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Abstract: In this paper, we study the dynamic Parrondo’s paradox for the well-known family of
tent maps. We prove that this paradox is impossible when we consider piecewise linear maps with
constant slope. In addition, we analyze the paradox “simple + simple = complex” when a tent map
with constant slope and a piecewise linear homeomorphism with two different slopes are considered.
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1. Introduction

Recently, the so-called Parrondo’s paradox (see, e.g., [1–3]) has received the attention
of many researchers. Although it appears in game theory, the dynamic version can be
stated in terms of chaotic and non-chaotic behavior. Briefly (see, e.g., [4]), we consider
two discrete dynamical systems given by continuous maps fi : X → X, i = 1, 2, on a
metric space X, usually a subset of Rn, n ∈ N. The Parrondo’s paradox appears when
the dynamical behavior of both maps is simple (respectively, chaotic) and that of f1 ◦ f2 is
chaotic (respectively, simple). Of course, this paradox can involve more maps (see, e.g., [5]).
Mathematical examples includes interval dynamics (see [5,6]), dynamics of complex maps
(see [7,8]), local stability problems ([9,10]), etc. In addition, we can find applications of this
paradox to physics (see [11,12]), biology (see [13–15]) and social sciences (see [16,17]).

In this paper, we study this paradox for interval continuous maps which are piecewise
linear. More precisely, we consider continuous interval maps f : [0, 1]→ [0, 1] for which
there is a finite partition P given by 0 = x0 < x1 < ... < xm = 1 such that the restriction
f |[xi ,xi+1]

is linear. Note that f is piecewise monotone because there is a subpartition of P
such that f |[xi ,xj ]

, i < j, is monotone. We denote by c( f ) the number of monotone pieces of
f . Then, the topological entropy of f is given by (see, e.g., [18] [Chapter 4])

h( f ) = lim
n→∞

1
n

log c( f n),

where f n = f ◦ f n−1, for n ∈ N, f 1 = f . It is well-known that positive topological entropy
implies the existence of some kind of complex behavior. For instance, for positive entropy
maps, there exists an uncountable subset S ⊂ [0, 1] such that for each pair of distinct points
x, y ∈ S we have that

0 = lim inf
n→∞

| f n(x)− f n(y)| < lim sup
n→∞

| f n(x)− f n(y)|.

This is the well-known definition of chaos in the sense of Li and Yorke (see [19]).
The Parrondo’s paradox appears in terms of topological entropy when two zero

(respectively, positive) topological entropy maps f1, f2 : [0, 1] → [0, 1] holds that h( f1 ◦
f2) > 0 (respectively, h( f1 ◦ f2) = 0). This paradox has been shown in several models (see,
e.g., [11,20]). Now, we analyze it for continuous piecewise linear maps. The results and
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necessary background can be find in the next section. A section with conclusions finishes
the paper.

2. The Results

By a discrete dynamical system we mean the pair (X, f ), where X is a metric space
and f : X → X is continuous. For x0 ∈ X, its orbit is given by the recursive sequence
xn+1 = f (xn). In this paper, X = [0, 1].

Let fs : [0, 1]→ [0, 1] be the tent map given by

fs(x) =
{

sx i f x ∈ [0, 1/2],
−sx + s i f x ∈ [1/2, 1].

The parameter s ∈ (0, 2] is called the slope of fs. A piecewise continuous linear map is
called of constant slope s if the slope of its linear pieces is either s or −s. It is known (see,
e.g., [18], Chapter 4) that piecewise continuous linear maps with constant slope s > 0 have
topological entropy max{0, log s}. Therefore, h( fs) = log s if s > 1 and zero otherwise.

It is easy to see that fs1 ◦ fs2 , s1, s2 ∈ (0, 2], is a piecewise linear continuous map
with constant slope s1s2. Then, h( fs1 ◦ fs2) = max{0, log(s1s2)}. Thus, if both s1 and
s2 are smaller than or equal to one, h( fs1 ◦ fs2) = 0 and if they are greater than one
h( fs1 ◦ fs2) = log(s1s2) > 0. The conclusion is that there is no Parrondo’s paradox of any
type. This is true for any piecewise linear continuous map with constant slope.

Thus, we consider maps with two different slopes. Namely, let gs,p : I → I be the map

gs,p(x) =

{
sx i f x ∈ [0, p],

1−sp
1−p x + p s−1

1−p i f x ∈ [p, 1],

where p ∈ (0, 1) and s ∈ (0, 1/p). This map is strictly increasing, and then h(gs,p) = 0 and
the property g1,p(x) = x holds. We say that the map gs,p is of Type 1 if s < 1 and of Type 2
if s > 1. Note that gs,p(x) < x for Type 1 and gs,p(x) > x for Type 2 when x ∈ (0, 1).

Next, we fix s1 ∈ (0, 2], p ∈ (0, 1) and s2 ∈ (0, 1/p) and consider the maps ϕs1,s2,p =
fs1 ◦ gs2,p and φs1,s2,p = gs2,p ◦ fs1 . These maps have the same topological entropy (see [21]),
and then we can work with both of them producing the same results. Let us analyze if the
Parrondo’s paradox “simple + simple = complex” happens for these maps. More precisely,
we study the relationship between the topological entropies of φs1,s2,p and fs1 . We start by
proving the following easy lemmas.

Lemma 1. The map φs1,s2,p has a unique maximum 1/2.

Proof. It is straightforward.

Lemma 2. Assume that s1/2 ≤ p. Then, φs1,s2,p has constant slope s1s2.

Proof. Note that fs1([0, 1]) = [0, s1/2] ⊆ [0, p]. Then,

φs1,s2,p(x) =
{

s1s2x i f x ∈ [0, 1/2],
−s1s2x + s1s2 i f x ∈ [1/2, 1],

and the proof concludes.

The above lemma suggests that working with φs1,s2,p instead of ϕs1,s2,p is a good idea.
We can compute its topological entropy in this particular case. On the other hand, the
maximum is always 1/2, and, then, programming the algorithm from Block et al. [22] used
for numerical computation of the topological entropy of φs1,s2,p is slightly simplified.
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2.1. Maps gs2,p of Type 1

First, we consider that s2 < 1. We can prove the following result.

Proposition 1. Let s1 ≤ 1. Then, h(φs1,s2,p) = 0 for all s2 ∈ (0, 1).

Proof. If s1/2 ≤ p, the result follows by Lemma 2 since s1s2 < 1. Thus, let s1/2 > p and
let x0 < 1/2 be such that s1x0 = p ≤ x0. Note that φs1,s2,p(x0) = s2 p < s2s1x0 ≤ x0. On the
other hand, φs1,s2,p(1/2) = gs2,p(s1/2) < s1/2 ≤ 1/2. Since φs1,s2,p is piecewise linear, we
have that φs1,s2,p([0, 1]) ⊂ [0, s1/2] ⊂ [0, 1/2]. Since, by [18] [Chapter 4],

h
(
φs1,s2,p

)
= h

(
φs1,s2,p|[0,1/2]

)
,

and φs1,s2,p|[0,1/2] is increasing, we have that h
(
φs1,s2,p

)
= 0, and the proof concludes.

The above proposition shows that Parrondo’s paradox is not possible for maps gs2,p of
Type 1. It can be generalized for maps φs1,s2,p with s1 > 1 as follows.

Proposition 2. Let s1 > 1 and let s2 and p be such that φs1,s2,p(1/2) = 1/2. Then, h(φs1,s2,p) = 0.

Proof. It is analogous to that of Proposition 1.

At this moment, we have obtained that, if the hypothesis of Propositions 1 or 2
are fulfilled, then 0 = h(φs1,s2,p) ≤ h( fs1). One might think that this inequality holds
for any map fs1 . Figure 1 shows the computation of the topological entropy of φs1,s2,p
with prescribed accuracy using the algorithm from [22]. We use Mathematica, which can
work properly with infinite precision with linear maps, and, thus, our computations are
not affected by round-off effects. Note that there is not a clear relationship between the
topological entropies of the tent and the modified tent maps. In Figure 2, we explore the
variation of the parameter p.

(a) (b)

(c) (d)

Figure 1. For p = 1/2 and s2 ∈ (0, 1), we depict the graph (a) and level curves (b) of the topological
entropy of φs1,s2,p with accuracy 10−4. The step size for s1 and s2 is 10−3. (c) Parameter values for
which h( fs1 )− h(φs1,s2,p) > 2× 10−4. (d) Parameter values for which h(φs1,s2,p)− h( fs1 ) > 2× 10−4.
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(a) (b)

(c) (d)

Figure 2. For s2 ∈ (0, 1), we depict the graph of the topological entropy of φs1,s2,p with accuracy 10−4

for: p = 1/4 (a); p = 1/3 (b); p = 2/3 (c); and p = 3/4 (d). The step size for s1 and s2 is 10−3.

It is important to realize what it means that the algorithm from Block et al. [22] is
free of round-off effects. This algorithm depends on the so-called kneading sequences.
For a unimodal map f with maximum at c, its kneading sequence is K f = (k1, k2, ...) ∈
{0, 1/2, 1}N such that, for i ≥ 1, ki = 0 if f i(c) < c, ki = 1/2 if f i(c) = c and ki = 1 if
f i(c) > c. Since we work without round-off effects, this kneading sequence is free of them.
The set of possible kneading sequences can be endowed with order relationship such that,
if g is another unimodal map with kneading sequence Kg and Kg ≥ K f , then h(g) ≥ h( f ).
Thus, when we are able to state that either h( fs1) > h(φs1,s2,p) + ε or h(φs1,s2,p) > h( fs1) + ε
for some ε > 0, as, in Figure 1 c,d, we give a computed-assisted proof of that inequalities.

2.2. Maps gs2,p of Type 2

Next, we consider the case s2 > 1. We can prove the following result.

Theorem 1. Let s1 ∈ (0, 2] be such that s1/2 ≤ p. Then, h(φs1,s2,p) = max{0, log(s1s2)}.

Proof. By Lemma 2, the map φs1,s2,p has constant slope s1s2. Then, the proof follows
easily.

The above result shows that it is possible to combine two zero topological entropy
maps to obtain positive topological entropy, and therefore Parrondo’s paradox is possible.
Moreover, as s2 > 1, we have that s1s2 > s1 and hence h(φs1,s2,p) > h( fs1) whenever
s1s2 > 1. Note that otherwise h(φs1,s2,p) = h( fs1) = 0. Numerical computations with
prescribed accuracy are shown in Figure 3. Note that h(φs1,s2,p) can be greater and lower
than h( fs1) when s2 > 1. Note that, as above, our computations are free of round-off errors.
In Figure 4, we explore the variation of the parameter p.
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(a) (b)

(c) (d)

Figure 3. For p = 1/2 and s2 ∈ (1, 2], we depict the graph (a) and level curves (b) of the topological
entropy of φs1,s2,p with accuracy 10−4. The step size for s1 and s2 is 10−3. (c) Parameter values for
which h( fs1 )− h(φs1,s2,p) > 2× 10−4. (d) Parameter values for which h(φs1,s2,p)− h( fs1 ) > 2× 10−4.

(a) (b)

(c) (d)

Figure 4. For 1 < s2 < 1/p, we depict the graph of the topological entropy of φs1,s2,p with accuracy
10−4 for: p = 1/4 (a); p = 1/3 (b); p = 2/3 (c); and p = 3/4 (d). The step size for s1 and s2 is 10−3.

3. Conclusions

We analyze the Parrondo’s paradox for the family of tent maps proving that no paradox
is possible if we combine two maps in the family. However, the paradox “simple + simple
= complex” is possible when we combine a tent map with a homeomorphism consisting
on two linear pieces with different slopes changing the slope at p ∈ (0, 1). Numerical
computations show that there is not a clear relationship between the topological entropies
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of the tent and modified tent maps. We also find numerical evidence showing that as p
increases the topological entropy of the modified tent map decreases. The computations
are made using an algorithm depending on kneading sequences, which can be computed
without round off effects, and, therefore, they can be taken as a computer-assisted proof of
the above-mentioned facts. It is unclear whether, for instance, the boundaries of the regions
depicted in Figures 1c,d and 3c,d can be obtained in an analytical way.
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