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1. Introduction 
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𝑑𝑑𝑡 [𝑥(𝑡) − ℎ(𝑡, 𝑥 )] = 𝐴𝑥(𝑡) + 𝑓(𝑡, 𝑥 ) + 𝑢(𝑡); 𝑡 ∈ 𝐽 = [0, 𝑇],∆𝑥(𝑡 ) = 𝐼 𝑥(𝑡 ), 𝑡 ≠ 𝑡 , 𝑘 = 1, 2, … , 𝑚𝑥(𝑡) + 𝑔 𝑥 , 𝑥 , … , 𝑥 (𝑡) = 𝜑(𝑡), 𝑡 ∈ [−𝑟, 0], ⎭⎪⎬
⎪⎫

 (1)

where 𝐴: 𝐽 → 𝐸  is the fuzzy coefficient, 𝐸   is the set of all upper semicontinuous, con-
vex, and normal fuzzy numbers with bounded α-levels. The functions 𝑓, ℎ: 𝐽 ×𝐶([−𝑟, 0], 𝐸 ) → 𝐸   and 𝑔: (𝐶[−𝑟, 0], 𝐸 ) → 𝐸   are nonlinear regular fuzzy functions, 𝜑: [−𝑟, 0] → 𝐸 . 𝑢: 𝐽 → 𝐸  is an admissible control function, and 𝐼 𝜖𝐶(𝐸 , 𝐸 )  are 
bounded functions. ∆𝑥(𝑡 ) = 𝑥(𝑡 ) − 𝑥(𝑡 ), represents the left and right limits of 𝑥(𝑡) at 𝑡 = 𝑡 , re-
spectively,  𝑘 = 1, 2, … , 𝑚. 𝑥(𝑡 ) = lim→ 𝑥(𝑡 + ℎ) and 𝑥(𝑡 ) = lim→ 𝑥(𝑡 − ℎ). Moreover, 𝑥 (. )  represents the history where 𝑥 (𝜃) = 𝑥(𝑡 + 𝜃); 𝜃𝜖[−𝑟, 0]. 

Let Ω be the space given by Ω = 𝑥|𝑥: 𝐽 → 𝐸  is continuous . In addition, there exists 𝑥(𝑡 ), 𝑥(𝑡 ) where 𝑘 = 1, 2, … , 𝑚 with (𝑡 ) = 𝑥(𝑡 ), Ω = Ω ∩ C( 𝐽, 𝐸 ).  
The basis of fuzzy logic was put forward by Zadeh [1] in the year 1965. It is based on 

the principle that “everything in the world is unpredictable and unstable”. This idea is 
further extended and used effectively in numerous fields of research, such as medicine, 
computer science, engineering, and economics, due to its outstanding problem-solving 
ability that was not solved through traditional logic. The use of fuzzy logic is applied to 
dynamic systems expressed in differential equations. 

Dynamical systems in the real world are subject to all kinds of uncertainties, such as 
the growth of a population [2–5], contaminant migration in porous media [6], and the life 
cycle of a human [7]. To determine the current position of a particle from the history of its 
past movement, a dynamic system with a time delay can be applied effectively. In this 
paper, the main purpose was to investigate the fuzzy differential equation of a dynamic 
system constrained by time delay. The primary objective of this investigation was to es-
tablish the definitions and theorems on fuzzy control systems with time delay and to dis-
cover necessary conditions for the existence of a solution to this type of system by func-
tional analysis. One of the most thoroughly studied classes of equations with distributed 
arguments is neutral differential equations. They occur naturally in applied problems that 
contain some recurrence property in their statement. The overview of fuzzy differential 
equations was made by Puri and Relescue (1986) [8] and further studied by Kaleva (1987) 
[9]. Impulsive differential equations have been developed in modeling impulsive prob-
lems in physics, population dynamics, ecology, biological systems, biotechnology, indus-
trial robotics, pharmacokinetics, optimal control, and so forth. Again, associated with this 
development, a theory of impulsive differential equations has been given wide consider-
ation, and were studied by Lakshminatham et al. (1989) [10]. Li and Kou (2009) proved 
the existence results for second-order impulsive neutral functional differential equations 
with nonlocal conditions using Sadovskii’s fixed point theorem [11]. Impulsive functional 
differential equations of neutral type have been studied in [12,13]. However, in addition 
to impulsive effects, stochastic effects also exist in real systems. 

The existence and uniqueness of a fuzzy solution for the nonlinear fuzzy neutral 
functional differential equation using the Banach fixed point theorem has been studied 
broadly by Balasubramaniam and Muralisankar (2001) [14]. Priyadharsini and Balasubra-
maniam (2020) proved the existence of the fuzzy fractional stochastic differential system 
with impulses using a granular derivative via the contraction principle [15]. Balachandran 
and Dauer (1997) showed the existence of solutions of perturbed fuzzy integral equations 
in Banach spaces using Darbo’s fixed point theorem [16]. The existence and uniqueness 
for fuzzy impulsive functional differential equations have been studied by Vu H, Van Hao 
N (2016) under generalized Hukuhara differentiability, using contraction mapping [4]. 
Rivaz et al. (2017) introduced and defined a new metric on the space of fuzzy continuous 
functions in the fractional calculus. They established particular conditions that assured 
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the existence and uniqueness of a solution to a nonlinear fuzzy fractional differential equa-
tion using the Banach fixed point theorem [17]. Some basic results on fuzzy differential 
equations can be found in [18–21]. 

Controllability has played a vital role in investigating and proposing control systems. 
It means the presence of a control function, which steers the solution of the system from 
its initial state to the desired concluding state. According to the best of our knowledge, 
there are only a few papers that deal with the controllability of fuzzy differential systems 
in the literature. Chalishajar, D. N., and Ramesh, R. (2019) developed controllability for 
impulsive fuzzy neutral functional integrodifferential equations [22]. Balachandran et al. 
(2000) proved the controllability of neutral functional integrodifferential systems in Ba-
nach spaces [23]. Narayanamoorthy et al. (2013) established the existence and controlla-
bility results for the nonlinear first order fuzzy neutral integrodifferential equations with 
nonlocal conditions [3]. Machado et al. (2013) investigated the controllability results for 
impulsive mixed-type functional integrodifferential evolution equations with nonlocal 
conditions using fixed point theory [13]. Radhakrishan et al. (2017) proved controllability 
results for nonlinear impulsive fuzzy neutral integrodifferential evolution systems [24]. 
Kumar et al. (2018) established the controllability of the second-order nonlinear differen-
tial equations with non-instantaneous impulses [25]. Arora et al. (2020) demonstrated the 
approximate controllability of semilinear impulsive functional differential systems with 
nonlocal conditions [26]. Motivated by the above papers, in this paper, we investigated 
the controllability results of fuzzy solutions of the nonlocal functional differential equa-
tions with impulse using the Banach fixed point theorem. 

This paper is an extension of work [21] and proves the controllability results of fuzzy 
solutions of the nonlocal functional differential equations with impulse using the Banach 
fixed point theorem. In this study, Section 2 summarizes the fundamental aspects. The 
controllability results of the nonlocal fuzzy differential equation with impulse are proved 
in Section 3. In Section 4, an example has been illustrated to validate the theorem, and we 
conclude the results in Section 5. 

2. Preliminaries 

Definition 1. Fuzzy Set  
A fuzzy set 𝐴 ⊆ 𝑋 ≠ 𝜙 is characterized by its membership function 𝐴: 𝑋 → [0,1] and 𝐴(𝑥) is 
interpreted as the degree of membership of element x in fuzzy set A for each 𝑥𝜖𝑋. 

Definition 2. [27] Let 𝐶𝐶(ℜ ) denote the family of all nonempty, compact, and convex subsets 
of ℜ . Define addition and scalar multiplication in 𝐶𝐶(ℜ ) by 𝐴 + 𝐵 = 𝑧: 𝑧 = 𝑥 + 𝑦, 𝑥𝜖𝐴, 𝑦𝜖𝐵, ∀𝐴, 𝐵𝜖𝐶𝐶(ℜ )    

and 𝜆𝐴 = 𝑧: 𝑧 = 𝜆𝑥, 𝑥𝜖𝐴, ∀𝐴𝜖𝐶𝐶(ℜ )  

Let 𝐽 = [𝑎, 𝑏] ⊂ ℜ  be a compact interval and denote 𝐸 = 𝑣: ℜ → [0,1] such that 𝑣 satisfy (1) − (4) as below:  

1. 𝑣 is normal, that is, there exists an 𝑥 𝜖ℜ  such that 𝑣(𝑥 ) = 1 . 
2. 𝑣  is fuzzy convex, that is, for 𝑥, 𝑧𝜖ℜ  𝑎𝑛𝑑 0 < 𝜆 ≤ 1 ,  𝑣(𝜆𝑥 + (1 − 𝜆)𝑧) ≥𝑚𝑖𝑛 𝑣(𝑥), 𝑣(𝑧) . 
3. 𝑣 is upper semicontinuous, that is, ∀𝛿 > 0 such that 𝑣(𝑥) − 𝑣(𝑥 ) < 𝜀, |𝑥 − 𝑥 | < 𝛿.  
4. [𝑣] = 𝑥𝜖ℜ : 𝑣(𝑥) > 0  is compact. 

For, 0 < 𝜆 ≤ 1 we denote [𝑣] = 𝑥𝜖ℜ : 𝑣(𝑥) ≥ 𝛼 .  
Then from (1) – (4), it follows that theα - level sets [𝑣] 𝜖𝐶𝐶(ℜ ).  
If 𝑔: ℜ × ℜ → ℜ  is a function, then by using Zadeh’s extension principle, 
we can extend 𝑔 to 𝐸 × 𝐸 → 𝐸  by the equation 
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[𝑔(𝑣, 𝑤)(𝑧)] =
),(

sup
yxgz=

𝑚𝑖𝑛 𝑣(𝑥), 𝑤(𝑦) . 
It is already known that [𝑔(𝑣, 𝑤)] = 𝑔([𝑣] , [𝑤] ) ∀𝑣, 𝑤𝜖𝐸 , 0 ≤ 𝛼 ≤ 1 and 𝑔 is a 

continuous function. Further we have  [𝑣 + 𝑤] = [𝑣] + [𝑤] , [𝑘𝑣] = 𝑘[𝑣]  

where  𝑣, 𝑤𝜖𝐸 , 𝑘𝜖ℜ, 0 ≤ 𝛼 < 1.  

Let A and B be two nonempty bounded subsets of ℜ . The distance between A and 
B is defined by the Hausdorff metric 

𝐻 (𝐴, 𝐵) = 𝑚𝑎𝑥 baba
AaBbBbAa

−−
∈∈∈∈

infsup,infsup , 
where ‖ . ‖ denotes the usual Euclidean norm in ℜ . Then, (𝐶𝐶(ℜ ), 𝐻 ) is a complete 
and separable metric space [7]. 

Definition 3. [13] The complete metric 𝑑  on 𝐸  is defined by 𝑑 (𝑣, 𝑤) =
10

sup
≤<α

𝐻 ([𝑣] , [𝑤] ) =
10

sup
≤<α

|𝑣 − 𝑤 , 𝑣 − 𝑤 | 
for any 𝑣, 𝑤, 𝑧𝜖𝐸 , which satisfies 𝐻 (𝑣 + 𝑧, 𝑤 + 𝑧) = 𝐻 (𝑣, 𝑤). Hence, (𝐸 , 𝑑 ) is a complete 
metric space. 

Definition 4. [28] The supremum metric 𝐻 on 𝐶( 𝐽, 𝐸 ) is defined by  𝐻 (𝑣, 𝑤) =
Tt≤≤0

sup 𝑑 (𝑣(𝑡), 𝑤(𝑡)) 

Hence, (𝐶(𝐽, 𝐸 ), 𝐻 ) is a complete metric space. 

Definition 5. [28] The derivative 𝑥 (𝑡) of a fuzzy process 𝑥𝜖𝐸  is defined by  [𝑥 (𝑡)] = [(𝑥 ) (𝑡), (𝑥 ) (𝑡)] 
provided that the equation defines a fuzzy set 𝑥 (𝑡)𝜖𝐸 . 
Definition 6. [28] The fuzzy integral 𝑥(𝑡)𝑑𝑡, 𝑎, 𝑏𝜖[0, 𝑇] is defined by  

𝑥(𝑡)𝑑𝑡 = 𝑥 (𝑡)𝑑𝑡, 𝑥 (𝑡)𝑑𝑡  

provided that the Lebesgue integrals on the right-hand side exist. 

Definition 7. [29] A mapping 𝑓: 𝐽 → 𝐸  is strongly measurable if, the set valued map 𝑓 : 𝐽 →𝐶𝐶(ℜ )defined by 𝑓 (𝑡) = [𝑓(𝑡)]  is Lebesgue measurable when 𝐶𝐶(ℜ ) has the topology in-
duced by the Hausdorff metric. 

Definition 8. [29] A mapping 𝑓: 𝐽 × 𝐸 → 𝐸  is called level wise continuous at a point (𝑡 , 𝑥 )𝜖𝐽 × 𝐸  provided, for any fixed 𝛼𝜖[0,1] and arbitrary 𝜀 > 0, there exists a 𝛿(𝜀, 𝛼) > 0, 
such that 𝐻 ([𝑓(𝑡, 𝑥)] , [𝑓(𝑡 , 𝑥 )] < 𝜀) whenever |𝑡 − 𝑡 | < 𝛿(𝜀, 𝛼)  and 𝐻 ([𝑥] , [𝑥 ] ) <𝛿(𝜀, 𝛼), ∀𝑡𝜖𝐽, 𝑥𝜖𝐸 .  

Definition 9. [29] A mapping 𝑓: 𝐽 → 𝐸  is called level wise continuous at 𝑡 𝜖𝐽 if the multivalued 
map 𝑓 (𝑡) = [𝑓(𝑡)]  is continuous at 𝑡 = 𝑡  with respect to the Hausdorff metric for all 𝛼𝜖[0,1]. 



Axioms 2021, 10, 84 5 of 16 
 

A map 𝑓: 𝐽 → 𝐸  is said to be integrably bounded if there is an integrable function ℎ(𝑡), such that ‖𝑥(𝑡)‖ ≤ ℎ(𝑡) for every 𝑥(𝑡)𝜖𝑓 (𝑡).  

Definition 10. [29] A strongly measurable and integrably bounded map 𝑓: 𝐽 → 𝐸  is said to be 
integrable over 𝐽, if 𝑓(𝑡)𝑑𝑡 𝜖𝐸 . If 𝑓: 𝐽 → 𝐸  is strongly measurable and integrably bounded, 
then 𝑓 is integrable. 

3. Controllability Results 

Assumptions: Assume the following hypothesis. 

H1. 𝑆(𝑡) is a fuzzy number, where  [𝑆(𝑡)] = [𝑆 (𝑡), 𝑆 (𝑡)], 𝑆(0) = 𝐼 and 𝑆 (𝑡)( 𝑗 = 𝑙, 𝑟) is continuous with 𝑆 (𝑡) ≤ 𝑀, 𝑀 > 0, |𝐴𝑆(𝑡)| ≤ 𝑀  ∀𝑡𝜖𝐽 = [0, 𝑇]. 
H2. The nonlinear function ℎ: 𝐽 × 𝐸 → 𝐸  is continuous and there exists a constant 𝑑 > 0, 
satisfying the global Lipschitz condition, such that 𝐻 ([ℎ(𝑡, 𝑥)] , [ℎ(𝑡, 𝑦)] ) ≤ 𝑑 𝐻 ([𝑥 (𝜃)] , [𝑦 (𝜃)] ); ∀𝑡𝜖𝐽 and 𝑥, 𝑦𝜖𝐸 .  

H3. If 𝑔 is continuous and there exists constants 𝐺 , 𝑘 = 1, 2, … , 𝑝, such that   𝐻 𝑔 𝑥 , 𝑥 , … , 𝑥 (𝑠) , 𝑔 𝑦 , 𝑦 , … , 𝑦 (𝑠)  

 

≤ 𝐺 𝐻 𝑥 (𝑠) , 𝑦 (𝑠) , ∀𝑠𝜖[−𝑟, 0]  
 
and all 

 𝑥 , 𝑦 𝜖𝐶([−𝑟, 0], 𝐸 ), 𝑘 = 1, 2, … , 𝑝. 
H4. There exists a non-negative 𝑑 , such that 𝐻 ([𝐼 (𝑥(𝑡 ))] , [𝐼 (𝑦(𝑡 ))] ) ≤  𝑑 𝐻 ([𝑥(𝑡)] , [𝑦(𝑡)] ), 𝑘 = 1, 2, … , 𝑚  

and for each 𝑥, 𝑦𝜖𝐸 . 

H5. The nonlinear function 𝑓: 𝐽 × 𝐸 → 𝐸  is continuous and there exists a constant 𝑑 > 0, 
satisfying the global Lipschitz condition, such that 𝐻 ([𝑓(𝑡, 𝑥)] , [𝑓(𝑡, 𝑦)] ) ≤ 𝑑 𝐻 ([𝑥 (𝜃)] , [𝑦 (𝜃)] )∀𝑡𝜖𝐽 and 𝑥, 𝑦𝜖𝐸 . 
H6.  

𝑑 (1 + 𝑀𝑀 𝑇 + 𝑀) + 𝑑 (𝑀𝑀 𝑇 + 𝑀 𝑇) + (1 + 𝑀𝑇) 𝐺 + 𝑀(𝑀 + 1)𝑑+ ( 𝑀  𝑀 𝑇) < 1. 
 

Definition 11. If 𝑥(𝑡) is an integral solution of the problem (1), then 𝑥(𝑡) is given by 
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𝑥(𝑡) = 𝑆(𝑡) 𝜑(0) − 𝑔 𝑥 , 𝑥 , … , 𝑥 (0) − ℎ(0, 𝜑) + ℎ(𝑡, 𝑥 )+ 𝐴𝑆(𝑡 − 𝑆)ℎ(𝑠, 𝑥 )𝑑𝑠 + 𝑆(𝑡 − 𝑆)𝑓(𝑠, 𝑥 )𝑑𝑠 

       + 𝑆(𝑡 − 𝑆)𝑢(𝑠)𝑑𝑠 + 𝑆(𝑡 − 𝑡 ) 𝐼 𝑥(𝑡 ) (2)

where 𝑡𝜖𝐽, 𝑡 ≠ 𝑡 , 𝑘 = 1, 2, … , 𝑚 and 𝑆(𝑡) satisfies H1. 

Theorem 1. [22] The nonlocal problem (1) is said to be controllable on the interval 𝐽 if there exists 
a control 𝑢(𝑡), such that the fuzzy solution 𝑥(𝑡) for (2) is controllable and satisfies    𝑥[𝑇] = 𝑥  𝑖𝑒. , [𝑥(𝑇)] = [𝑥 ]  

where 𝑥 𝜖𝐸 . 

Proof: Now define the α −level set of fuzzy mapping 𝐺: 𝑃(𝑅) → 𝐸  by 

 𝐺 (𝑣) = 𝑆 (𝑇 − 𝑆) 𝑣(𝑠)𝑑𝑠; 𝑣 ⊂ Γ        0       ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

where Γ  is the closure of support 𝑢. In [26], the support Γ  of a fuzzy number 𝑢 is de-
fined as a special case of the level set by Γ = 𝑥: 𝜇 (𝑥) > 0 .  

Then, there exists 𝐺 (𝑗 = 𝑙, 𝑟), such that 

𝐺 (𝑣 ) = 𝑆 (𝑇 − 𝑆)𝑣 (𝑠)𝑑𝑠, 𝑣 (𝑠)𝜖[𝑢 (𝑠), 𝑢 (𝑠)], 
𝐺 (𝑣 ) = 𝑆 (𝑇 − 𝑆)𝑣 (𝑠)𝑑𝑠, 𝑣 (𝑠)𝜖[𝑢 (𝑠), 𝑢 (𝑠)], 

Consider that 𝐺 , 𝐺  are bijective mapping. Introduce an 𝛼 −level set of u(s) for (2) 
and we get [𝑢(𝑠)] = [𝑢 (𝑠), 𝑢 (𝑠)] 𝐺 (𝑥 ) − 𝑆 (𝑇) 𝜑 (0) − 𝑔 𝑥 ,𝑥 , … … , 𝑥 (0) − ℎ (0, 𝜑) −  ℎ 𝑇, 𝑥

− 𝐴 𝑆 (𝑇 − 𝑆)ℎ 𝑠, 𝑥 𝑑𝑠 − 𝑆 (𝑇 − 𝑆)𝑓 𝑠, 𝑥 𝑑𝑠 − 
Ttk 0

𝑆 (𝑇 − 𝑡 )𝐼 𝑥 (𝑡 ) ,
𝐺 (𝑥 ) − 𝑆 (𝑇) 𝜑 (0) − 𝑔 𝑥 ,𝑥 , … … , 𝑥 (0) − ℎ (0, 𝜑) − ℎ 𝑇, 𝑥

− 𝐴 𝑆 (𝑇 −  𝑆)ℎ 𝑠, 𝑥 𝑑𝑠 − 𝑆 (𝑇 − 𝑆)𝑓 𝑠, 𝑥 𝑑𝑠 − 
Ttk 0

𝑆 (𝑇 − 𝑡 )𝐼 𝑥 (𝑡 )
 

Substituting this in equation (2), we get an 𝛼 −level set of 𝑥(𝑇) as [𝑥(𝑇)] = 

 

𝑆 (𝑇) 𝜑 (0) − 𝑔 𝑥 , 𝑥 , … , 𝑥 (0) − ℎ (0, 𝜑) +  ℎ 𝑇, 𝑥 + 𝐴 𝑆 (𝑇 −𝑆)ℎ 𝑠, 𝑥 𝑑𝑠 + 𝑆 (𝑇 − 𝑆)𝑓 𝑠, 𝑥 𝑑𝑠 + ∑ 𝑆 (𝑇 − 𝑡 ) 𝐼 𝑥 (𝑡 ) +
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𝑆 (𝑇 − 𝑆) 𝐺 (𝑥 ) − 𝑆 (𝑇) 𝜑 (0) − 𝑔 𝑥 , 𝑥 , … , 𝑥 (0) − ℎ (0, 𝜑) − ℎ 𝑇, 𝑥 − 𝐴 𝑆 (𝑇 − 𝑆)ℎ 𝑠, 𝑥 𝑑𝑠 − 𝑆 (𝑇 − 𝑆)𝑓 𝑠, 𝑥 𝑑𝑠 − ∑ 𝑆 (𝑇 − 𝑡 ) 𝐼 𝑥 (𝑡 ) 𝑑𝑠, 

 

𝑆 (𝑇) 𝜑 (0) − 𝑔 𝑥 , 𝑥 , … , 𝑥 (0) − ℎ (0, 𝜑) + ℎ 𝑇, 𝑥 + 𝐴 𝑆 (𝑇 − 𝑆)ℎ 𝑠, 𝑥 𝑑𝑠
+ 𝑆 (𝑇 − 𝑆)𝑓 𝑠, 𝑥 𝑑𝑠 + 𝑆 (𝑇 − 𝑡 ) 𝐼 𝑥 (𝑡 )
+ 𝑆 (𝑇 − 𝑆) 𝐺 (𝑥 ) − 𝑆 (𝑇) 𝜑 (0) −  𝑔 𝑥 , 𝑥 , … , 𝑥 (0) − ℎ (0, 𝜑)
− ℎ 𝑇, 𝑥 − 𝐴 𝑆 (𝑇 −  𝑆)ℎ 𝑠, 𝑥 𝑑𝑠 − 𝑆 (𝑇 − 𝑆)𝑓 𝑠, 𝑥 𝑑𝑠
− 𝑆 (𝑇 − 𝑡 ) 𝐼 𝑥 (𝑡 ) 𝑑𝑠 

 

 = [(𝑥 ) , (𝑥 ) ] = [𝑥 ] . 
 

Hence, the fuzzy solution 𝑥(𝑡) for equation (2) satisfies [𝑥(𝑇)] = [𝑥 ] . □ 
Define Φ 𝑥(𝑡) = 𝑆(𝑡) 𝜑(0) − 𝑔 𝑥 , 𝑥 , … , 𝑥 (0) − ℎ(0, 𝜑) + ℎ(𝑡, 𝑥 ) + 𝐴𝑆(𝑡 − 𝑆)ℎ(𝑠, 𝑥 )𝑑𝑠 +𝑆(𝑡 − 𝑆)𝑓(𝑠, 𝑥 )𝑑𝑠 + ∑ 𝑆(𝑡 − 𝑡 ) 𝐼 𝑥(𝑡 ) + 𝑆(𝑡 − 𝑆) 𝐺 (𝑥 ) − 𝑆(𝑇) 𝜑(0) −𝑔 𝑥 , 𝑥 , … , 𝑥 (0) − ℎ(0, 𝜑) − ℎ(𝑇, 𝑥 ) − 𝐴𝑆(𝑇 − 𝑆)ℎ(𝑠, 𝑥 )𝑑𝑠 − 𝑆(𝑇 − 𝑆)𝑓(𝑠, 𝑥 )𝑑𝑠 −∑ 𝑆(𝑇 − 𝑡 ) 𝐼 𝑥(𝑡 ) 𝑑𝑠,                                                      (3) 

 

where 𝐺 satisfies the previous statements. 
Observe Φ 𝑥(𝑡) = [𝑥 ], which represents that the control 𝑢(𝑡) steers condition (3) 

from the arbitrary stage to 𝑥  in time 𝑇, given that there must exist a fixed point of the 
nonlinear operator Φ. 

Similarly, 
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 Φ 𝑦(𝑡) = 𝑆(𝑡) 𝜑(0) − 𝑔 𝑦 , 𝑦 , … , 𝑦 (0) − ℎ(0, 𝜑) + ℎ(𝑡, 𝑦 )+ 𝐴𝑆(𝑡 − 𝑆)ℎ(𝑠, 𝑦 )𝑑𝑠
+ 𝑆(𝑡 − 𝑆)𝑓(𝑠, 𝑦 )𝑑𝑠 + 𝑆(𝑡 − 𝑡 ) 𝐼 (𝑦(𝑡 ))
+ 𝑆(𝑡 − 𝑆) 𝐺 (𝑦 ) − 𝑆(𝑇) 𝜑(0) − 𝑔 𝑦 ,𝑦 , … … , 𝑦 (0)  

−ℎ(0, 𝜑)] −ℎ(𝑇, 𝑦 ) − 𝐴𝑆(𝑇 − 𝑆)ℎ(𝑠, 𝑦 )𝑑𝑠 − 𝑆(𝑇 − 𝑆)𝑓(𝑠, 𝑦 )𝑑𝑠
− 𝑆(𝑇 − 𝑡 ) 𝐼 𝑦(𝑡 ) 𝑑𝑠.                

The controllability of fuzzy solutions for the neutral impulsive functional differential 
equation with nonlocal conditions is discussed in the following theorem. 

Theorem 2. [22] Equation (3) is controllable if the hypothesis (H1–H6) is satisfied. 

Proof: For 𝑥, 𝑦𝜖Ω  

≤ 𝐻 ([ℎ(𝑡, 𝑥 )] , [ℎ(𝑡, 𝑦 )] ) + 𝐻 𝑔 𝑥 , 𝑥 , … , 𝑥 (0) , 𝑔 𝑦 , 𝑦 , … , 𝑦 (0)
+ 𝐻 𝐴𝑆(𝑡 − 𝑆)ℎ(𝑠, 𝑥 )𝑑𝑠 , 𝐴𝑆(𝑡 − 𝑆)ℎ(𝑠, 𝑦 )𝑑𝑠
+ 𝐻 𝑆(𝑡 − 𝑆)𝑓(𝑠, 𝑥 )𝑑𝑠 , 𝑆(𝑡 − 𝑆)𝑓(𝑠, 𝑦 )𝑑𝑠
+ 𝐻 𝑆(𝑡 − 𝑆) 𝐺 (𝑥 ) − 𝑆(𝑇) 𝜑(0) − 𝑔 𝑥 , 𝑥 , … , 𝑥 (0) − ℎ(0, 𝜑) − ℎ(𝑇, 𝑥 )
− 𝐴𝑆(𝑇 − 𝑆)ℎ(𝑠, 𝑥 )𝑑𝑠 − 𝑆(𝑇 − 𝑆)𝑓(𝑠, 𝑥 )𝑑𝑠 − 𝑆(𝑇 − 𝑡 ) 𝐼 𝑥(𝑡 ) 𝑑𝑠 , 𝑆(𝑡
− 𝑆) 𝐺 (𝑦 ) − 𝑆(𝑇) 𝜑(0) − 𝑔 𝑦 , 𝑦 , … , 𝑦 (0) − ℎ(0, 𝜑) − ℎ(𝑇, 𝑦 )
− 𝐴𝑆(𝑇 − 𝑆)ℎ(𝑠, 𝑦 )𝑑𝑠 − 𝑆(𝑇 − 𝑆)𝑓(𝑠, 𝑦 )𝑑𝑠 − 𝑆(𝑇 − 𝑡 ) 𝐼 𝑦(𝑡 ) 𝑑𝑠  
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   ≤ 𝑑 𝐻 ([𝑥(𝑡 + 𝜃)] , [𝑦(𝑡 + 𝜃)] ) + 𝐺 𝐻 𝑥 (0) , 𝑦 (0)
+ 𝑀𝑀 𝑑 𝐻 ([𝑥(𝑠 + 𝜃)] , [𝑦(𝑠 + 𝜃)] )𝑑𝑠 + 𝑀𝑀 𝑑 𝐻 ([𝑥(𝑡 + 𝜃)] , [𝑦(𝑡 + 𝜃)] )𝑑𝑠
+ 𝑀𝑑 𝐻 ([𝑥(𝑡)] , [𝑦(𝑡)] )
+ 𝑀 𝐺 𝐻 𝑥 (0) , 𝑦 (0) + 𝑑 𝐻 ([𝑥(𝑇 + 𝜃)] , [𝑦(𝑇 + 𝜃)] )
+  𝑀𝑀 𝑑 𝐻 ([𝑥(𝑠 + 𝜃)] , [𝑦(𝑠 + 𝜃)] )𝑑𝑠 + 𝑀 𝑑 𝐻 ([𝑥(𝑇 + 𝜃)] , [𝑦(𝑇 + 𝜃)] )𝑑𝑠
+ 𝑀𝑑 𝐻 ([𝑥(𝑠)] , [𝑦(𝑠)] ) 𝑑𝑠 

Therefore,      𝑑  𝛷𝑥(𝑡), 𝛷𝑦(𝑡) =
10

sup
≤<α

𝐻 ([𝛷𝑥(𝑡)] , [𝛷𝑦(𝑡)] )          
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≤ 𝑑
10

sup
≤<α

𝐻 ([𝑥(𝑡 + 𝜃)] , [𝑦(𝑡 + 𝜃)] ) + 𝐺
10

sup
≤<α

𝐻 𝑥 (0) , 𝑦 (0)
+ 𝑀𝑀 𝑑

10
sup

≤<α
𝐻 ([𝑥(𝑠 + 𝜃)] , [𝑦(𝑠 + 𝜃) ])𝑑𝑠

+ 𝑀𝑀 𝑑
10

sup
≤<α

𝐻 ([𝑥(𝑡 + 𝜃)] , [𝑦(𝑡 + 𝜃)] )𝑑𝑠
+ 𝑀𝑑

10
sup

≤<α
𝐻 ([𝑥(𝑡)] , [𝑦(𝑡)] )

+ 𝑀 𝐺
10

sup
≤<α

𝐻 𝑥 (0) , 𝑦 (0)
+ 𝑑

10
sup

≤<α
𝐻 ([𝑥(𝑇 + 𝜃)] , [𝑦(𝑇 + 𝜃)] )

+  𝑀𝑀 𝑑
10

sup
≤<α

𝐻 ([𝑥(𝑠 + 𝜃)] , [𝑦(𝑠 + 𝜃)] )𝑑𝑠
+ 𝑀 𝑑

10
sup

≤<α
𝐻 ([𝑥(𝑇 + 𝜃)] , [𝑦(𝑇 + 𝜃)] )𝑑𝑠

+ 𝑀𝑑
10

sup
≤<α

𝐻 ([𝑥(𝑠)] , [𝑦(𝑠)] ) 𝑑𝑠 

 

≤ 𝑑 𝑑 ([𝑥(𝑡 + 𝜃)], [𝑦(𝑡 + 𝜃)]) + 𝐺 𝑑 𝑥 , 𝑦 + 𝑀𝑀 𝑑 𝑑 ([𝑥(𝑠 + 𝜃)], [𝑦(𝑠 + 𝜃)])𝑑𝑠
+ 𝑀𝑀 𝑑 𝑑 ([𝑥(𝑡 + 𝜃)], [𝑦(𝑡 + 𝜃)])𝑑𝑠 + 𝑀𝑑 𝑑 ([𝑥(𝑡)], [𝑦(𝑡)])
+ 𝑀 𝐺 𝑑 ([𝑥(𝜏 )], [𝑦(𝜏 )]) 𝑑𝑠 + 𝑑 𝑑 ([𝑥(𝑇 + 𝜃)], [𝑦(𝑇 + 𝜃)])
+  𝑀𝑀 𝑑 𝑑 ([𝑥(𝑠 + 𝜃)], [𝑦(𝑠 + 𝜃)])𝑑𝑠 + 𝑀 𝑑 𝑑 ([𝑥(𝑇 + 𝜃)], [𝑦(𝑇 + 𝜃)])𝑑𝑠
+ 𝑀𝑑 𝑑 ([𝑥(𝑠)], [𝑦(𝑠)]) 𝑑𝑠 
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Hence, 𝐻 𝛷(𝑥), 𝛷(𝑦) =
Tt≤≤0

sup 𝑑 (Φ(𝑥(𝑡)),(𝛷𝑦(𝑡))) ≤ 𝑑
Tt≤≤0

sup 𝑑 ([𝑥(𝑡 + 𝜃)], [𝑦(𝑡 + 𝜃)]) +∑ 𝐺
Tt≤≤0

sup 𝑑 𝑥 , 𝑦 + 𝑀𝑀 𝑑
Tt≤≤0

sup 𝑑 ([𝑥(𝑠 +𝜃)], [𝑦(𝑠 + 𝜃)])𝑑𝑠 + 𝑀𝑀 𝑑
Tt≤≤0

sup 𝑑 ([𝑥(𝑡 +𝜃)], [𝑦(𝑡 + 𝜃)])𝑑𝑠 + 𝑀𝑑
Tt≤≤0

sup 𝑑 ([𝑥(𝑡)], [𝑦(𝑡)]) +
𝑀 ∑ 𝐺

Tt≤≤0
sup 𝑑 ([𝑥(𝜏 )], [𝑦(𝜏 )]) +

𝑑
Tt≤≤0

sup 𝑑 ([𝑥(𝑇 + 𝜃)], [𝑦(𝑇 + 𝜃)]) +
 𝑀𝑀 𝑑

Tt≤≤0
sup 𝑑 [𝑥(𝑠 + 𝜃)], [𝑦(𝑠 + 𝜃)] 𝑑𝑠 +𝑀 𝑑

Tt≤≤0
sup 𝑑 ([𝑥(𝑇 + 𝜃)], [𝑦(𝑇 + 𝜃)])𝑑𝑠 +

𝑀𝑑
Tt≤≤0

sup 𝑑 ([𝑥(𝑠)], [𝑦(𝑠)]) 𝑑𝑠  

 ≤ 𝑑 𝐻 (𝑥, 𝑦) + ∑ 𝐺 𝐻 (𝑥, 𝑦) +𝑀𝑀 𝑑 𝐻 (𝑥, 𝑦)𝑑𝑠 + 𝑀𝑀 𝑑 𝐻 (𝑥, 𝑦)𝑑𝑠 +𝑀𝑑 𝐻 (𝑥, 𝑦) + 𝑀 ∑ 𝐺 𝐻 (𝑥, 𝑦) 𝑑𝑠 +𝑑 𝐻 (𝑥, 𝑦) +  𝑀𝑀 𝑑 𝐻 (𝑥, 𝑦)𝑑𝑠 +𝑀 𝑑 𝐻 (𝑥, 𝑦)𝑑𝑠 + 𝑀𝑑 𝐻 (𝑥, 𝑦) 𝑑𝑠  
 ≤ 𝑑 (1 + 𝑀𝑀 𝑇 + 𝑀) + 𝑑 (𝑀𝑀 𝑇 + 𝑀 𝑇) + (1 +𝑀𝑇) ∑ 𝐺 + 𝑀(𝑀 + 1)𝑑 + ( 𝑀 𝑀 𝑇) 𝐻 (𝑥, 𝑦).  
 

Hence, 𝛷 is a contraction mapping. By applying the Banach fixed point theorem, 
Equation (3) has a unique fixed point 𝑥𝜖Ω . □ 

4. Examples 

Example 1. In the study, the fuzzy solution of nonlinear fuzzy neutral impulsive functional dif-
ferential equations with nonlocal conditions of the form [24] 𝑑𝑑𝑡 [𝑥(𝑡) − 2𝑡𝑥(𝑡 + ℎ) ] = 2[𝑥(𝑡)] + 3𝑡𝑥(𝑡 + ℎ) + 𝑢(𝑡) 𝑥(0) + 𝑐 𝑥(𝑡 ) = 0𝜖𝐸  𝐼 𝑥(𝑡 ) = 11 + 𝑥(𝑡 ), 

 

where 𝑥  is the target set, and the 𝛼-level set of fuzzy numbers 0, 2, 3 are given by [0] = [𝛼 − 1,1 − 𝛼], [2] = [𝛼 + 1,3 − 𝛼], [3] = [𝛼 + 2,4 − 𝛼], for 𝛼𝜖[0,1]  𝑓(𝑡, 𝑥 ) = 3𝑡𝑥(𝑡 + ℎ) , ℎ(𝑡, 𝑥 ) = 2𝑡𝑥(𝑡 + ℎ)  𝑡ℎ𝑒𝑛 𝑎𝑛 𝛼 − 𝑙𝑒𝑣𝑒𝑙 𝑠𝑒𝑡 𝑜𝑓 𝑔(𝑥) = ∑ 𝑐 𝑥(𝑡 ) is 
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[𝑔(𝑥)] = 𝑐 𝑥(𝑡 ) = 𝑐 𝑥 (𝑡 ) , 𝑐 𝑥 (𝑡 )  𝑎𝑛𝑑 

 𝐻 ([𝑔(𝑥)] , [𝑔(𝑦)] ) = 𝐻 𝑐 𝑥(𝑡 ) , 𝑐 𝑦(𝑡 )  

≤ 𝐺 𝐻 𝑥 (𝑠) , 𝑦 (𝑠)  Similarly an, α − level set of 𝑓(𝑡, 𝑥 ), ℎ(𝑡, 𝑥 ) and 𝐼 𝑥(t )  is  [𝑓(𝑡, 𝑥 )] = [3𝑡𝑥(𝑡 + ℎ) ] = 𝑡[(𝛼 + 2)(𝑥 (𝑡 + ℎ) , (4 − 𝛼)(𝑥 (𝑡 + ℎ) ] [ℎ(𝑡, 𝑥 )] = [2𝑡𝑥(𝑡 + ℎ) ] = 𝑡[(𝛼 + 1)(𝑥 (𝑡 + ℎ) , (3 − 𝛼)(𝑥 (𝑡 + ℎ) ] 𝐼 𝑥(t ) = 11 + 𝑥(𝑡 ) = 11 + 𝑥 (𝑡 ) , 11 + 𝑥 (𝑡 )  

and 𝐻 ([𝑓(𝑡, 𝑥 )] , [𝑓(𝑡, 𝑦 )] ) ≤ 𝑑 𝐻 ([𝑥(𝑡 + ℎ)] , [𝑦(𝑡 + ℎ)] ), 
where [𝑥(𝑡 + ℎ)] = [𝑥 (𝑡 + ℎ), 𝑥 (𝑡 + ℎ)] and 𝑑 = 4𝑏|𝑥 (𝑡 + ℎ), 𝑦 (𝑡 + ℎ)|. 

Similarly,𝐻 ([ℎ(𝑡, 𝑥 )] , [ℎ(𝑡, 𝑦 )] ) ≤ 𝑑 𝐻 ([𝑥(𝑡 + ℎ)] , [𝑦(𝑡 + ℎ)] ), 𝐻 𝐼 𝑥(t ) , 𝐼 𝑦(t ) ≤ 𝑑 𝐻 ([𝑥(𝑡)] , [𝑦(𝑡)] ) 

where 𝑑 = 3𝑏|𝑥 (𝑡 + ℎ), 𝑦 (𝑡 + ℎ)|, 𝑑 = ( | ( )|)( | ( )|) . 
Hence, the unique fuzzy solution is obtained by choosing 𝑏 → 0.  
Assuming 𝑥 = 2, we prove the nonlocal controllability;  [𝑢(𝑠)] = [𝑢 (𝑠), 𝑢 (𝑠)] 

= ⎣⎢⎢
⎢⎡ 𝐺 ⎝⎜⎜

⎛(𝑥 ) − 𝑆 (𝑇) 𝜑 (0) − 𝑔 𝑥 , 𝑥 , … , 𝑥 (0) − ℎ (0, 𝜑)
−  ℎ 𝑇, 𝑥 − 𝐴 𝑆 (𝑇 − 𝑆)ℎ 𝑠, 𝑥 𝑑𝑠
− 𝑆 (𝑇 − 𝑆)𝑓 𝑠, 𝑥 𝑑𝑠 − Ttk 0 𝑆 (𝑇 − 𝑡 )𝐼 𝑥 (𝑡 ) ⎠⎟⎟

⎞ , 
𝐺 ⎝⎜⎜

⎛(𝑥 ) − 𝑆 (𝑇) 𝜑 (0) − 𝑔 𝑥 , 𝑥 , … , 𝑥 (0) − ℎ (0, 𝜑) − ℎ 𝑇, 𝑥
− 𝐴 𝑆 (𝑇 −  𝑆)ℎ 𝑠, 𝑥 𝑑𝑠 − 𝑆 (𝑇 − 𝑆)𝑓 𝑠, 𝑥 𝑑𝑠
− 

Ttk 0 𝑆 (𝑇 − 𝑡 )𝐼 𝑥 (𝑡 ) ⎠⎟⎟
⎞

⎦⎥⎥
⎥⎤
 

 
Substituting the above derived values into the integral system with respect to (1) 

yields an 𝛼 −level set of 𝑥(𝑇) as [𝑥(𝑇)] = [2] = [𝑥 ]. So, the system (1) is controllable 
on [0, T]. 

Example 2. Consider the following system: 



Axioms 2021, 10, 84 13 of 16 
 

𝑑𝑑𝑡 [𝑥(𝑡) − 𝑡𝑥(𝑡 + ℎ) ] = [𝑥(𝑡)] + 2𝑡𝑥(𝑡 + ℎ) + 𝑢(𝑡) 𝑥(0) + 𝑐 𝑥(𝑡 ) = 0𝜖𝐸  

𝐼 𝑥(𝑡 ) = 11 + 𝑥(𝑡 ) 

where 1x is the target set, and the α -level set of fuzzy numbers 0, 1, 2 are given by [0] = [𝛼 − 1,1 − 𝛼], [1] = [𝛼, 2 − 𝛼], [2] = [𝛼 + 1,3 − 𝛼], for 𝛼𝜖[0,1].  𝑓(𝑡, 𝑥 ) = 2𝑡𝑥(𝑡 + ℎ) , ℎ(𝑡, 𝑥 ) = 𝑡𝑥(𝑡 + ℎ)  Then, an α − level set of g(x) = ∑ c x(t ) is [𝑔(𝑥)] = 𝑐 𝑥(𝑡 ) = 𝑐 𝑥 (𝑡 ) , 𝑐 𝑥 (𝑡 )    and 
 𝐻 ([𝑔(𝑥)] , [𝑔(𝑦)] ) = 𝐻 𝑐 𝑥(𝑡 ) , 𝑐 𝑦(𝑡 )  

      ≤ 𝐺 𝐻 𝑥 (𝑠) , 𝑦 (𝑠)  Similarly, an α − level set of 𝑓(𝑡, 𝑥 ), ℎ(𝑡, 𝑥 ) and 𝐼 𝑥(𝑡 )  is  [𝑓(𝑡, 𝑥 )] = [2𝑡𝑥(𝑡 + ℎ) ] = 𝑡[(𝛼 + 1)(𝑥 (𝑡 + ℎ) , (3 − 𝛼)(𝑥 (𝑡 + ℎ) ] [ℎ(𝑡, 𝑥 )] = [𝑡𝑥(𝑡 + ℎ) ] = 𝑡[(𝛼)(𝑥 (𝑡 + ℎ) , (2 − 𝛼)(𝑥 (𝑡 + ℎ) ] 𝐼 𝑥(𝑡 ) = 11 + 𝑥(𝑡 ) = 11 + 𝑥 (𝑡 ) , 11 + 𝑥 (𝑡 )  

 

and  𝐻 ([𝑓(𝑡, 𝑥 )] , [𝑓(𝑡, 𝑦 )] ) ≤ 𝑑 𝐻 ([𝑥(𝑡 + ℎ)] , [𝑦(𝑡 + ℎ)] ) 

where [𝑥(𝑡 + ℎ)] = [𝑥 (𝑡 + ℎ), 𝑥 (𝑡 + ℎ)] 
and 𝑑 = 3𝑏|𝑥 (𝑡 + ℎ), 𝑦 (𝑡 + ℎ)| 

Similarly, 𝐻 ([ℎ(𝑡, 𝑥 )] , [ℎ(𝑡, 𝑦 )] ) ≤ 𝑑 𝐻 ([𝑥(𝑡 + ℎ)] , [𝑦(𝑡 + ℎ)] ), 𝐻 𝐼 𝑥(𝑡 ) , 𝐼 𝑦(𝑡 ) ≤ 𝑑 𝐻 ([𝑥(𝑡)] , [𝑦(𝑡)] )  

where  𝑑 = 2𝑏|𝑥 (𝑡 + ℎ), 𝑦 (𝑡 + ℎ)|, 𝑑 = 1(1 + |𝑥 (𝑡 )|)(1 + |𝑦 (𝑡 )|)  

Hence, the unique fuzzy solution is obtained by choosing 𝑏 → 0. 
Assuming, 𝑥 = 2, we prove the nonlocal controllability; [𝑢(𝑠)] = [𝑢 (𝑠), 𝑢 (𝑠)]  
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= ⎣⎢⎢
⎢⎡ 𝐺 ⎝⎜⎜

⎛(𝑥 ) − 𝑆 (𝑇) 𝜑 (0) − 𝑔 𝑥 , 𝑥 , … , 𝑥 (0) − ℎ (0, 𝜑) −
 ℎ 𝑇, 𝑥 − 𝐴 𝑆 (𝑇 − 𝑆)ℎ 𝑠, 𝑥 𝑑𝑠 − 𝑆 (𝑇 − 𝑆)𝑓 𝑠, 𝑥 𝑑𝑠 −
 Ttk 0 𝑆 (𝑇 − 𝑡 )𝐼 𝑥 (𝑡 ) ⎠⎟⎟

⎞
, 

𝐺 ⎝⎜⎜
⎛(𝑥 ) − 𝑆 (𝑇) 𝜑 (0) − 𝑔 𝑥 , 𝑥 , … , 𝑥 (0) − ℎ (0, 𝜑)

− ℎ 𝑇, 𝑥 − 𝐴 𝑆 (𝑇 −  𝑆)ℎ 𝑠, 𝑥 𝑑𝑠− 𝑆 (𝑇 − 𝑆)𝑓 𝑠, 𝑥 𝑑𝑠
− 

Ttk 0 𝑆 (𝑇 − 𝑡 )𝐼 𝑥 (𝑡 ) ⎠⎟⎟
⎞

⎦⎥⎥
⎥⎤
 

Substituting the above derived values into the integral system with respect to (1) 
yields an  α − level set of 𝑥(𝑇) as [𝑥(𝑇)] = [2] = [𝑥 ]. So, the system (1) is controllable 
on [0, T]. 

5. Conclusions 
In this paper, we have proved the controllability results of the fuzzy solutions for the 

first order impulsive neutral functional differential equations by applying the contraction 
mapping principle. Further, we can extend the controllability results for the fuzzy inclu-
sions. The same concept can be generalized to study the controllability of second order 
systems/inclusions using sine and cosine operators (2012) [30]. One can also study the 
controllability of the fuzzy solution for neutral impulsive functional fractional order sys-
tems for time and state delay systems/inclusions (2013) [31]. Numerical aspects of the 
same would be quite interesting for the further study. Moreover, we can extend the results 
to real phenomena, considering a pendulum problem, and develop a fuzzy and impulsive 
controller design in ℜ , applying a simulation to the proposed adaptive fuzzy and impul-
sive controllers to control the inverted pendulum using MATLAB. By stability analysis, 
we can make sure that all signals involved are uniformly bounded. At this stage, all the 
design parameters have specific numerical values that generate the graph of the adaptive 
control input signal and the graph of the state and its desired value. 
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