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1. Introduction

The authors studied the controllability of fuzzy solutions for the following nonlocal
functional differential equations with impulse

d
dt [x(t)− h(t, xt)] = Ax(t) + f (t, xt) + u(t); t ∈ J = [0, T],

∆x(tk) = Ikx
(
t−k
)
, t 6= tk, k = 1, 2, . . . , m

x(t) + g
(

xτ1 , xτ2 , . . . , xτp

)
(t) = ϕ(t), t ∈ [−r, 0],

 (1)

where A : J → En is the fuzzy coefficient, En is the set of all upper semicontinuous, convex, and
normal fuzzy numbers with bounded α-levels. The functions f , h : J × C([−r, 0], En)→ En

and g : (C[−r, 0], En)p → En are nonlinear regular fuzzy functions, ϕ : [−r, 0]→ En . u : J →
En is an admissible control function, and IkεC(En, En) are bounded functions.

∆x(tk) = x
(
t+k
)
− x

(
t−k
)
, represents the left and right limits of x(t) at t = tk, respec-

tively, k = 1, 2, . . . , m. x
(
t+k
)
= lim

h→0+
x(tk + h) and x

(
t−k
)
= lim

h→0+
x(tk − h). Moreover, xt(.)

represents the history where xt(θ) = x(t + θ); θε[−r, 0].
Let Ω be the space given by Ω = {x|x : J → En is continuous}. In addition, there

exists x
(
t+k
)
, x
(
t−k
)

where k = 1, 2, . . . , m with
(
t−k
)
= x(tk), Ω′ = Ω ∩C( J, En).

The basis of fuzzy logic was put forward by Zadeh [1] in the year 1965. It is based
on the principle that “everything in the world is unpredictable and unstable”. This idea
is further extended and used effectively in numerous fields of research, such as medicine,
computer science, engineering, and economics, due to its outstanding problem-solving
ability that was not solved through traditional logic. The use of fuzzy logic is applied to
dynamic systems expressed in differential equations.

Dynamical systems in the real world are subject to all kinds of uncertainties, such
as the growth of a population [2–5], contaminant migration in porous media [6], and the
life cycle of a human [7]. To determine the current position of a particle from the history
of its past movement, a dynamic system with a time delay can be applied effectively.
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In this paper, the main purpose was to investigate the fuzzy differential equation of a
dynamic system constrained by time delay. The primary objective of this investigation
was to establish the definitions and theorems on fuzzy control systems with time delay
and to discover necessary conditions for the existence of a solution to this type of system
by functional analysis. One of the most thoroughly studied classes of equations with
distributed arguments is neutral differential equations. They occur naturally in applied
problems that contain some recurrence property in their statement. The overview of fuzzy
differential equations was made by Puri and Relescue (1986) [8] and further studied by
Kaleva (1987) [9]. Impulsive differential equations have been developed in modeling impul-
sive problems in physics, population dynamics, ecology, biological systems, biotechnology,
industrial robotics, pharmacokinetics, optimal control, and so forth. Again, associated
with this development, a theory of impulsive differential equations has been given wide
consideration, and were studied by Lakshminatham et al. (1989) [10]. Li and Kou (2009)
proved the existence results for second-order impulsive neutral functional differential
equations with nonlocal conditions using Sadovskii’s fixed point theorem [11]. Impulsive
functional differential equations of neutral type have been studied in [12,13]. However, in
addition to impulsive effects, stochastic effects also exist in real systems.

The existence and uniqueness of a fuzzy solution for the nonlinear fuzzy neutral
functional differential equation using the Banach fixed point theorem has been studied
broadly by Balasubramaniam and Muralisankar (2001) [14]. Priyadharsini and Balasubra-
maniam (2020) proved the existence of the fuzzy fractional stochastic differential system
with impulses using a granular derivative via the contraction principle [15]. Balachandran
and Dauer (1997) showed the existence of solutions of perturbed fuzzy integral equations
in Banach spaces using Darbo’s fixed point theorem [16]. The existence and uniqueness
for fuzzy impulsive functional differential equations have been studied by Vu H, Van Hao
N (2016) under generalized Hukuhara differentiability, using contraction mapping [4].
Rivaz et al. (2017) introduced and defined a new metric on the space of fuzzy continuous
functions in the fractional calculus. They established particular conditions that assured
the existence and uniqueness of a solution to a nonlinear fuzzy fractional differential equa-
tion using the Banach fixed point theorem [17]. Some basic results on fuzzy differential
equations can be found in [18–21].

Controllability has played a vital role in investigating and proposing control systems.
It means the presence of a control function, which steers the solution of the system from
its initial state to the desired concluding state. According to the best of our knowledge,
there are only a few papers that deal with the controllability of fuzzy differential systems
in the literature. Chalishajar, D. N., and Ramesh, R. (2019) developed controllability for
impulsive fuzzy neutral functional integrodifferential equations [22]. Balachandran et al.
(2000) proved the controllability of neutral functional integrodifferential systems in Banach
spaces [23]. Narayanamoorthy et al. (2013) established the existence and controllabil-
ity results for the nonlinear first order fuzzy neutral integrodifferential equations with
nonlocal conditions [3]. Machado et al. (2013) investigated the controllability results for
impulsive mixed-type functional integrodifferential evolution equations with nonlocal
conditions using fixed point theory [13]. Radhakrishan et al. (2017) proved controllability
results for nonlinear impulsive fuzzy neutral integrodifferential evolution systems [24].
Kumar et al. (2018) established the controllability of the second-order nonlinear differential
equations with non-instantaneous impulses [25]. Arora et al. (2020) demonstrated the
approximate controllability of semilinear impulsive functional differential systems with
nonlocal conditions [26]. Motivated by the above papers, in this paper, we investigated the
controllability results of fuzzy solutions of the nonlocal functional differential equations
with impulse using the Banach fixed point theorem.

This paper is an extension of work [21] and proves the controllability results of fuzzy
solutions of the nonlocal functional differential equations with impulse using the Banach
fixed point theorem. In this study, Section 2 summarizes the fundamental aspects. The
controllability results of the nonlocal fuzzy differential equation with impulse are proved
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in Section 3. In Section 4, an example has been illustrated to validate the theorem, and we
conclude the results in Section 5.

2. Preliminaries

Definition 1. Fuzzy Set
A fuzzy set A ⊆ X 6= φ is characterized by its membership function A : X → [0, 1] and

A(x) is interpreted as the degree of membership of element x in fuzzy set A for each xεX.

Definition 2. [27] Let CC(<n) denote the family of all nonempty, compact, and convex subsets of
<n. Define addition and scalar multiplication in CC(<n) by

A + B = {z : z = x + y, xεA, yεB, ∀A, BεCC(<n)}

and
λA = {z : z = λx, xεA, ∀AεCC(<n)}

Let J = [a, b] ⊂ < be a compact interval and denote

En = {v : <n → [0, 1] such that v satisfy (1)− (4) as below :}

1. v is normal, that is, there exists an x0ε<n such that v(x0) = 1.
2. v is fuzzy convex, that is, for x, zε<n and 0 < λ ≤ 1, v(λx + (1− λ)z) ≥ min(v(x), v(z)).
3. v is upper semicontinuous, that is, ∀δ > 0 such that v(x)− v(x0) < ε, |x− x0| < δ.
4. [v]0 = {xε<n : v(x) > 0} is compact.

For, 0 < λ ≤ 1 we denote [v]α = {xε<n : v(x) ≥ α}.
Then from (1)–(4), it follows that the α- level sets [v]αεCC(<n).
If g : <n ×<n → <n is a function, then by using Zadeh’s extension principle, we can

extend g to En × En → En by the equation

[g(v, w)(z)] = sup
z=g(x,y)

min{v(x), w(y)}.

It is already known that [g(v, w)]α = g
(
[v]α, [w]α

)
∀v, wεEn, 0 ≤ α ≤ 1 and g is a

continuous function. Further we have

[v + w]α = [v]α + [w]α, [kv]α = k[v]α

where
v, wεEn, kε<, 0 ≤ α < 1.

Let A and B be two nonempty bounded subsets of <n. The distance between A and B
is defined by the Hausdorff metric

Hd(A, B) = max

{
sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}
,

where ‖.‖ denotes the usual Euclidean norm in <n. Then, (CC(<n), Hd) is a complete and
separable metric space [7].

Definition 3. [13] The complete metric d∞ on En is defined by

d∞(v, w) = sup
0<α≤1

Hd
(
[v]α, [w]α

)
= sup

0<α≤1
|vα

l − wα
l , vα

r − wα
r |

for any v, w, zεEn, which satisfies Hd(v + z, w + z) = Hd(v, w). Hence, (En, d∞) is a complete
metric space.
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Definition 4. [28] The supremum metric H1 on C(J, En) is defined by

H1(v, w) = sup
0≤t≤T

d∞(v(t), w(t))

Hence, (C(J, En), H1) is a complete metric space.

Definition 5. [28] The derivative x′(t) of a fuzzy process xεEn is defined by[
x′(t)

]α
=
[
(xα

l )
′(t), (xα

r )
′(t)
]

provided that the equation defines a fuzzy set x′(t)εEn.

Definition 6. [28] The fuzzy integral
∫ b

a x(t)dt, a, bε[0, T] is defined by b∫
a

x(t)dt

α

=

 b∫
a

xα
l (t)dt,

b∫
a

xα
r (t)dt


provided that the Lebesgue integrals on the right-hand side exist.

Definition 7. [29] A mapping f : J → En is strongly measurable if, the set valued map fα : J →
CC(<n) defined by fα(t) = [ f (t)]α is Lebesgue measurable when CC(<n) has the topology
induced by the Hausdorff metric.

Definition 8. [29] A mapping f : J × En → En is called level wise continuous at a point (t0, x0)ε
J × En provided, for any fixed αε[0, 1] and arbitrary ε > 0 , there exists a δ(ε, α) > 0, such that
Hd
(
[ f (t, x)]α, [ f (t0, x0)]

α < ε
)

whenever |t− t0| < δ(ε, α) and Hd
(
[x]α, [x0]

α) < δ(ε, α), ∀tεJ,
xεEn.

Definition 9. [29] A mapping f : J → En is called level wise continuous at t0εJ if the multivalued
map fα(t) = [ f (t)]α is continuous at t = t0 with respect to the Hausdorff metric for all αε[0, 1].

A map f : J → En is said to be integrably bounded if there is an integrable function
h(t), such that ‖x(t)‖ ≤ h(t) for every x(t)ε f0(t).

Definition 10. [29] A strongly measurable and integrably bounded map f : J → En is said to be
integrable over J, if

∫ T
0 f (t)dtεEn. If f : J → En is strongly measurable and integrably bounded,

then f is integrable.

3. Controllability Results

Assumptions: Assume the following hypothesis.

H1. S(t) is a fuzzy number, where

[S(t)]α = [Sα
l (t), Sα

r (t)], S(0) = I and Sα
j (t)(j = l, r) is continuous with∣∣Sj(t)

∣∣ ≤ M, M > 0, |AS(t)| ≤ M1 ∀tεJ = [0, T].
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H2. The nonlinear function h : J × En → En is continuous and there exists a constant d1 > 0,
satisfying the global Lipschitz condition, such that

Hd
(
[h(t, x)]α, [h(t, y)]α

)
≤ d1Hd

(
[xt(θ)]

α, [yt(θ)]
α); ∀tεJ and x, yεEn.

H3. If g is continuous and there exists constants Gk, k = 1, 2, . . . , p, such that

Hd

([
g
(

xτ1 , xτ2 , . . . , xτp

)
(s)
]α

,
[

g
(

yτ1 , yτ2 , . . . , yτp

)
(s)
]α)

≤
p

∑
k=1

Gk Hd

([
xτk (s)

]α,
[
yτk (s)

]α
)

, ∀sε[−r, 0]

and all
xτk , yτk εC([−r, 0], En), k = 1, 2, . . . , p.

H4. There exists a non-negative dk, such that

Hd
([

Ik
(

x
(
t−k
))
]α,[ Ik

(
y
(
t−k
))
]α
)
≤ dk Hd

(
[x(t)]α, [y(t)]α

)
, k = 1, 2, . . . , m

and for each x, yεEn.

H5. The nonlinear function f : J × En → En is continuous and there exists a constant d2 > 0,
satisfying the global Lipschitz condition, such that

Hd
(
[ f (t, x)]α, [ f (t, y)]α

)
≤ d2Hd

(
[xt(θ)]

α, [yt(θ)]
α)∀tεJ and x, yεEn.

H6.

d1(1 + MM1T + M) + d2
(

MM1T + M2T
)
+ (1 + MT)

p
∑

k=1
Gk + M(M + 1)dk

+
(

M2 M1T
)
< 1.

Definition 11. If x(t) is an integral solution of the problem (1), then x(t) is given by

x(t) = S(t)
[

ϕ(0)− g
(

xτ1 , xτ2 , . . . , xτp

)
(0)− h(0, ϕ)

]
+ h(t, xt)

+
t∫

0
AS(t− S)h(s, xs)ds +

t∫
0

S(t− S) f (s, xs)ds

+

t∫
0

S(t− S)u(s)ds + ∑
0<tk<t

S(t− tk)Ikx
(
t−k
)

(2)

where tεJ, t 6= tk, k = 1, 2, . . . , m and S(t) satisfies H1.

Theorem 1. [22] The nonlocal problem (1) is said to be controllable on the interval J if there exists
a control u(t), such that the fuzzy solution x(t) for (2) is controllable and satisfies

x[T] = x1 ie., [x(T)]α =
[

x1
]α

where x1εEn.
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Proof: Now define the α− level set of fuzzy mapping G̃ : P̃(R)→ En by

G̃α(v) =


T∫
0

Sα(T − S)v(s)ds; v ⊂ Γ̃u

0 ; otherwise

where Γ̃u is the closure of support u. In [26], the support Γu of a fuzzy number u is defined
as a special case of the level set by Γu = {x : µu(x) > 0}.

Then, there exists G̃j
α
(j = l, r), such that

G̃α
l (vl) =

T∫
0

Sα
l (T − S)vl(s)ds, vl(s)ε

[
uα

l (s), u1(s)
]
,

G̃α
r (vr) =

T∫
0

Sα
r (T − S)vr(s)ds, vr(s)ε

[
u1(s), uα

r (s)
]
,

Consider that G̃α
l , G̃α

r are bijective mapping. Introduce an α−level set of u(s) for (2)
and we get

[u(s)]α =
[
uα

l (s), uα
r (s)

]
(

G̃α
l

)−1((
x1)α

l − Sα
l (T)

[
ϕα

l (0)− gα
l

(
xτ1,xτ2, . . . . . . , xτp

)
(0)− hα

l (0, ϕ)
]
− hα

l (T, xTl
α)

−
T∫
0

Aα
l Sα

l (T − S)hα
l (s, xsl

α)ds−
T∫
0

Sα
l (T − S) f α

l (s, xsl
α)ds− ∑

0≺tk≺T
Sα

l (T − tk)Ikl
(
xα

l
(
t−k
)))

,

(
G̃α

r

)−1((
x1)α

r − Sα
r (T)

[
ϕα

r (0)− gα
r

(
xτ1,xτ2, . . . . . . , xτp

)
(0)− hα

r (0, ϕ)
]
− hα

r (T, xTr
α)

−
T∫
0

Aα
r Sα

r (T − S)hα
r (s, xsr

α)ds−
T∫
0

Sα
r (T − S) f α

r (s, xsr
α)ds− ∑

0≺tk≺T
Sα

r (T − tk)Ikr
(
xα

r
(
t−k
)))

Substituting this in equation (2), we get an α−level set of x(T) as

[x(T)]α =[
Sα

l (T)
[

ϕα
l (0)− gα

l

(
xτ1 , xτ2 , . . . , xτp

)
(0)− hα

l (0, ϕ)
]
+ hα

l (T, xTl
α) +

∫ T
0 Aα

l Sα
l (T − S)

hα
l (s, xsl

α)ds+
∫ T

0 Sα
l (T − S) f α

l (s, xsl
α)ds + ∑0<tk<T Sα

l (T − tk)Ikl
(
xα

l
(
t−k
))
+∫ T

0 Sα
l (T − S)

(
G̃α

l

)−1((
x1)α

l − Sα
l (T)

[
ϕα

l (0)− gα
l

(
xτ1 , xτ2 , . . . , xτp

)
(0)− hα

l (0, ϕ)
]
−

hα
l (T, xTl

α)−
∫ T

0 Aα
l Sα

l (T − S)hα
l (s, xsl

α)ds−
∫ T

0 Sα
l (T − S) f α

l (s, xsl
α)ds−

∑0<tk<T Sα
l (T − tk)Ikl

(
xα

l
(
t−k
)))

]ds,
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[
Sα

r (T)
[

ϕα
r (0)− gα

r

(
xτ1 , xτ2 , . . . , xτp

)
(0)− hα

r (0, ϕ)
]
+ hα

r (T, xTr
α) +

T∫
0

Aα
r Sα

r (T − S)hα
r (s, xsr

α)ds

+
T∫
0

Sα
r (T − S) f α

r (s, xsr
α)ds + ∑

0<tk<T
Sα

r (T − tk)Ikr
(
xα

r
(
t−k
))

+
T∫
0

Sα
r (T − S)

(
G̃α

r

)−1((
x1)α

r − Sα
r (T)

[
ϕα

r (0)− gα
r

(
xτ1 , xτ2 , . . . , xτp

)
(0)− hα

r (0, ϕ)
]

−hα
r (T, xTr

α)−
T∫
0

Aα
r Sα

r (T − S)hα
r (s, xsr

α)ds−
T∫
0

Sα
r (T − S) f α

r (s, xsr
α)ds

− ∑
0<tk<T

Sα
r (T − tk)Ikr

(
xα

r
(
t−k
)))

]ds

=
[(

x1
)α

l
,
(

x1
)α

r

]
=
[

x1
]α

.

Hence, the fuzzy solution x(t) for equation (2) satisfies [x(T)]α =
[
x1]α. �

Define
Φ(x(t)) = S(t)

[
ϕ(0)− g

(
xτ1 , xτ2 , . . . , xτp

)
(0)− h(0, ϕ)

]
+ h(t, xt) +

∫ t
0 AS(t− S)h(s, xs)ds+∫ t

0 S(t− S) f (s, xs)ds + ∑0<tk<t S(t− tk)Ik
(
x
(
t−k
))

+
∫ t

0 S(t− S)
(

G̃
)−1((

x1)− S(T)[ϕ(0)−

g
(

xτ1 , xτ2 , . . . , xτp

)
(0)− h(0, ϕ)

]
− h(T, xT)−

∫ T
0 AS(T − S)h(s, xs)ds−

∫ T
0 S(T − S) f (s, xs)ds−

∑0<tk<T S(T − tk)Ik
(
x
(
t−k
)))

ds,

(3)

where
(

G̃
)−1

satisfies the previous statements.

Observe Φ(x(t)) =
[
x1], which represents that the control u(t) steers condition (3)

from the arbitrary stage to x1 in time T, given that there must exist a fixed point of the
nonlinear operator Φ.

Similarly,

Φ(y(t)) = S(t)
[

ϕ(0)− g
(

yτ1 , yτ2 , . . . , yτp

)
(0)− h(0, ϕ)

]
+ h(t, yt)

+
t∫

0
AS(t− S)h(s, ys)ds

+
t∫

0
S(t− S) f (s, ys)ds + ∑

0<tk<t
S(t− tk)Ik(y

(
t−k )
)

+
t∫

0
S(t− S)

(
G̃
)−1((

y1)− S(T)
[

ϕ(0)− g
(

yτ1,yτ2, . . . . . . , yτp

)
(0)

−h(0, ϕ)]− h(T, yT)−
T∫
0

AS(T − S)h(s, ys)ds−
T∫
0

S(T − S) f (s, ys)ds

− ∑
0<tk<T

S(T − tk)Ik
(
y
(
t−k
)))

ds.
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The controllability of fuzzy solutions for the neutral impulsive functional differential
equation with nonlocal conditions is discussed in the following theorem.

Theorem 2. [22] Equation (3) is controllable if the hypothesis (H1–H6) is satisfied.

Proof: For x, yε Ω′

≤ Hd
(
[h(t, xt)]

α, [h(t, yt)]
α)+ Hd

([
g
(

xτ1 , xτ2 , . . . , xτp

)
(0)
]α

,
[

g
(

yτ1 , yτ2 , . . . , yτp

)
(0)
]α)

+Hd

([
t∫

0
AS(t− S)h(s, xs)ds

]α

,

[
t∫

0
AS(t− S)h(s, ys)ds

]α)

+Hd

([
t∫

0
S(t− S) f (s, xs)ds

]α

,

[
t∫

0
S(t− S) f (s, ys)ds

]α)

+Hd

([
t∫

0
S(t− S)

(
G̃
)−1((

x1)− S(T)
[

ϕ(0)− g
(

xτ1 , xτ2 , . . . , xτp

)
(0)− h(0, ϕ)

]
− h(T, xT)

−
T∫
0

AS(T − S)h(s, xs)ds−
T∫
0

S(T − S) f (s, xs)ds− ∑
0<tk<T

S(T − tk)Ik
(
x
(
t−k
)))

ds]α,[
t∫

0
S(t− S)

(
G̃
)−1((

y1)− S(T)
[

ϕ(0)− g
(

yτ1 , yτ2 , . . . , yτp

)
(0)− h(0, ϕ)

]
− h(T, yT)

−
T∫
0

AS(T − S)h(s, ys)ds−
T∫
0

S(T − S) f (s, ys)ds− ∑
0<tk<T

S(T − tk)Ik
(
y
(
t−k
)))

ds]α)

≤ d1Hd
(
[x(t + θ)]α, [y(t + θ)]α

)
+

p
∑

k=1
Gk Hd

([
xτk (0)

]α,
[
yτk (0)

]α
)

+
t∫

0
MM1d1Hd

(
[x(s + θ)]α, [y(s + θ)]α

)
ds +

t∫
0

MM1d2Hd
(
[x(t + θ)]α, [y(t + θ)]α

)
ds

+Mdk Hd
(
[x(t)]α, [y(t)]α

)
+M

t∫
0

{( p
∑

k=1
Gk Hd

([
xτk (0)

]α,
[
yτk (0)

]α
))

+ d1Hd
(
[x(T + θ)]α, [y(T + θ)]α

)
+

T∫
0

MM1d1Hd
(
[x(s + θ)]α, [y(s + θ)]α

)
ds +

T∫
0

Md2Hd
(
[x(T + θ)]α, [y(T + θ)]α

)
ds

+Mdk Hd
(
[x(s)]α, [y(s)]α

)}
ds

Therefore,
d∞ (Φx(t), Φy(t)) = sup

0<α≤1
Hd
(
[Φx(t)]α, [Φy(t)]α

)
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≤ d1 sup
0<α≤1

Hd
(
[x(t + θ)]α, [y(t + θ)]α

)
+

p
∑

k=1
Gk sup

0<α≤1
Hd

([
xτk (0)

]α,
[
yτk (0)

]α
)

+
t∫

0
MM1d1 sup

0<α≤1
Hd
(
[x(s + θ)]α,

[
y(s + θ)α])ds

+
t∫

0
MM1d2 sup

0<α≤1
Hd
(
[x(t + θ)]α, [y(t + θ)]α

)
ds

+Mdk sup
0<α≤1

Hd
(
[x(t)]α, [y(t)]α

)
+M

T∫
0

{(
p
∑

k=1
Gk sup

0<α≤1
Hd

([
xτk (0)

]α,
[
yτk (0)

]α
))

+d1 sup
0<α≤1

Hd
(
[x(T + θ)]α, [y(T + θ)]α

)
+

T∫
0

MM1d1 sup
0<α≤1

Hd
(
[x(s + θ)]α, [y(s + θ)]α

)
ds

+
T∫
0

Md2 sup
0<α≤1

Hd
(
[x(T + θ)]α, [y(T + θ)]α

)
ds

+Mdk sup
0<α≤1

Hd
(
[x(s)]α, [y(s)]α

)}
ds

≤ d1d∞([x(t + θ)], [y(t + θ)]) +
p
∑

k=1
Gkd∞

(
xτk , yτk

)
+ MM1

t∫
0

d1d∞([x(s + θ)], [y(s + θ)])ds

+
t∫

0
MM1d2d∞([x(t + θ)], [y(t + θ)])ds + Mdkd∞([x(t)], [y(t)])

+M
T∫
0

{( p
∑

k=1
Gkd∞([x(τk)], [y(τk)])

)
ds + d1d∞([x(T + θ)], [y(T + θ)])

+
T∫
0

MM1d1d∞([x(s + θ)], [y(s + θ)])ds +
T∫
0

Md2d∞([x(T + θ)], [y(T + θ)])ds

+Mdkd∞([x(s)], [y(s)])}ds

Hence, H1(Φ(x), Φ(y)) = sup
0≤t≤T

d∞(Φ(x(t))(Φy(t)))

≤ d1 sup
0≤t≤T

d∞([x(t + θ)], [y(t + θ)])+

∑
p
k=1 Gk sup

0≤t≤T
d∞
(
xτk , yτk

)
+ MM1

∫ t
0 d1 sup

0≤t≤T
d∞([x(s + θ)], [y(s + θ)])

ds + MM1
∫ t

0 d2 sup
0≤t≤T

d∞([x(t + θ)], [y(t + θ)])

ds + Mdk sup
0≤t≤T

d∞([x(t)], [y(t)])+

M
∫ T

0

{(
∑

p
k=1 Gk sup

0≤t≤T
d∞([x(τk)], [y(τk)])

)
+

d1 sup
0≤t≤T

d∞([x(T + θ)], [y(T + θ)])+

∫ T
0 MM1d1

(
sup

0≤t≤T
d∞[x(s + θ)], [y(s + θ)]

)
ds+∫ T

0 Md2 sup
0≤t≤T

d∞([x(T + θ)], [y(T + θ)])ds+

Mdk sup
0≤t≤T

d∞([x(s)], [y(s)])

}
ds
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≤ d1H1(x, y) + ∑
p
k=1 Gk H1(x, y)+

MM1
∫ t

0 d1H1(x, y)ds + MM1
∫ t

0 d2H1(x, y)ds+

Mdk H1(x, y) + M
∫ T

0

{(
∑

p
k=1 Gk H1(x, y)

)
ds+

d1H1(x, y) +
∫ T

0 MM1d1H1(x, y)ds+∫ T
0 Md2H1(x, y)ds + Mdk H1(x, y)

}
ds

≤
(
d1(1 + MM1T + M) + d2

(
MM1T + M2T

)
+

(1 + MT)∑
p
k=1 Gk + M(M + 1)dk +

(
M2M1T

))
H1(x, y).

Hence, Φ is a contraction mapping. By applying the Banach fixed point theorem,
Equation (3) has a unique fixed point xε Ω′. �

4. Examples

Example 1. In the study, the fuzzy solution of nonlinear fuzzy neutral impulsive functional
differential equations with nonlocal conditions of the form [24]

d
dt

[
x(t)− 2tx(t + h)2

]
= 2[x(t)] + 3tx(t + h)2 + u(t)

x(0) + ∑
p
k=1 ckx(tk) = 0εEn

Ik
(
x
(
t−k
))

= 1
1+x(tk)

,

where x1 is the target set, and the α-level set of fuzzy numbers 0, 2, 3 are given by

[0]α = [α− 1, 1− α], [2]α = [α + 1, 3− α], [3]α = [α + 2, 4− α], for αε[0, 1]

f (t, xt) = 3tx(t + h)2, h(t, xt) = 2tx(t + h)2

then an α− level set o f g(x) = ∑
p
k=1 ckx(tk) is

[g(x)]α =
[
∑

p
k=1 ckx(tk)

]α
=
[
∑

p
k=1 ckxα

l (tk) , ∑
p
k=1 ckxα

r (tk)
]

and

Hd
(
[g(x)]α, [g(y)]α

)
= Hd

([
∑

p
k=1 ckx(tk)

]α
,
[
∑

p
k=1 cky(tk)

]α)
≤ ∑

p
k=1 Gk Hd

([
xtk (s)

]α,
[
ytk (s)

]α
)

Similarly an, α− level set of f (t, xt), h(t, xt) and Ik(x(tk)) is

[ f (t, xt)]
α =

[
3tx(t + h)2

]α
= t
[
(α + 2)

(
xα

l (t + h
)2, (4− α)(xα

r (t + h)2
]

[h(t, xt)]
α =

[
2tx(t + h)2

]α
= t
[
(α + 1)

(
xα

l (t + h
)2, (3− α)(xα

r (t + h)2
]

[Ik(x(tk))]
α =

[
1

1+x(tk)

]α
=
[

1
1+xα

l (tk)
, 1

1+xα
r (tk)

]
and Hd

(
[ f (t, xt)]

α, [ f (t, yt)]
α) ≤ d2Hd

(
[x(t + h)]α, [y(t + h)]α

)
, where [x(t + h)]α =[

xα
l (t + h), xα

r (t + h)
]

and d2 = 4b|xα
r (t + h), yα

r (t + h)|.
Similarly, Hd

(
[h(t, xt)]

α, [h(t, yt)]
α) ≤ d1Hd

(
[x(t + h)]α, [y(t + h)]α

)
,

Hd
(
[Ik(x(tk))]

α, [Ik(y(tk))]
α) ≤ dk Hd

(
[x(t)]α, [y(t)]α

)



Axioms 2021, 10, 84 11 of 14

where d1 = 3b|xα
r (t + h), yα

r (t + h)|, dk =
1

((1+|xα
r (tk)|)(1+|yα

r (tk)|))
.

Hence, the unique fuzzy solution is obtained by choosing b→ 0.
Assuming x1 = 2, we prove the nonlocal controllability;

[u(s)]α = [uα
l (s), uα

r (s)]

=

[(
G̃α

l

)−1((
x1)α

l − Sα
l (T)

[
ϕα

l (0)− gα
l

(
xτ1 , xτ2 , . . . , xτp

)
(0)− hα

l (0, ϕ)
]

− hα
l (T, xTl

α)−
∫ T

0 Aα
l Sα

l (T − S)hα
l (s, xsl

α)ds

−
∫ T

0 Sα
l (T − S) f α

l (s, xsl
α)ds− ∑

0≺tk≺T
Sα

l (T − tk)Ikl
(
xα

l
(
t−k
)))

,

(
G̃α

l

)−1((
x1)α

r − Sα
r (T)

[
ϕα

r (0)− gα
r

(
xτ1 , xτ2 , . . . , xτp

)
(0)− hα

r (0, ϕ)
]
− hα

r (T, xTr
α)

−
∫ T

0 Aα
r Sα

r (T − S)hα
r (s, xsr

α)ds−
∫ T

0 Sα
r (T − S) f α

r (s, xsr
α)ds

− ∑
0≺tk≺T

Sα
r (T − tk)Ikr

(
xα

r
(
t−k
)))

]

Substituting the above derived values into the integral system with respect to (1)
yields an α−level set of x(T) as [x(T)]α = [2]α =

[
x1]. So, the system (1) is controllable

on [0, T].

Example 2. Consider the following system:

d
dt

[
x(t)− tx(t + h)2

]
= [x(t)] + 2tx(t + h)2 + u(t)

x(0) + ∑
p
k=1 ckx(tk) = 0εEn

Ik
(
x
(
t−k
))

= 1
1+x(tk)

where x1 is the target set, and the α-level set of fuzzy numbers 0, 1, 2 are given by

[0]α = [α− 1, 1− α], [1]α = [α, 2− α], [2]α = [α + 1, 3− α], for αε[0, 1].

f (t, xt) = 2tx(t + h)2, h(t, xt) = tx(t + h)2

Then, an α− level set of g(x) = ∑
p
k=1 ckx(tk) is

[g(x)]α =
[
∑p

k=1 ckx(tk)
]α

=
[
∑p

k=1 ckxα
l (tk) , ∑p

k=1 ckxα
r (tk)

]
and

Hd
(
[g(x)]α, [g(y)]α

)
= Hd

([
∑

p
k=1 ckx(tk)

]α
,
[
∑

p
k=1 cky(tk)

]α)
≤ ∑

p
k=1 Gk Hd

([
xtk (s)

]α,
[
ytk (s)

]α
)

Similarly, an α− level set of f (t, xt), h(t, xt) and Ik(x(tk)) is

[ f (t, xt)]
α =

[
2tx(t + h)2

]α
= t
[
(α + 1)

(
xα

l (t + h
)2, (3− α)(xα

r (t + h)2
]

[h(t, xt)]
α =

[
tx(t + h)2

]α
= t
[
(α)
(
xα

l (t + h
)2, (2− α)(xα

r (t + h)2
]

[Ik(x(tk))]
α =

[
1

1+x(tk)

]α
=
[

1
1+xα

l (tk)
, 1

1+xα
r (tk)

]
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and
Hd
(
[ f (t, xt)]

α, [ f (t, yt)]
α) ≤ d2Hd

(
[x(t + h)]α, [y(t + h)]α

)
where

[x(t + h)]α = [xα
l (t + h), xα

r (t + h)]

and
d2 = 3b|xα

r (t + h), yα
r (t + h)|

Similarly,

Hd
(
[h(t, xt)]

α, [h(t, yt)]
α) ≤ d1Hd

(
[x(t + h)]α, [y(t + h)]α

)
,

Hd
(
[Ik(x(tk))]

α, [Ik(y(tk))]
α) ≤ dk Hd

(
[x(t)]α, [y(t)]α

)
where

d1 = 2b|xα
r (t + h), yα

r (t + h)|, dk =
1

((1 + |xα
r (tk)|)(1 + |yα

r (tk)|))
Hence, the unique fuzzy solution is obtained by choosing b→ 0 .
Assuming, x1 = 2, we prove the nonlocal controllability;

[u(s)]α = [uα
l (s), uα

r (s)]

=

[(
G̃α

l

)−1((
x1)α

l − Sα
l (T)

[
ϕα

l (0)− gα
l

(
xτ1 , xτ2 , . . . , xτp

)
(0)− hα

l (0, ϕ)
]
−

hα
l (T, xTl

α)−
∫ T

0 Aα
l Sα

l (T − S)hα
l (s, xsl

α)ds−
∫ T

0 Sα
l (T − S) f α

l (s, xsl
α)ds−

∑
0≺tk≺T

Sα
l (T − tk)Ikl

(
xα

l
(
t−k
)))

,

(
G̃α

r

)−1((
x1)α

r − Sα
r (T)

[
ϕα

r (0)− gα
r

(
xτ1 , xτ2 , . . . , xτp

)
(0)− hα

r (0, ϕ)
]

−hα
r (T, xTr

α)−
∫ T

0 Aα
r Sα

r (T − S)hα
r (s, xsr

α)ds

−
∫ T

0 Sα
r (T − S) f α

r (s, xsr
α)ds− ∑

0≺tk≺T
Sα

r (T − tk)Ikr
(
xα

r
(
t−k
)))

]

Substituting the above derived values into the integral system with respect to (1)
yields an α− level set of x(T) as [x(T)]α = [2]α =

[
x1]. So, the system (1) is controllable

on [0, T].

5. Conclusions

In this paper, we have proved the controllability results of the fuzzy solutions for
the first order impulsive neutral functional differential equations by applying the contrac-
tion mapping principle. Further, we can extend the controllability results for the fuzzy
inclusions. The same concept can be generalized to study the controllability of second
order systems/inclusions using sine and cosine operators (2012) [30]. One can also study
the controllability of the fuzzy solution for neutral impulsive functional fractional order
systems for time and state delay systems/inclusions (2013) [31]. Numerical aspects of
the same would be quite interesting for the further study. Moreover, we can extend the
results to real phenomena, considering a pendulum problem, and develop a fuzzy and
impulsive controller design in <n, applying a simulation to the proposed adaptive fuzzy
and impulsive controllers to control the inverted pendulum using MATLAB. By stability
analysis, we can make sure that all signals involved are uniformly bounded. At this stage,
all the design parameters have specific numerical values that generate the graph of the
adaptive control input signal and the graph of the state and its desired value.
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