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Abstract: The conditional mean value has applications in regression analysis and in financial mathe-
matics, because they are used in it. We can find papers from recent years that use the conditional
mean value in fuzzy cases. As the intuitionstic fuzzy sets are an extension of fuzzy sets, we will try to
define a conditional mean value for the intuitionistic fuzzy case. The conditional mean value in crisp
intuitionistic fuzzy events was first studied by V. Valenčáková in 2009. She used Gödel connectives.
Her approach can only be used for special cases of intuitionistic fuzzy events, therefore, we want
to define a conditional mean value for all elements of a family of intuitionistic fuzzy events. In
this paper, we define the conditional mean value for intuitionistic fuzzy events using Lukasiewicz
connectives. We use a Kolmogorov approach and the notions from a classical probability theory for
construction. B. Riečan formulated a conditional intuitionistic fuzzy probability for intuitionistic
fuzzy events using an intuitionistic fuzzy state in 2012. In classical cases, there exists a connection
between the conditional probability and the conditional mean value, therefore we show a connection
between the conditional intuitionistic fuzzy probability induced by the intuitionistic fuzzy state and
the conditional intuitionistic fuzzy mean value.

Keywords: intuitionistic fuzzy event; intuitionistic fuzzy observable; intuitionistic fuzzy state;
product; conditional intuitionistic fuzzy probability; conditional intuitionistic fuzzy mean value

MSC: 03B52; 60A86; 60A10

1. Introduction

In general, a conditional mean value has many applications in regression analysis and
in financial mathematics and insurance. The most used notion in these areas is uncertainty.
The notion of uncertainty has two aspects. The first one is understood as risk uncertainty
and it is modeled by a stochastic apparatus. The second one is vagueness, which can be
modeled by fuzzy methodology.

In [1], A. de Korvin and R. Kleyle studied a conditional expectation in a fuzzy case
and they showed its use for Gaussian distribution. A conditional variance of fuzzy random
variables needs for its definition the notion of a conditional mean value (see [2]). An ap-
proach to modeling risk by the conditional value at risk methodology under imprecise and
soft conditions was solved in [3]. In [4], C. You discussed the properties of a conditional
mean value for fuzzy variables such as the Hölders inequality. In [5], M. Bertanha and G.
W. Imbens showed the use of a conditional mean value for testing an external validity in
fuzzy regression discontinuity designs. B. Riečan and M. Jurečková studied a notion of
conditional expectation of observables on MV-algebras of fuzzy sets and on probability
MV-algebras with product (see [6,7]). The intuitionistic fuzzy sets introduced by K. T.
Atanassov in [8] are a generalization of Zadeh’s fuzzy sets in [9,10], given by ( f , 1− f ),
where f is a fuzzy set. As there are known practical applications in classical cases and
fuzzy cases, it is interesting to study a notion of conditional expectation in a family of
intuitionistic fuzzy sets.
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In [11], V. Valenčáková defined a conditional mean value E(x | y) for crisp intuitionistic
fuzzy events A = {(χA, 1− χA)} ⊂ F = {(µA, νA) ; µA + νA ≤ 1Ω} as a Borel function
g : R→ R satisfying the following equality

E
(
xy(C)

)
=
∫

C
g dmy,

for every C ∈ B(R) and y(C) ∈ A. There, y : B(R) → A, x : B(R) → F are the
M-observables and m : F → [0, 1] is an M-state. She used the Gödel connectives ∨, ∧
given by

A ∨ B = (µA ∨ µB, νA ∧ νB), A ∧ B = (µA ∧ µB, νA ∨ νB),

for any A, B ∈ F .
In this paper, we define a conditional mean value for the family of intuitionistic fuzzy

events F . We use the Lukasiewicz connectives ⊕,� given by

A⊕ B = ((µA + µB) ∧ 1Ω, (νA + νB − 1Ω) ∨ 0Ω)),

A� B = ((µA + µB − 1Ω) ∨ 0Ω, (νA + νB) ∧ 1Ω)),

for any A, B ∈ F . We show the connection with a conditional intuitionistic proba-
bility p(A | x) introduced by B. Riečan in [12] as a Borel measurable function f (i.e.,
B ∈ B(R) =⇒ f−1(B) ∈ B(R)) such that∫

B
p(A | x) dmx = m

(
A · x(B)

)
for each B ∈ B(R), where m : F → [0, 1] is the intuitionistic fuzzy state, A ∈ F is an
intuitionistic fuzzy event and x : B(R) → F is an intuitionistic fuzzy observable. This
conditional intuitionistic fuzzy probability is induced by an intuitionistic fuzzy state.

The paper is organized as follows: Section 2 includes the basic notions from intuition-
istic fuzzy probability theory as an intuitionistic fuzzy event, an intuitionistic fuzzy state,
an intuitionistic fuzzy observable and an intuitionistic fuzzy mean value. In Section 3, we
present the main results of the research. First, we formulate a definition of an indefinite
integral. Then we define a conditional intuitionistic fuzzy mean value for the intuitionistic
fuzzy events. Next, we show a connection with a conditional intuitionistic probability
induced by an intuitionistic fuzzy state. The last section contains concluding remarks and
the direction of future research.

We note that in the whole text we use the notation IF as an abbreviation for ‘intuition-
istic fuzzy.’

2. Basic Notions of the Intuitionistic Fuzzy Probability Theory

In this section, we recall the definitions of basic notions connected with intuitionistic
fuzzy probability theory (see [13–15]).

Definition 1 ([13–15]). Let Ω be a nonempty set. An IF-set A on Ω is a pair (µA, νA) of mappings
µA, νA : Ω→ [0, 1] such that µA + νA ≤ 1Ω.

Definition 2 ([13–15]). Start with a measurable space (Ω,S). Hence, S is a σ-algebra of subsets of
Ω. An IF-event is called an IF-set A = (µA, νA) such that µA, νA : Ω→ [0, 1] are S-measurable.

The family of all IF-events on (Ω,S) will be denoted by F , µA : Ω −→ [0, 1] will be
called the membership function, νA : Ω −→ [0, 1] will be called the non-membership function.

If A = (µA, νA) ∈ F , B = (µB, νB) ∈ F , then we define the Lukasiewicz binary
operations ⊕,� on F by
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A⊕ B = ((µA + µB) ∧ 1Ω, (νA + νB − 1Ω) ∨ 0Ω)),

A� B = ((µA + µB − 1Ω) ∨ 0Ω, (νA + νB) ∧ 1Ω))

and the partial ordering is given by

A ≤ B⇐⇒ µA ≤ µB, νA ≥ νB.

In the IF-probability theory ([12]), instead of the notion of probability, we use the
notion of state.

Definition 3 ([12]). Let F be the family of all IF-events in Ω. A mapping m : F → [0, 1] is called
an IF-state, if the following conditions are satisfied:

(i) m((1Ω, 0Ω)) = 1 , m((0Ω, 1Ω)) = 0;
(ii) if A� B = (0Ω, 1Ω) and A, B ∈ F , then m(A⊕ B) = m(A) + m(B);
(iii) if An ↗ A (i.e., µAn ↗ µA, νAn ↘ νA), then m(An)↗ m(A).

The third basic notion in the probability theory is the notion of an observable. Let J
be the family of all intervals in R of the form

[a, b) = {x ∈ R : a ≤ x < b}.

Then the σ-algebra σ(J ) is denoted B(R) and it is called the σ-algebra of Borel sets
and its elements are called Borel sets.

Definition 4 ([12]). By an IF-observable on F we understand each mapping x : B(R) → F ,
satisfying the following conditions:

(i) x(R) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);
(ii) if A ∩ B = ∅, then x(A)� x(B) = (0Ω, 1Ω) and x(A ∪ B) = x(A)⊕ x(B);
(iii) if An ↗ A, then x(An)↗ x(A).

If we denote x(A) =
(
x[(A), 1Ω − x](A)

)
for each A ∈ B(R), then x[, x] : B(R)→ T are

observables, where T = { f : Ω→ [0, 1]; f is S −measurable}.

Similar to the classical case, the following theorem can be proved ([12,16]).

Theorem 1 ([16]). Let x : B(R) −→ F be an IF-observable, m : F −→ [0, 1] be an IF-state.
Define the mapping mx : B(R) −→ [0, 1] by the formula

mx(C) = m(x(C)).

Then mx : B(R) −→ [0, 1] is a probability measure.

Proof. In [16] Proposition 3.1.

In [17] we introduced the notion of product operation on the family of IF-events F
and showed an example of this operation.

Definition 5 ([17]). We say that a binary operation · on F is a product if it satisfies the follow-
ing conditions:

(i) (1Ω, 0Ω) · (a1, a2) = (a1, a2) for each (a1, a2) ∈ F ;
(ii) the operation · is commutative and associative;
(iii) if (a1, a2)� (b1, b2) = (0Ω, 1Ω) and (a1, a2), (b1, b2) ∈ F , then

(c1, c2) ·
(
(a1, a2)⊕ (b1, b2)

)
=
(
(c1, c2) · (a1, a2)

)
⊕
(
(c1, c2) · (b1, b2)

)
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and (
(c1, c2) · (a1, a2)

)
�
(
(c1, c2) · (b1, b2)

)
= (0Ω, 1Ω)

for each (c1, c2) ∈ F ;
(iv) if (a1n, a2n) ↘ (0Ω, 1Ω), (b1n, b2n) ↘ (0Ω, 1Ω) and (a1n, a2n), (b1n, b2n) ∈ F , then

(a1n, a2n) · (b1n, b2n)↘ (0Ω, 1Ω).

The following theorem provides an example of product operation for IF-events.

Theorem 2 ([17]). The operation · defined by

(x1, y1) · (x2, y2) = (x1 · x2, y1 + y2 − y1 · y2)

for each (x1, y1), (x2, y2) ∈ F is a product operation on F .

Proof. In [17] Theorem 1.

Since now mx : B(R) → [0, 1] plays an analogous role as Pξ : B(R) → [0, 1], we can
define IF-mean value E(x) by the same formula (see [18]).

Definition 6 ([18]). We say that an IF-observable x is an integrable IF-observable, if the integral∫
R t dmx(t) exists. In this case we define the IF-mean value

E(x) =
∫

R
t dmx(t).

If the integral
∫

R t2 dmx(t) exists, then we define IF-dispersion D2(x) by the formula

D2(x) =
∫

R
t2 dmx(t)−

(
E(x)

)2
=
∫

R
(t− E(x))2 dmx(t).

3. Conditional Intuitionistic Fuzzy Mean Value

In this section, we present the main results. First, we introduce our motivation from
classical probability space.

In the classical probability space (Ω,S , P) if ξ, η are two random variables, then the
conditional mean value E(ξ | η) of ξ with respect to η can be defined as a Borel function
g : R→ R such that ∫

η−1(B)
ξ dP =

∫
B

g dPη

for each B ∈ B(R). Here Pη = P ◦ η−1 is the probability distribution of η. In our case this
idea could also be realised: ∫

x(B)
y dm =

∫
B

f dmx.

Of course, first we must define
∫

C y dm, because we have defined
∫

R y dm = E(y) =∫
R t dmy(t) only.

Definition 7. If x, y : B(R) → F are the IF-observable and B ∈ B(R) is fixed, then we define
yx(B) : B(R)→ F by the formula

yx(B)(D) =


(0Ω, 1Ω), if D = ∅

y(D \ {0}) · x(B), if D 6= R, D ∈ B(R)

(1Ω, 0Ω), if D = R
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Proposition 1. The mapping yx(B) is an IF-observable. If the IF-observable y is integrable, then
the IF-observable yx(B) is also integrable.

Proof. Let C, D ∈ B(R), C ∩ D = ∅. If 0 /∈ C, 0 /∈ D, then using Definitions 4 and 5
we have

yx(B)(C ∪ D) = y
(
(C ∪ D) \ {0}

)
· x(B) = y(C ∪ D) · x(B) =

(
y(C)⊕ y(D)

)
· x(B) =

= y(C) · x(B)⊕ y(D) · x(B) = y(C \ {0}) · x(B)⊕ y(D \ {0}) · x(B) =

= yx(B)(C)⊕ yx(B)(D).

If 0 ∈ C, 0 /∈ D, then 0 ∈ C ∪ D and using Definition 4 and Definition 5, we obtain

yx(B)(C ∪ D) = y
(
(C ∪ D) \ {0}

)
· x(B) = y(C \ {0} ∪ D) · x(B) =

=
(
y(C \ {0})⊕ y(D)

)
· x(B) =

(
y(C \ {0}) · x(B)

)
⊕
(
y(D) · x(B)

)
=

=
(
y(C \ {0}) · x(B)

)
⊕
(
y(D \ {0}) · x(B)

)
= yx(B)(C)⊕ yx(B)(D).

If 0 /∈ C, 0 ∈ D, then 0 ∈ C ∪ D and we have yx(B)(C ∪ D) = yx(B)(C)⊕ yx(B)(D),
similar to the previous case.

Since y(C)� y(D) = (0Ω, 1Ω), then using Definition 5 we have

yx(B)(C)� yx(B)(D) =
(
y(C \ {0}) · x(B)

)
�
(
y(D \ {0}) · x(B)

)
= (0Ω, 1Ω).

If An ↗ A, then

yx(B)(An) = y(An \ {0}) · x(B)↗ y(A \ {0}) · x(B) = yx(B)(A).

Let y be integrable, that is, there exists E(y) =
∫

R t dmy(t). We want to prove that
yx(B) is integrable, too. It suffices to prove that there exist the integrals∫

[0,∞)
t dmyx(B)(t),

∫
(−∞,0)

t dmyx(B)(t).

Define the measure µ : B(R)→ R by the formula

µ(D) = myx(B)(D) = m
(
y(D \ {0}) · x(B)

)
.

Then µ is a measure and

µ(D) = m
(
y(D \ {0}) · x(B)

)
≤ m

(
y(D) · x(B)

)
≤ m

(
y(D) · (1Ω, 0Ω)

)
= m

(
y(D)

)
.

It follows,

0 ≤
∫
[0,∞)

t dmyx(B)(t) =
∫
{0}

t dmyx(B)(t) +
∫
(0,∞)

t dmyx(B)(t) =
∫
(0,∞)

t dµ(t) ≤

≤
∫
(0,∞)

t dmy(t) < ∞.

On the other hand, for t < 0 we have∫
(−∞,0)

t dmyx(B)(t) =
∫
(−∞,0)

t dµ(t) ≥
∫
(−∞,0)

t dmy(t) > −∞.
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Definition 8. If x, y : B(R) → R are the IF-observables, such that y is integrable, (i.e., there
exists E(y) =

∫
R t dmy(t)), then the indefinite integral is defined by the formula

E
(
yx(B)

)
=
∫

R
t dmyx(B)(t)

for fixed B ∈ B(R).

Proposition 2. Let x, y : B(R)→ R be the IF-observables and y be integrable. Then E
(
yx(B)

)
is

a finite generalized measure.

Proof. Let B =
⋃∞

i=1 Bi, Bi be disjoint. Then x(B) =
⊕∞

i=1 x(Bi) ≤ (1Ω, 0Ω). Put

µ(D) = myx(B)(D) = m
(
y(D \ {0}) · x(B)

)
,

µi(D) = myx(Bi)
(D) = m

(
y(D \ {0}) · x(Bi)

)
.

Then,
E
(
yx(B)

)
=
∫

R
t dµ(t), E

(
yx(Bi)

)
=
∫

R
t dµi(t).

Moreover,

µ(D) = m
(
y(D \ {0}) · x(B)

)
= m

(
y(D \ {0}) ·

∞⊕
i=1

x(Bi)

)
=

= m
( ∞⊕

i=1

(
y(D \ {0}) · x(Bi)

))
=

∞

∑
i=1

m
(
y(D \ {0}) · x(Bi)

)
=

=
∞

∑
i=1

µi(D).

Therefore we have

E
(
yx(B)

)
=
∫

R
t dµ(t) =

∞

∑
i=1

∫
R

t dµi(t) =
∞

∑
i=1

E
(
yx(Bi)

)
.

Since µ(D) = m
(
y(D \ {0}) · x(B)

)
≤ m

(
y(D)

)
, then we have

∣∣E(yx(B)
)∣∣ = ∣∣∣∣ ∫R

t dµ(t)
∣∣∣∣ ≤ ∫R

|t| dµ(t) ≤
∫

R
|t| dmy(t) < ∞.

Theorem 3. Let x, y : B(R) → R be the IF-observables and y be integrable, that is, there exists
E(y) =

∫
R t dmy(t). Then there exists a Borel measurable function f : R→ R such that

E
(
yx(B)

)
=
∫

B
f dmx

for each B ∈ B(R).

Proof. Define µ : B(R)→ [0, 1] by the formula µ(B) = m
(
x(B)

)
= mx(B) and ν : B(R)→

[0, 1] by the formula ν(B) = E
(
yx(B)

)
=
∫

R t dmyx(B)(t).
If mx(B) = 0, that is, m

(
x(B)

)
= 0, then

m
(
yx(B)(D)

)
= m

(
y(D \ {0} · x(B)

)
≤ m

(
(1Ω, 0Ω) · x(B)

)
= m

(
x(B)

)
= 0.
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Hence,
ν(B) = E

(
yx(B)

)
=
∫

R
t dmyx(B)(t) = 0.

Therefore ν� µ and by Radom-Nikodym theorem there exists the Borel measurable
function f : R→ R such that

E
(
yx(B)

)
=
∫

B
f dmx

for each B ∈ B(R).

Now we are able to define a notion of a conditional intuitionistic fuzzy mean value
(expectation).

Definition 9. If x, y : B(R)→ R are the IF-observables and y is integrable, then the conditional
IF-mean value (expectation) E(y | x) = f is the Borel measurable function such that

E
(
yx(B)

)
=
∫

B
E(y | x) dmx

for each B ∈ B(R).

Now we show the connection between a conditional intuitionistic fuzzy mean value
E(y | x) and a conditional intuitionistic probability p(A | x) introduced by B. Riečan
in [12] (see Remark 1). Recall that a conditional intuitionistic fuzzy probability is a Borel
measurable function f (i.e., B ∈ B(R) =⇒ f−1(B) ∈ B(R)) such that∫

B
p(A | x) dmx = m

(
A · x(B)

)
for each B ∈ B(R), where m : F → [0, 1] is the intuitionistic fuzzy state, A ∈ F is an
intuitionistic fuzzy event and x : B(R)→ F is an intuitionistic fuzzy observable.

Remark 1. Take A ∈ F and define the IF-observable yA : B(R)→ F by

yA(B) =



(0Ω, 1Ω), if B = ∅

A, if B = {1}

yA(B ∩ {1}), if B 6= ∅, B 6= R, B ∈ B(R)

(1Ω, 0Ω), if B = R

Then E(yA | x) = p(A | x) holds mx - almost everywhere.

Proof. Namely,∫
B

E(yA | x) dmx = E
(
yA · x(B)

)
=
∫

R
id dm

(
yA · x(B)

)
=
∫

R
id dm

(
A · x(B)

)
=

= m
(
A · x(B)

)
=
∫

B
p(A | x) dmx

for each B ∈ B(R).
Hence E(yA | x) = p(A | x) holds mx—almost everywhere.

4. Conclusions

This paper is concerned with the probability theory of intuitionistic fuzzy sets. We
defined the indefinite integral for an intuitionistic fuzzy observable. We introduced the
notion of a conditional intuitionistic fuzzy mean value and we showed a connection with
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the conditional intuitionistic fuzzy probability induced by an intuitionistic fuzzy state.
We used a Kolmogorov approach and the notions from a classical probability theory for
construction. Another way of obtaining the results is a construction of MV-algebra of
intuitonistic fuzzy events and using the results from MV-algebras. Unfortunately, this
approach leads to the crisp results as in [11], because the family of intuitionistic fuzzy
events F does not contain a set ¬A = (1Ω − νA, 1Ω − νA). In future research we would
like to prove the martingale convergence theorem for a conditional intuitionistic fuzzy
mean value.
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