@ axioms

Article

Approximations of an Equilibrium Problem without Prior
Knowledge of Lipschitz Constants in Hilbert Spaces
with Applications

Chainarong Khanpanuk !

check for

updates
Citation: Khanpanuk, C.;
Pakkaranang, N.; Wairojjana, N.;
Pholasa, N. Approximations of an
Equilibrium Problem without Prior
Knowledge of Lipschitz Constants
in Hilbert Spaces with Applications.
Axioms 2021, 10, 76. https://doi.org/
10.3390/axioms10020076

Academic Editor: Jestas Martin

Vaquero

Received: 21 March 2021
Accepted: 23 April 2021
Published: 27 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Nuttapol Pakkaranang 2, Nopparat Wairojjana 3*

and Nattawut Pholasa %*

Department of Mathematics, Faculty of Science and Technology, Phetchabun Rajabhat University,
Phetchabun 67000, Thailand; iprove2000ck@gmail.com

Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi
(KMUTT), Bangkok 10140, Thailand; nuttapol.pak@mail.kmutt.ac.th

Applied Mathematics Program, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University
under the Royal Patronage (VRU), 1 Moo 20 Phaholyothin Road, Klong Neung, Klong Luang,
Pathumthani 13180, Thailand

4 School of Science, University of Phayao, Phayao 56000, Thailand

*  Correspondence: nopparat@vru.ac.th (N.W.); nattawut_math@hotmail.com (N.P.)

Abstract: The objective of this paper is to introduce an iterative method with the addition of an
inertial term to solve equilibrium problems in a real Hilbert space. The proposed iterative scheme
is based on the Mann-type iterative scheme and the extragradient method. By imposing certain
mild conditions on a bifunction, the corresponding theorem of strong convergence in real Hilbert
space is well-established. The proposed method has the advantage of requiring no knowledge of
Lipschitz-type constants. The applications of our results to solve particular classes of equilibrium
problems is presented. Numerical results are established to validate the proposed method’s efficiency
and to compare it to other methods in the literature.
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1. Introduction

Suppose that C is a nonempty closed and convex subset of a real Hilbert space H.
The inner product and induced norm are denoted by (-,-) and || - ||, respectively. Let
f:H xH — R be abifunction and f(y,y) = 0, for all y € C. The equilibrium problem
(EP) [1,2] for a bifunction f on C is defined in the following way:

Find u* € C such that f(u*,y) >0, Vy e C. (EP)

The equilibrium problem is a general mathematical problem in the sense that it unifies
various mathematical problems, i.e., fixed-point problems, vector and scalar minimization
problems, problems of variational inequality, complementarity problems, Nash equilibrium
problems in noncooperative games, saddle point problems, and inverse optimization prob-
lems [2—4]. The equilibrium problem is also known as the well-known Ky Fan inequality
due to the result [1]. Many authors established and generalized several results on the
existence and nature of the solution of the equilibrium problems (see for more detail [1,4,5]).
Due to the importance of this problem (EP) in both pure and applied sciences, many
researchers studied it in recent years [6-17] and other in [18-22].
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Tran et al. in [23] introduced iterative sequence {u,} in the following way:

Uug € C,

yn = argmin{xf (i, 2) + 3 |[un — 2|},
zeC (1)

upy1 = argmin{xf(yn, z) + %H”n - 2”2},
zeC

where 0 < x < min {ﬁ, 2172 } This method is also known as the extragradient method
in [23] due to the previous contribution of Korpelevich [24] to solve the saddle-point prob-
lems. The iterative sequence generated by the above-mentioned method is weakly conver-
gent to the solution with prior knowledge of Lipschitz-type constants. These Lipschitz-like
constants are often not known or are difficult to compute. Recently, Hieu et al. [25] intro-
duced an extension of the method (1) for solving the equilibrium problem. Let us consider
that [p]+ := max{p,0} and choose uy € C, u € (0,1) with xo > 0 such that

Yn = argmin{xf (un, z) + 5 ||un — z[|*},
zeC

. 2
tps1 = argmin{ionf (n,2) + lun — 2|2, @

zeC

where {x,} is updated in the following manner:

illun = yull® + l[ttn1 = yull?) }

Xn+1 = min {Xn' 2[f(un, upi1) — f(n, Yn) — fF(Yn, thns1)]+

Inertial-like methods are well-known two-step iterative methods in which the next
iteration is derived from the previous two iterations (see [26,27] for more details). To speed
up the iterative sequence convergence rate, an inertial extrapolation term is used. Nu-
merical examples show that inertial effects improve numerical performance in terms of
execution time and the expected number of iterations. Recently, many existing methods
were established for the case of equilibrium problems (see [28-31] for more details).

In this paper, inspired by the methods in [23,25,26,32], we introduce a general inertial
Mann-type subgradient extragradient method to evaluate the approximate solution of
the equilibrium problems involving pseudomonotone bifunction. A strong convergence
result corresponding to the proposed algorithm is well-established by assuming certain
mild conditions. Some of the applications for our main results are considered to solve the
fixed-point problems. Lastly, computational results show that the new method is more
successful than existing ones [23,33,34].

2. Preliminaries

A metric projection Pp(u) of u € H onto a closed and convex subset C of H is defined by
Fe(u) = argmin{ ||y —u[}.
yeC
In this study, the equilibrium problem under the following conditions:

(c1). Abifunction f : H x ‘H — R is said to be pseudomonotone [3,35] on C if

fy1,y2) > 0= f(y2,y1) <0, Yy, y2 €C.

(c2). A bifunction f : H x H — R is said to be Lipschitz-type continuous [36] on C if there
exist constants cq, ¢, > 0 such that

fy1,y3) < flyn,y2) + fy2,y3) +crllyn — v2ll> + c2lly — ysll*, Yy1,y2,y3 € C.

(c3). limsup f(yn,y) < f(q%,y) forally € C and {y,} C C satisfy y, — q*.
n—oo
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(c4). f(u,-) is convex and subdifferentiable on H for each u € H.
A coneon C at u € C is defined by

Ne(u) ={teH: (t,y—u) <0, VyeC}.
Let a convex function 71: C — R and subdifferential of 7 at u € C is defined by
0T(u) ={teH:y)—Wu) > (t,y—u), Vy € C}.

Lemma 1. [37] Let 71: C — R be a subdifferentiable, lower semicontinuous, and convex function
on C. Then, u € C is said to be a minimizer of 1 if and only if 0 € 971(u) + N (u), where 071(ut)
stands for the subdifferential of 1 at u € C and N¢(u) is a normal cone of C on u.

Lemma 2. [38] Assume that P; : H — C be a metric projection such that
@ llyr = Pe(y2)* + 1Pe(y2) = yall* < ly2 =31l y1 € Cya € 7.
(i) y3 = Pc(y1) ifand only if (y1 —y3,y2 —y3) <0, Yy, € C.

(i) flyr = Pe(yo)ll < llyr —yall, y2 € Cyr € H.

Lemma 3. [39] Assume that {T,} C (0,+00) is a sequence satisfying, i.e., Tyo1 < (1 —
Un) T + Un0y, forall n € N. Moreover, let {U,} C (0,1) and {0,} C R be two sequences,
such that limy 0o Uy = 0, Yy Uy = +00 and limsup,_, 9, < 0. Then, limy ;00 1y = 0.

Lemma 4. [40] Assume that {7} be a sequence of real numbers such that there exists a subse-
quence {n;} of {n} such that T, < Ty, for alli € N. Then, there is a nondecreasing sequence
my C N such that my — o0 as k — oo, and the following conditions are fullfiled by all (sufficiently
large) numbers k € N:

T < Ty and T < T

In fact, my = max{j < k:7T; < Tj1}.

Lemma 5. [41] Forall y1,y, € H and & € R, the following inequalities hold.
@ [oy1+ (1= 0)y2|* = Bllya[* + (1 = I)[ly2]1> — (1 = B)[ly1 — y2| >
@) yr +y2l1? < llyal® + 2(y2, 51 +v2).

3. Main Results

We propose an iterative method for solving equilibrium problems involving a pseu-
domonotone that is based on Tran et al. in [23], and the Mann-type method [32] and the
inertial scheme [26]. For clarity in the presentation, we use notation [¢]+ = max{0, } and
follow conventions 8 = +ocoand § = +oo (a #0).
Lemma 6. A sequence {x,} generated by (5) is monotonically decreasing, converges to x > 0,
and has a lower bound min { s=—J——, xo}.

max{cy,c2}

Proof. Assume that f(ty,z4) — f(tn,Yn) — f(Yn,zn) > 0 such that

u(lltn = yall* + llzn = yal®) o _#(lt — yall* + llza — yall*)
2[f(tu,zn) = f(tn,yn) — f(Yn,zn)] — 2[c1lltn — yull® + c2llz0 — yul?]

1
~ 2max{cy, 2} @)

This implies that {, } has a lower bound min { m, Xo }- Moreover, there exists
a fixed real number x > 0, such that limy o xn = x. O
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Lemma 7. Suppose that Conditions (c1)—(c4) are satisfied. Then, sequence {u, } generated by the
Algorithm 1 is a bounded sequence.

Algorithm 1 (Explicit Accelerated Strong Convergence Iterative Scheme)

STEP 0: Choose u_1,ug € C,¢ >0, xo > 0, {on} C (a,b) C (0,1 —9y) and {0, } C
(0,1) satisfies the following conditions:

—+00
lim ¢, =0 and n;lgn = +c0.

STEP 1: Compute t, = uy + ¢n(tty — t1,—1) and choose ¢, such that

s fe w1
0<¢p <o and ¢, = {1;1111{2, Hurunql\} i uy A Uy,

5 otherwise,

4)

where Cn = O(Qn), i.e., hmn*)oo % =0.

STEP 2: Compute

] 1
Yn = argmin{x,f(tn, y) + = [|ta — y||*}.
yeC 2

If t,;, = yy, then STOP the sequence. Else, go to STEP 3.

STEP 3: Construct a half-space H, = {z € H : (ty — xnWn — Yn, z — yn) < 0} where
wy € 92f (tn, yn) and compute

. 1
zn = argmin{xuf (Y y) + 5 It = y[I*}.
YEHn

STEP 4: Compute 1,11 = (1 — py — 0n)Un + OnZn-

STEP 5: Compute

o V‘|tn_yn‘|2+7/‘|‘zn_yn”2 }
Knt1 = moin {"”' 2 (b 20) — £ onr ) — F ]2 S ©)

Set n := n 41 and go back to Step 1.

Proof. From the value of z,, we have

0 € 3 x0nf i y) + 3 1w — 1} ) + N, (z0)
For w € 9f(yu,zn) there exists w € Ny, (z,) such that
Xnw +2zp —ty +w =0.

This implies that

(tn —2zn, ¥ — zn) = Xn{W, Y — zn) + (W, ¥ — zu), Yy € Hy.
Due to @ € Ny, (z4), it implies that (w,y — z,) < 0 for each y € H,. Thus, we have

(th —zn, ¥ — zn) < Xn(W, ¥ — zn), Yy € Ha. (6)

Moreover, w € 9f(yn, zx) and owing to the subdifferential, we have

fYn,y) = f(Yn,zn) > (w0, y —zn), Yy € H. (7)
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From Expressions (6) and (7), we obtain
Xnf Yo y) = Xnf (Yn,zn) > (tn — 20,y — 2n), Yy € Hn.
Due to the definition of H,,, we have
Xn{@Wn,zn = Yn) 2 (tn = Yn, Zn = Yn)-
Now, using wy, € of (ty, y»), we obtain
fltwy) = f(tn,yn) = (wn,y —yn), Yy € H.

By letting y = z,,, we obtain

f(tn,zn) = f(tn,yn) > (wWn, 20 —yn), Yy € H.
Combining Expressions (9) and (10), we obtain

Xn {f(tnzzn) —f(tnrl/n)} > (tn —Yn,Zn — Yn)-
By substituting y = u* in Expression (8), we obtain

an(ynr”*) _an(]/nlzn) Z <tn _Zn,u* — Z'rl>-

®)

©)

(10)

(11)

(12)

Since u* € Ep(f,C), we have f(u*,y,) > 0. From the pseudomonotonicity of bifunc-

tion f, we achieve f(y,, u*) < 0. It follows from Expression (12) that

<tn — Zn,2np — ”*> > an(ynzzn)~

From the description of x;.1, we obtain

tn — ynl|® + wllzn — yul?
f(tnzzn) *f(tnr]/n) *f(ynlzn) S ]’l” n }/n||2 ‘MH n yn”
An+1
From (13) and (14), we obtain
<tn — Zn,Zn — u*> > Xn{f(tnrzn) _f(tn/yn)}
HXn 2 HXn 2
- ty — — LA — %
2Xni1 tn —yall 2Xni1 20 — Yl
Combining Expressions (11) and (15), we have
<tn —Zn,2n — “*> > <tn —Yn,2n — ]/n>
HXn 2 HXn 2
— LA gy — — LA — %
2Xni1 [t — ynll 21 1zn — ya|
We have the given formula in place:
— 2(tw — zn,zn — U*) = —||ta — u¥||* + ||zn — tal* + ||zn — u* |

2(yn — tu, Yn — zn) = ||tn *yn”z + [|zn *ynH2 — Itn — Zn||2-
Combining (16)—(18), we obtain

* * X X
lzn = w12 <l =¥ 1P = (1= E2 ) eyl = (1= 222 ) 20—yl

Xn+1 Xn+1

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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Since x, — X, then there is number & € (0,1 — ) that

i _HXny _q &
nlg{}o(l Xn+1) 1—u>3>0.

Thus, there exists a finite number 71 € N, such that

(1—&)>%>O, Vi > n. (20)
Xn+1

From Expression (19), we obtain
i1 = [1* < [t — [, Vo >y (21)

From Expression (4), we have ¢, ||ty — u,_1|| < ¢u, foralln € Nand lim,,_;c0 (%) =0

implies that

lim —Hun — iy 1| < lim L (22)
n—,oo Q n—oo Q

From Expression (21) and {t,}, we have

lzn =l < [t =[] = [tn =+ (ttn = 0 2) ="
< Jun — u*|| + ¢u]|ttn — 1|

< Jltn = "] + 00 L 0 — w1
On
< Jun — u*|| + ondy, (23)
where for some fixed J; > 0 and

%Huﬂ_un—ln SJ]/ \V/lel (24)
n

It is given that u* € Ep(f,C) and by definition of {u,1}, we have

[tns1 — || = |(1 = pu — @n)ttn + pnzn — u” ||
= /(1 = pn — 0n) (un — u*) 4 py(zn — u*) — Quu*||
< || = pu = 0u) (tn — u*) + pu(zn — u™) || + 0n [|lu*||. (25)

Next, we compute

(1= pu = @) (e = 1) + puzn — )|

—Pn — ) H”n*”*H2+P%HZn*”*H2+2<(1*Pn*Qn)(”n*”*)fpn(zn*”*»
= o= @u)[Jun = u*|[* 0%z~ |* + 2001 = pu — @) [ — [}z — w7
= pn = 0u)? [ — w7 |* - 02w —

(

(

(

+Pn(1—pn—en>Hun—u*|!2+9n(1—pn—en)HZn—“*H2

<(I-pn— Qn)(l—Qn)Hun—M*Hz‘l'Pn(l—Qn)HZn_u*Hz (26)
< (1= pn—0n) (1= @u)||ttn — *|* + pu(1 = 0u) (|1t — " + @ur)?

< (1= 0u)?|ttn — *|[* + 2 + 20531 (1 — @) |t — u* 2. 27)

The above expression implies that

(1= pn = 0n) (un — %) + pu(za — u*) || < (1 = 0u)||ttn — u*|| + @udr. (28)
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Combining Expressions (25) and (28), we obtain

lter = | < (1= @u)[tn = ]| + @uTu + "

gmax{Hun * }

IN

IN

max{‘

Therefore, we conclude that {u, } is bounded sequence. [

* } (29)

Theorem 1. Let {u,} be a sequence generated by Algorithm 1, and Conditions (c1)—(c4) are
satisfied. Then, {un} strongly converges to u* = Prs,c)(0).

Proof. By using definition of {u, 1}, we have

s =2 = 10— o — aw)ien -+ puza — |

(1= pn = n) (n — u*) + pu(zn — u*) — Qutt* H

H(l—Pn 0n)(tn —u )+pn(zn—u H + o3 ju* H
—2((1 = pn — @n) (n — ") + pn(zn — u*), Quu™). (30)

From Expression (26), we have

1 = pu = @u) (st — %) -z — ) |
< (1 —pn = 0n) (1= on) || un — u*Hz + (1= 0n)||zn - “*Hz- 31)

Combining Expressions (30) and (31) (for some J; > 0), we obtain

[k
< (1= pn = @) (1= @n)|tn — " | + pu (1 = @) |20 — || + 00T
< (1= pu— 0n)(1 = @u)[|a — " |* + 072

tou(t=an)[ltw =P = (1= L2t =l = (1= P2 =gl D)

From Expression (23), we have

* 2 *
tn —u*||” < lup —u 12 + 043, (33)
for some J3 > 0. Substituting (33) into (32), we obtain

s = | 2
< (1= pu— @) (1 = @u) ||t — ||+ enTo

(1 = @u) [l = 72+ 0uTs — (1= 2203 8y =y |2 = (1= 222 ) 2 — ]
= (1= 0n)*[lun — w*[|* + 0uJ2 + pu(1 — 0n)end

—pa(1 = @) [ (1= 22 ) l1tw — yul12 + (1= 222 ) 2 — ]

< =2+ 0u3s = pu(1 = 0a) [ (1= 222 ) 0 =yl + (1 = 22 |z — v,

Xn+1

(34)

for some Jy > 0. It is given that u* = Pg,(;¢)(0) and by using Lemma 2 (ii) (Ep(f,C) isa
convex and closed set ([23,34])), we obtain

(u*,u*—y) <0, Yy € Ep(f,C). (35)
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The remainder of the proof shall be taken into account in the following two parts:

Case 1: Assume that there is a fixed number n, € N (n; > nq) such as
[tn1 — || < flun — (], Vin = na. (36)

It implies that lim, e ||un — u*|| exists, and due to (34), we obtain

pn(1—on) Kl - %) lltn —yall* + (1 - ;ﬁ)”zn - yn”z}

2+ nda = Nt — 1% (37)

< Jlup —u
Due to the existence of limy, s« ||ty — u*||, 0n — 0 and x, — x, we infer that
lim {lyn — tall = lim [y, — 2| = 0. (38)

We can calculate that

lim 1zn — tull S,}grolo||tn_3/n||+,}i_{rolo||3/n_zn|| =0. (39)
It follows that
Hun+1 - ”nH = H(l — On — Qu)Un + PnZn — ”nH
= Hun — OnUn + PnZn — Pnlin — un”
Spn|}zn_un||+Qn||un||- (40)

The term is referred to above that
Jim {fuy 41— un || = 0. (41)

Thus, this implies that {y,} and {z,} are bounded. The reflexivity of H and the
boundedness of {u, } guarantee that there is a subsequence {u, }, such that {u, } — % € H
as k — oo. Next, our aim to prove that £ € Ep(f,C). Using (8), due to x,+1 and (11),
we write

X"kf(y"k/y) > Xnkf(]/nk/znk) + <tﬂk —Zn Y — an>

HX
2 Xnkf(tnkrznk) - Xnkf(tnk/ynk) - ﬁ”t}’lk _ynk||2
HXn 2
72Xnki1 ||y”k — Zny H + <t71k —Zm Y — an> (42)

HX
Z <t1’lk - ]/nk/znk - ]/nk> - 2)(”:_]:_1 ||tnk - ynkHz

HX
_zXn:il ”ynk - anHZ + <t”k — Zn, Y — Z"k>’

while y is an any arbitrary member in H,. It continues from (38) and (39) that the right-hand
side approaches to zero. From x > 0, Condition (c3) and y,, — £, we have

0 < limsup f(yn,,y) < f(2,y), Yy € Ha. (43)

k—o0

The following is that f(£,y) > 0, Vy € C; thus £ € Ep(f,C). It continues from that

limsup (u*, u* — u,) = limsup(u*, u* — uy,) = (u*,u* — %) <0. (44)
n—r00 k—o00
Due to limy, o ||t4y1 — Un|| = 0., we can deduce that
lim sup(u*, u* — u,41) <limsup(u*, u* — u,) + limsup(u*, u, — 1, 41) <O0. (45)

n—00 k—o0 k—o0
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Next, consider the following value
ltw = (" = [Jun + p (1t = 1) — ||
= ||un —u* —;¢n(un —uy_1)|| .
= Hun —u* H2 + gb%HMn — un—lHZ +2<un — u*,gbn(un — un—1)> (46)
< ltn = (|7 @l aen = ttna |+ 20 fatn = w*[[Jun = 1t |
= [+ ot — 3 2~ + o — ]
< luw = ||+ u|un — una|3s,
Substituting g, = (1 — pn)uy + Pnzn, we have
Uns1 = qGn — Quttn = (1= 0n)qn — @n(tn — qn) = (1 — 0n)qn — Qnpn(tn — zn)- (47)
where u, — g, = uy — (1 — pn)ttn — pnzn = Pn(ttn — z). Consider that
w112
oo ] 2
= /(1 = pn)un + pnzn — u*|| ,
= ||(1*P ) (un *”*)jpn(zn *”*)H )
= (1= pu)?||un — ”*Hz + 07|20 — ”*Hz +2((1 = pn) (un — %), o (20 — u*))
< (1= pu)?||tn = ||+ P3|z — u[|” 4 2pu(1 = pou) | un — " [| 20 — 18
2 2 2 x112 w112 (48)
< (1= pn)? ||y — u* u + 0% |20 — u* u + 00 (1 = pu)|[ttn — u*||” + pn (1 — pn) |20 — u*||
= (1 p)lun |+ o —
<(1- Pn)H”n*” H +,0nth*” H
< (U= pu) Jun — I+ on [ln = || + 4 = 1|5
< e = (|7 + |n — 11 |35
Next, consider that
T
= H(1 —Qn)qn + Pn0n(zn — ttn) —u H
= (|~ en) (g —14") + [pwen (20 — ttn) — o dils
<(1- Q”)ZHq" - M*Hz +2<P"Qﬂ(zn ”ﬂ) —0nt*, (1= 0n)(qn — u*) + pn0n(zn — tin) — Qn”*> (49)
= (1 - QH)ZH% - ”*| +2<PnQn(zn - un) — 0ntt*, Gn — Onfn — Qn(un - l]n) - u*>
=(1- gn)an — u*”2 + 20100 (20 — tn, Ups1 — U*) + 200 (U*, U — tyyq)
< (1= gu) 9w — [P + 200l = 2 — ]|+ 200(0", * = 00)
for some J5 > 0. Combining Expressions (46), (48), and (49), we obtain
it r = w*[[* < (1= @) |1t — 1 | + (1 = Qu ) [t — 1001} 35
+ 20000 |20 — tn | Hun+1 —u* || 4200 (u*, u* — pi1)
2
< (1 ) =+ | 21— ) = a5
n
+ 20020 — tn|||ttns1 — u* || +2(u", uF = upgq) | (50)

Due to (45), (50), and the implemented Lemma 3, we conclude that H”” —u* H — O as

n — oo.

Case 2: Assume there is a subsequence {n;} of {n} that
|, — || < fJu;,, —u™||, VieN.
Using Lemma 4, there is a {m;} C N sequence, such as {m;} — oo,

([t = | < [y — w7

and |lup —u*|| < ||upy,, —u*||, forall k € N.

(51)
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Similar to Case 1, Relation (37) gives that

. _ HXmy o 2 Xy . 2
ome(1 = @) [ (1= 2225 ) e = yme2+ (1= 22 ) lom —ymP] )
< ot = 1% + Q3 = b1 — .

Due to ¢, — 0 and xm, — x, we deduce the following:

nlgl;lo Htmk - ymk” = nlgrolo ||ka _]/mkH =0. (53)

It continues on from that

1 = wmel| = |1 = Py — Qmy )t + Pz — tim |
= Humk = Omy Uy + OmyZmy — Py Uy — Uy H
< pel|zmy — iy || + om ||t || — 0. (54)

We use the same reasoning as that in Case 1:

lim sup(u*, u* — t,, 1) < 0. (55)
k—o0

Now, using Expressions (50) and (51), we have

[

< (1= = 1+ o[ 321 = )t = 13
#2mm, —tn[m — |+ 200, 0 =) )
< (1= )1 =+ | 521 = ) i, = 13

20 [z — v || = 0| 200", 0" = 1) |

It implies that

||umk+1 _”*HZ < %(1_ka)””mk_”mk—1”]5
Om
+20m[|zm, — wm[[||tmy1 —u* || +2Qu", 0" =y i1) | (57)

Since ¢, — 0, and Humk —u* H is bounded. Thus, with Expressions (55) and (57),

we have
|1 — u*||2 =0, as k — co. (58)
The above implies that
T [l — (|2 < T g0 —u? < 0. (59)

As aresult, u, — u*. This completes the proof of the theorem. O

By letting ¢, = 0, we obtain a strong convergence of the result in [25].

Corollary 1. Let f : C x C — R be a bifunction satisfying Conditions (c1)-(c4). Choosing
up € C,x0>0,{pn} C (a,b) C (0,1 —0y)and {0,} C (0,1) satisfies the following conditions:

lim g, =0 and ;Qn = 4o0.
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Let {u,} be a sequence that is generated in the following manner:

Yn = argrgin{xnf(un,y) + 3llun —yl?},
ye

2y = argmin{xuf (yn, y) + 3lun — y[*}, (60)

YyEH
Upy1 = (1 —Pn — Qn)un + PnZn,

where Hy = {z € H : (U — Xnwn — Yn, 2 — Yn) < 0} and wy, € 9o f (Un, yn). The step size is
updated in the following way:

i = yull® + pllzn — yal? }

Xn+1 = min {X"’ 2[f(un,zn) — f(un,yn) — f(Yn,zn)]+

Then, sequence {u, } converges strongly to u* € Ep(f,C).

4. Applications to Solve Fixed-Point Problems

We propose our results to focus on fixed-point problems regarding x-strict pseudo-
contraction mapping. The fixed-point problem (FPP) for S : H — H is defined in the

following manner:
Find u* € C such that S(u*) = u™. (FPP)

We assume that the following conditions were met:
(c1*) A mapping S : C — C is said to be «-strict pseudocontraction [42] on C if

ITy1 = Ty2|? < lly1 = w2l® + el (v — Tvn) = (v2 = T) I, Y1, 92 € C
(c2*) A mapping that is weakly sequentially continuous on C if
S(yn) — S(q") for any sequence in C satisfying y, — q".
If we consider that mapping S is weakly continuous and a «-strict pseudocontraction,

then f(u,y) = (u — Su,y — u) satisfies the conditions (c1)-(c4) (see [43]) and 2¢; = 2¢c; =

31’_2}(". The values of y, and z, in Algorithm 1 can be written as follows:

yu = argmin{x,f(tn,y) + 3l/ta — ylI*} = Pe[tn — xn(ta — S(tn))],
vee : ) (61)
zp = argmin{xu f(yn, y) + 3llts — ylI*} = Py, [tn — xu(yn — S(yn))].

YyEHn

Corollary 2. Suppose C is a nonempty, convex, and closed subset of a Hilbert space H and
S : C — C is weakly continuous and «-strict pseudocontraction with solution set Fix(S) # @.
Letu_q,u0 € C,¢ >0, x0 >0, {pn} C (a,b) C (0,1 — 0y)and {0,} C (0,1) fulfill the items,
ie., limy o0 0n = 0 and Y4 0n = +00. Moreovet, choose ¢, satisfying 0 < ¢, < (ﬁn such that

e en .
$n = {mm{w Hun—unflu} if un 7y, .

% else,

where ¢, = o(oy), i.e., lim,_c % = 0. Assume that {u,} is the sequence generated in the
following manner:

th = uy + 4);1(1411 - unfl)/

yn = P¢ [tn - Xn(tn - S(tn))]/

zn = Py, [tu — Xn(yn — S(yn))],

Upt1 = (1 —Pn — Qn)un + PnZn,
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where Hy = {z € H : (1 — xn)tn + XuS(tn) — Yn, 2z — yn) < 0}. Compute

plltn = yull* + pllzn — yall? }

Xn+1 = min {X”’ 2[<(tn —Yn) — [T(tn) — T(yn)], zn — y”>]+

Then, {uy,} strongly converges to u* € Fix(S,C).

Corollary 3. Suppose C to be a convex and closed subset of a Hilbert space H and S : C — C
is weakly continuous and x-strict pseudocontraction with solution set Fix(S) # @. Let uy € C,
X0 >0,{pn} C (a,b) C (0,1—04)and{on} C (0,1) fulfills the requirement, i.e., limy 00 On =
0and Y5> ; 0n = +o00. Assume that {u,} is the sequence formed as follows:

yn =P [”n — Xn(tn _S(”n))]/
zn = Py, [”n = Xn(yn — S(yn))]r
Upy1 = (1 —Pn — Qn)un + OnZn,

where Hy = {z € H : (1 — xn)ttn + XnS(ttn) — Yn, z — yn) < 0}. Compute

wllitn =yl + 1llzn — ya)? }

Xn+1 = min {Xn/ 2[<(“n _ yn) — [T(un) — T(}/n)},zn 7yn>]+

Then, sequence {uy, } converges strongly to u* € Fix(S,C).

5. Applications to Solve Variational-Inequality Problems

Next, we consider the application of our results in the problem of classical variational
inequalities [44,45]. The variational-inequality problem (VIP) for an operator £ : H — H
is stated in the following manner:

Find u* € C such that (L(u*),y —u*) >0, Vy €C. (VIP)

We assume that the following conditions were met:

(£1) The solution set of problem (VIP) denoted by VI(L,C) is nonempty.
(£2) An operator £ : H — H is said to be pseudomonotone if

(L(y1),y2—y1) 2 0= (L(y2),y1 —¥2) <0, YVy1,y2 € C.

(£3) An operator £ : H — H is said to be Lipschitz continuous through L > 0, such that
1£(y1) = Ly2)l < Lllya —v2ll, Yy1,y2 € C;
(L4) limsup (L(yn),y — yn) < (L(q*),y —q*) forally € C and {y,} C C satisfy y, — q*.
n—o0

If we define f(u,y) := (L(u),y — u) for all u,y € C. Then, problem (EP) becomes the
problem of variational inequalities described above where L = 2c; = 2¢,. From the above
value of the bifunction f, we have

yn = argmin{xuf (tn, y) + 3lltw — Y17} = Pe(tu — xnL(tn)),
yeC 63)

Zn = arggﬁn{xnf(ymy) + 31t — ylIP} = Py, (b0 — X0 L(yn))-
YEn

Corollary 4. Suppose that L : C — H is a function satisfying the assumptions (L1)—(L4). Let
u_q,u9g € C,¢ >0, x0 >0, {pn} C (a,b) C (0,1 —9y) and {0,} C (0,1) satisfies the
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items, i.e., limy_c0 0n = 0 and Y04 0y = +00. Moreover, choose ¢y, satisfying 0 < ¢ < ¢,

such that
. g Cn .
b = min {$, Sy} A e, (64)
% else,
where ¢, = 0(0y), i.e., limy o0 % = 0. Assume that {u,} is the sequence generated in the

following manner:
th = uUp + (Pn(un - unfl)/
Yn = PC(tn _Xnﬁ(tn)),
Zp = PHn(tn - Xnﬁ(yn))/
Upt1 = (1 —Pn — Qn)”n + PnZn,

where Hy = {z € H : (ty — xuL(tn) — Yn, 2z — yn) < 0}. Compute

MW%W+N%%W}'
[(L(tn) = L(Yn),Zn — Yn)] n

Then, sequences {uy } converge strongly tou* € VI(L,C).

Xn+1 = min {Xn/ 5

Corollary 5. Suppose that L : C — H is a function meeting conditions (L1)—(L4). Let ug € C,
X0 >0,{pn} C (a,b) C (0,1—0n)and{on} C (0,1) satisfies the conditions, i.e., limy 00 On =
0and Y57 1 0n = +o00. Assume that {uy} is the sequence generated in the following manner:

Yn = Pe(un — xnL(un)),
zn = Py, (un — xnL(yn)),
Upt1 = (1 —Pn — Qn)”n + PnZn,

where Hy = {z € H = (uy — xnL(Un) — Yn,z — yn) < 0}.
Compute

quym2+ywnwm2}_
[<£(”n) = L(Yn),zn — yn>]+

Then, sequences {uy } converge strongly tou*™ € VI(L,C).

Xn+1 = min {Xn/ 5

Remark 1. Condition (L£4) could be exempted when L is monotone. Indeed, this condition, which
is a particular case of Condition (c3), is only used to prove (43). Without Condition (L£4), inequality
(42) can be obtained by imposing monotonocity on L. In that case,

(L) y —=yn) = (L(Yn)y —yn), Yy €C. (65)
By allowing f(u,y) = (L(u),y — u) in (42), we have

imsup(L(Yn, ),y — Yn,) =0, Yy € Hy. (66)

k—o0

Combining (65) with (66), we conclude that

limsup(L(y),y —yn,) >0, Vy €C. (67)

k—o0

Let y; = (1 — t)z + ty, for every t € [0, 1]. By using the convexity of set C, y; € C for every
t € (0,1). Since yp, — z € Cand (L(y),y —z) > 0 for every y € C, we have

0 < (L(yt),yt —z) = {L(yt),y — 2)- (68)
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Therefore, (L(yt),y —z) > 0,t € (0,1). Since y; — z as t — 0 and due to L continuity, we
have (L(z),y —z) > 0, for each y € C, which provides z € VI(L,C).

Remark 2. From Remark 1, it can be concluded that Corollaries 4 and 5 still hold, even if we
remove Condition (L4) in the case of monotone operators.

6. Numerical Illustrations

Numerical results are presented in this section to demonstrate the efficiency of our
proposed method. The MATLAB codes were run in MATLAB version 9.5 (R2018b) on an
Intel(R) Core(TM)i5-6200 CPU PC @ 2.30 GHz 2.40 GHz, RAM 4.00 GB.

Example 1. Let there be m companies that manufacture the same product. Assume vector u of
each item u; represents the quantity of the material produced by a company i. We consider that cost
function P to be a declining affine function that relies on u =y " u;, i.e., Pi(u) = ¢; — 1;S, where
¢i > 0, ; > 0. The formula for profit of every company i is taken as F;(u) = P;(S)u; — q;(u;),
where q;(u;) is the tax value and cost for developing item u;. Moreover, consider that C; =
[umin, yMaxX] s the set of actions related to each company i, and the plan to figure out the model
as C := C1 X Cy X - - - X Cyy,. In addition, each member wants to achieve its peak turnover by a
good level of production on the basis that the performance of other firms is an input parameter. The
commonly used modelling methodology is based on the famous Nash equilibrium principle. A point
u* € C =Cy X Cy X - -+ X Cyy is the level of equilibrium of the model if

F,'(u*) > Fi(u*[ui]), ‘v’ui c C,’, Vi=1,2,---,m,

wile u* [u;] is obtain from u* by letting {; with u;. Furthermore, we consider f(u,y) := A(u,y) —
A(u,u) while A(u,y) == — Y"1 Fi(ulyi]). An equilibrium level of the model is defined by

Findu* €C: f(u*,z) >0, VzeC.
Bifunction f converts into the following form (see [23]):

fu,y) = (Pu+Qy+c,y—u)

where c € R™ and P, Q matrices of order m. Matrix P is positive semidefinite, and matrix Q — P
is negative semidefinite with Lipschitz-type constants c1 = ¢ = ||P — Q|| (see [23]) for details.
P, Q are taken randomly. (Two diagonal matrices randomly Ay and A, take elements from [0, 2]
and [—2,0] respectively. Randomly O1 = RandOrthMat(m) and O = RandOrthMat(m)
orthogonal matrices are generated. Then, a positive semidefinite matrix By = O1A;0] and a
negative semidefinite matrix By = OQAQO2T are achieved. Lastly, set Q = By + BI,Ss=B,+ B2T
and P = Q — S.). The constraint set C C 'R™ be defined by

C:={ueR":-10 <u; <10}.

Numerical explanations for the first 200 iterations of three methods are considered in Figures 1-6
and Table 1 by letting initial points ug = u_1 = (1,1,---,1,1)T. For Algorithm 3.2 (mAlg2)

in [34]: x = i and py = m; For Algorithm (mAlg3) in (60): xo = 0.20, 4 = 0.70,

on = m, pn = 0.5(1 — oy); For Algorithm 1 (mAlg1): xo = 0.20, u = 0.70, ¢ = 0.60,

6n = Gt @ = Toouery A pn = 05(1 = 0n).
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Figure 1. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for RS.
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Figure 3. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for R,
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Table 1. Figures 1-6 execution time required for first 200 iterations.

Execution Time in Seconds

m mAlg2 mAlg3 mAlgl

5 2.55846812 2.73622248 2.923849848
10 2.89823133 2.99853685 3.341848537
20 3.23847254 3.51835212 3.332562246
50 3.93645046 4.05462157 4.084188882
100 4.57837436 5.32873548 5.723835682
200 5.86241836 6.28194713 6.825465869

Example 2. Assume that set C C L*([0,1] is defined by
C:={uecL?([0,1]): |jul| <1}.

Let us define an operator L : C — H, such that
L)) = [ [u(e) ~ H(t )/ (s))]ds + (1),

where H(t,s) = 2“9 e f( ) = cos(u) and g(t ) = e\/ZL In the above H = L%([0,1]) is

a Hilbert space wzth inner product (u,y) fo t)dt, Yu,y € H and induced norm is

lull = 4/ fo |u(t)|2dt. Numerical explanations for the ﬁrst 200 iterations of three methods are
considered in Figures 7-10 by letting initial pomts uwp=u_1=(1,1,---,1,1)T. For Algorithm

3.2 (mAlg2) in [34]: )( = % and p, = W ; For Algorithm (mAlg3) in (60): xo = 0.50,
=050, 0, = 100(n+2) , on = 0.7(1 — gy); For Algorithm 1 (mAlgl): xo = 0.50, p = 0.50,
¢ =070, 6, = (n+1)2’ on = m()(lw and pp, = 0.7(1 — on).

102 w
——mAlg2
mAlg3
100 .......... mAlg]_ ]

....................................

108 ‘
0O 20 40 60 80 100 120 140 160 180 200

Number of iterations

Figure 7. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for ug =1+t + 212,
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7. Conclusions

We studied a Mann-type extragradient-like scheme for determining the numerical
solution of equilibrium problem involving pseudomonotone function and also prove a
strong convergent theorem. Computational conclusions were established to illustrate
the computational performance of our algorithms relative to other approaches. Such
computational experiments showed that the inertial effect increases the efficacy of the
iterative method in this sense.
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