj−1+1

∆Qk A∆Qk +

νj

∑
i=νj−1+1

i−1

∑
k=νj−1+1

∆Qk A∆Qi

= λj

νj

∑
k=νj−1+1

∆Qk + Vj = λj∆Pj + Vj,

where

Vj =

νj

∑
i=νj−1+1

i−1

∑
k=νj−1+1

∆Qk AQi.
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In the matrix form the blocks Aj can be written as

A1 =


λ1 a12 a13 . . . a1,µ1−1 a1µ1

0 λ1 a23 . . . a2n−1 a2n
. . . . . . .
0 0 0 . . . λ1 aµ1−1,µ1

0 0 0 . . . 0 λ1

,

A2 =


λ2 aµ1+1,µ1+2 aµ1+1,µ1+3 . . . aµ1+1,µ1+µ2−1 aµ1+1,µ1+µ2

0 λ2 aµ1+2,µ1+3 . . . aµ1+2,µ1+µ2−1 aµ1+2,µ1+µ2

. . . . . . .
0 0 0 . . . λ2 aµ1+µ2−1,µ1+µ2

0 0 0 . . . 0 λ2

,

etc. Besides, each Vj is a strictly upper-triangular (nilpotent) part of Aj. So Aj has the
unique eigenvalue λj of the algebraic multiplicity µj: σ(Aj) = {λj}. We, thus, have proved
the following result.

Lemma 10. An arbitrary matrix A ∈ Cn×n can be reduced by a unitary transform to the block
triangular form (59) with Aj = λj∆Pj + Vj ∈ Cµj×µj , where Vj is either a nilpotent operator, or
Vj = 0. Besides, Aj has the unique eigenvalue λj of the algebraic multiplicity µj.

16.2. Statement of the Main Result

Again, put

g(A) := [‖A‖2
F −

m

∑
k=1

µk|λk|2]1/2.

Introduce, also, the notations

dj :=
j

∑
k=0

j!
((j− k)!k!)3/2 (j = 0, . . . , n− 2), θ(A) :=

n−2

∑
k=0

dkgk(A)

δk+1

and

γ(A) :=
(

1 +
g(A)θ(A)√

m− 1

)2(m−1)

.

It is not hard to check that dj ≤ 2j. Now we are in a position to formulate the main
result of this section.

Theorem 16. Let an n× n-matrix A have m ≤ n (m ≥ 2) different eigenvalues λj of the algebraic
multiplicity µj (j = 1, . . . , m). Then there are µj × µj-matrices Aj each of which has a unique
eigenvalue λj, and an invertible matrix T, such that (58) holds with the block-diagonal matrix
D̂ = diag (A1, A2, . . . , Am). Moreover,

κT = ‖T‖‖T−1‖ ≤ γ(A). (60)

This theorem is proved in the next section. Theorem 16 is sharp: if A is normal, then
g(A) = 0 and γ(A) = 1. Thus we obtain the equality κT = 1.

16.3. Applications of Theorem 16

Let f (z) be a scalar function, regular on σ(A). Define f (A) by the usual way via the
Cauchy integral [33]. Since Aj are mutually orthogonal, we have

f (D̂) = diag ( f (A1, . . . , f (Am)) and ‖ f (D̂)‖ = max
j
‖∆Pj f (Aj)‖. (61)
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Let

r(z) =
n−1

∑
k=0

ckzn−k

be the interpolation Lagrange–Sylvester polynomial such that r(λ̂j) = f (λ̂j) (λ̂j ∈ σ(A),
j = 1, . . . , n) and r(A) = f (A), cf. Section V.1 of [24].

Now (58) implies

f (A) =
n−1

∑
k=0

ck An−k = T−1
n−1

∑
k=0

ckD̂n−kT = T−1r(D̂)T = T−1 f (D̂)T.

Hence, (59) and (60) yield

Corollary 19. Let A ∈ Cn×n. Then there is an invertible matrix T, such that

‖ f (A)‖ ≤ κT max
j
‖∆Pj f (Aj)‖ ≤ γ(A)max

j
‖∆Pj f (Aj)‖.

Due to Theorem 3.5 from the book [9] we have

‖ f (Aj)‖ ≤
µj−1

∑
k=0
| f (k)(λj)|

gk(Aj)√
k!

.

Take into account that g(Aj) ≤ g(A) (see Section 17). Now, making use of Theorem 16.2,
we arrive at the following result.

Corollary 20. Let A ∈ Cn×n. Then

‖ f (A)‖ ≤ γ(A)max
j

µj−1

∑
k=0
| f (k)(λj)|

gk(A)

(k!)3/2 .

For example, we have

‖etA‖ ≤ γ(A)eα(A)t
µ̂−1

∑
k=0

tk gk(A)

(k!)3/2 (t ≥ 0),

where α(A) = maxk Re λk and µ̂ = maxj µj.
About the recent results devoted to matrix-valued functions see for instance [9] and

the references which are given therein.
Now consider the resolvent. Then by (58) for |z| > max{‖A‖, ‖D̂‖} we have

Rz(A) = (A− zI)−1 = −
∞

∑
k=0

Ak

zk+1 = −T−1
∞

∑
k=0

D̂k

zk+1 T = T−1Rz(D̂)T.

Extending this relation analytically to all regular z and taking into account that

Rz(D̂) =
m

∑
k=1

Rz(Aj) and ‖Rz(D̂)‖ = max
j
‖∆PjRz(Aj)‖ (z ∈ σ(A)), (62)

We get

Corollary 21. Let A ∈ Cn×n. Then there is an invertible matrix T, such that

‖Rz(A)‖ ≤ κT max
j
‖∆PjRz(Aj)‖ ≤ γ(A)max

j
‖∆PjRz(Aj)‖
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for any regular z of A.

But due to Theorem 3.2 from [9] we have

‖Rz(Aj)‖ ≤
µj−1

∑
k=0

gk(Aj)

ρk+1(Aj, z)
√

k!
(z 6∈ σ(Aj)),

where ρ(A, z) is the distance between z and the spectrum of A. Clearly, ρ(Aj, z) ≥ ρ(A, z)
(j = 1, . . . , m). Now Theorem 16 and (62) imply

Corollary 22. Let A ∈ Cn×n. Then

‖Rz(A)‖ ≤ γ(A)
µ̂−1

∑
k=0

gk(A)

ρk+1(A, z)
√

k!
(λ 6∈ σ(A)).

Furthermore, let A and Ã be complex n× n-matrices. Recall that svA(Ã) is the spectral
variation of Ã with respect to A.

For the proof see Lemma 1.10 of [9]. Making use of Lemma 2 and Corollary 22,
we obtain the inequality svA(Ã) ≤ z(A, q), where z(A, q) is the unique positive root of
the equation

qγ(A)
µ̂−1

∑
k=0

gk(A)

zk+1
√

k!
= 1.

This equation is equivalent to the algebraic one

zµ̂ = qγ(A)
µ̂−1

∑
k=0

gk(A)zµ̂−k−1
√

k!
. (63)

For example, if

ζ(A, q) := qγ(A)
µ̂−1

∑
k=0

gk(A)√
k!

< 1, (64)

then due to Lemma 3.17 from [9], we have zµ̂(A, q) ≤ ζ(A, q) . So we arrive at

Corollary 23. Let A and Ã be n× n-matrices. Then svA(Ã) ≤ z(A, q). If, in addition, condition
(64) holds, then svµ̂

A(Ã) ≤ ζ(A, q).

To illustrate Corollary 23 consider the matrices

A =


−1 a12 a13 a14
0 −1 a23 a24
0 0 1 a34
0 0 0 1

 and Ã =


−1 a12 a13 a14
a21 −1 a23 a24
a31 a32 1 a34
a41 a42 a43 1


The eigenvalues of A are λ1 = λ2 = −1, λ3 = λ4 = 1. So m = 2, µ1 = µ2 = 2, δ = 2,

g2(A) =
4

∑
k=1

k−1

∑
j=1
|ajk|2,

d0 = 1, d1 = 1, and d2 ≤ 4. Hence,

θ(A) ≤ θ1(A) :=
1
2
(1 +

g(A)

2
+ g2(A)) and γ(A) ≤ γ1(A),
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where γ1(A) := (1 + g(A)θ1(A))2. According (59) consider the equation

z2 = qγ1(A)(z + g(A)).

So one can take z(A, q) = z1(A, q), where

z1(A, q) :=
1
2

qγ1(A) +

√
1
4

q2γ2
1(A) + qγ1(A)g(A).

Due to Corollary 23 we have svA(Ã) ≤ z1(A, q).
Additional relevant results can be found in the papers [34,35].

17. Proof of Theorem 16

Recall that Pj are the orthogonal invariant projections defined in Section 16.1 and
∆Pj = Pj − Pj−1; Ajk and Aj are also defined in Section 16.1. Put

Pk = I − Pk, Bk = Pk APk and Ck = ∆Pk APk (k = 1, . . . , m− 1).

By Lemma 10 Aj has the unique eigenvalue λj and A is represented by (59). Represent
Bj and Cj in the block-matrix form:

Bj = Pj APj =


Aj+1 Aj+1,j+2 . . . Aj+1,m

0 Aj+2 . . . Aj+2,m
. . . . . .
0 0 . Am


and

Cj = ∆Pj APj =
(

Aj,j+1 Aj,j+2 . . . Aj,m
)
(j = 1, . . . , m− 1).

Since Bj is a block triangular matrix, it is not hard to see that

σ(Bj) = ∪m
k=j+1 σ(Ak) = ∪m

k=j+1λk (j = 1, . . . , m− 1),

cf. Lemma 6.2 of [9]. So due to Lemma 10,

σ(Bj) ∩ σ(Aj) = ∅ (j = 1, . . . , m− 1). (65)

Under this condition, the equation

AjXj − XjBj = −Cj (j = 1, . . . , m− 1) (66)

has a unique solution
Xj : PjCn → ∆PjCn, (67)

e.g., Section VII.2 of [33].

Lemma 11. Let Xj be a solution to (66). Then

(I − Xm−1)(I − Xm−2) · · · (I − X1) A (I + X1)(I + X2) · · · (I + Xm−1) = D̂. (68)

Proof. Due to (67) we can write Xj = ∆PjXjPj. But ∆PjPj = Pj∆Pj = 0. Therefore,
Xj Aj = BjXj = XjCj = CjXj = 0 and

X2
j = 0. (69)
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Since Pj is a projection invariant to A: Pj APj = APj, we can write Pj APj = 0. Thus,
A = A1 + B1 + C1 and, consequently,

(I − X1)A(I + X1) = (I − X1)(A1 + B1 + C1)(I + X1) =

A1 + B1 + C1 − X1B1 + A1X1 = A1 + B1.

Furthermore, B1 = A2 + B2 + C2. Hence,

(P1 − X2)B1(P1 + X2) = (P1 − X1)(A2 + B2 + C2)(P1 + X1) =

A2 + B2 + C2 − X2B2 + A2X2 = A2 + B2.

Therefore,

(I − X2)(A1 + B1)(I + X2) = (P1 + P1 − X2)(A1 + B1)(P1 + P1 + X2) =

A1 + (P1 − X2)(A1 + B1)(P1 + X2) = A1 + A2 + B2.

Consequently,

(I − X2)(A1 + B1)(I + X2) = (I − X2)(I − X1)A(I + X1)(I + X2) = A1 + A2 + B2.

Continuing this process and taking into account that Bm−1 = Am, we obtain

(I−Xm−1)(I−Xm−2) · · · (I−X1) A (I +X1)(I +X2) · · · (I +Xm−1) = A1 + · · ·+ Am = D̂,

as claimed.

Take
T = (I + X1)(I + X2) · · · (I + Xm−1). (70)

According to (69)

(I + Xj)(I − Xj) = (I − Xj)(I + Xj) = I.

So the matrix I − Xj is inverse to I + Xj. Thus,

T−1 = (I − Xm−1)(I − Xm−2) · · · (I − X1) (71)

and (68) can be written as (58). We thus arrive at

Corollary 24. Let an n × n-matrix A have m ≤ n (m ≥ 2) different eigenvalues λj of the
algebraic multiplicity µj (j = 1, . . . , m). Then there are µj × µj-matrices Aj each of which has a
unique eigenvalue λj and such that (58) holds with T defined by (70).

By the inequalities between the arithmetic and geometric means from (70) and (71) we
get

‖T‖ ≤
m−1

∏
j=1

(1 + ‖Xj‖) ≤
(

1 +
1

m− 1

m−1

∑
j=1
‖Xj‖

)m−1

(72)

and

‖T−1‖ ≤
(

1 +
1

m− 1

m−1

∑
k=1
‖Xk‖

)m−1

. (73)

Proof of Theorem 16 Consider the Sylvester equation

BX− XB̃ = C, (74)
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where B ∈ Cn1×n1 , B̃ ∈ Cn2×n2 and C ∈ Cn1×n2 are given; X ∈ Cn1×n2 should be found.
Assume that the eigenvalues λk(B) and λj(B̃) of B and B̃, respectively, satisfy the condition.

ρ0(B, B̃) := 1.7em ( σ(B), σ(B̃)) = min
j,k
|λk(B)− λj(B̃)| > 0.

Then Equation (74) has a unique solution X, e.g., Section VII.2 of [33]. not mentioned in the
article, plaese confirm and modifiy. Due to Corollary 5.8 of [9], the inequality

‖X‖F ≤ ‖C‖F

n1+n2−2

∑
p=0

1

ρ
p+1
0 (B, B̃)

p

∑
k=0

(
p
k )

gk(B̃)gp−k(B)√
(p− k)!k!

is valid and, therefore,

‖X‖F ≤ ‖C‖F

n1+n2−2

∑
p=0

dp ĝp

ρ
p+1
0 (B, B̃)

, (75)

where ĝ = max{g(B), g(B̃)}.
Let us go back to Equation (66). In this case B = Aj, B̃ = Bj, C = Cj, n1 = µj, n2 =

n̂j := dim PjCn, and due to (57), ρ0(Aj, Bj) ≥ δ (j = 1, . . . , n). In addition, µj + n̂j ≤ n.
Now (75) implies

‖Xj‖F ≤ ‖Cj‖F

n−2

∑
k=0

dk ĝk
j

δk+1 , (76)

where ĝj = max{g(Bj), g(Aj)}.
Recall that {ek}n

k=1 denotes the Schur basis. So

Aek =
k

∑
j=1

ajkej with ajk = (Aek, ej) (j = 1, . . . , n).

We can write A = DA + VA ( σ(A) = σ(DA)) with a normal (diagonal) matrix DA
defined by DAej = akkek = λ̂jek (k = 1, . . . , n) and a nilpotent (strictly upper-triangular)
matrix VA defined by VAek = a1ke1 + · · ·+ ak−1,kek−1 (k = 2, . . . , n), VAe1 = 0. DA and VA
will be called the diagonal part and nilpotent part of A, respectively. It can be VA = 0, i.e., A is
normal.

Besides, g(A) = ‖VA‖F. In addition, the nilpotent part Vj of Aj is ∆PjVA∆Pj and the
nilpotent part Wj of Bj is PjVAPj. So Vj and Wj are orthogonal, and

g(Aj) = ‖Vj‖F ≤ ‖VA‖F = g(A), g(Bj) = ‖Wj‖F ≤ ‖VA‖2
F = g(A).

Thus, from (76) it follows

‖Xj‖F ≤ ‖Cj‖F

n−2

∑
k=0

dkgk(A)

δk+1 = ‖Cj‖Fθ(A). (77)

It can be directly checked that

‖Cj‖2
F =

m

∑
k=j+1

‖Ajk‖2
F

and

m−1

∑
j=1
‖Cj‖2

F =
m−1

∑
j=1

m

∑
k=j+1

‖Ajk‖2
F ≤

m

∑
j=1

m

∑
k=j
‖Ajk‖2

F −
m

∑
j=1
‖Ajj‖2

F = ‖A‖2
F −

m

∑
j=1
‖Ajj‖2

F.
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Since ‖Akk‖F ≥ µk|λk|, we have

m−1

∑
j=1

m

∑
k=j+1

‖Ajk‖2
F ≤ g2(A),

and, consequently,
m−1

∑
j=1
‖Cj‖2

F ≤ g2(A). (78)

Take T as is in (70). Then (72), (73), and (77) imply

‖T‖ ≤
(

1 +
1

m− 1

m−1

∑
k=1
‖Xk‖F

)m−1

≤
(

1 +
θ(A)

m− 1

m−1

∑
k=1
‖Ck‖F

)m−1

and

‖T−1‖ ≤
(

1 +
θ(A)

m− 1

m−1

∑
k=1
‖Ck‖F

)m−1

.

But by the Schwarz inequality and (78),

(
m−1

∑
j=1
‖Cj‖F)

2 ≤ (m− 1)
m−1

∑
j=1
‖Cj‖2

F ≤ (m− 1)g2(A).

Thus,

‖T‖2 ≤
(

1 +
θ(A)√
m− 1

g(A)

)2(m−1)

= γ(A)

and ‖T−1‖2 ≤ γ(A). Now (68) proves the theorem. �
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