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Abstract: In this paper, we introduce four new types of contractions called in this order Kanan-S-
type tricyclic contraction, Chattergea-S-type tricyclic contraction, Riech-S-type tricyclic contraction,
Cirić-S-type tricyclic contraction, and we prove the existence and uniqueness for a fixed point for
each situation.
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1. Introduction

It is well known that the Banach contraction principle was published in 1922 by
S. Banach as follows:

Theorem 1. Let (X, d) be a complete metric space and a self mapping T : X −→ X. If there exists
k ∈ [0, 1) such that, for all x, y ∈ X, d(Tx, Ty) ≤ kd(x, y), then T has a unique fixed point in X.

The Banach contraction principle has been extensively studied and different general-
izations were obtained.

In 1968 [1], Kannan established his famous extension of this contraction.

Theorem 2. Ref. [1] Let (X, d) be a complete metric space and a self mapping T : X −→ X. If T
satisfies the following condition:

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)] for all x, y ∈ X where 0 < k <
1
2

,

then T has a fixed point in X.

A similar contractive condition has been introduced by Chattergea in 1972 [2]
as follows:

Theorem 3. Ref. [2] Let T : X −→ X, where (X, d) is a complete metric space. If there exists
0 < k < 1

2 such that

d(Tx, Ty) ≤ k[d(y, Tx) + d(Ty, x)] for all x, y ∈ X,

then T has a fixed point in X.

We can also find another extension of the Banach contraction principle obtained by
S. Reich, Kannan in 1971 [3].

Theorem 4. Ref. [3] Let T : X −→ X, where (X, d) is a complete metric space. If there exists
0 < k < 1

3 such that

d(Tx, Ty) ≤ k[d(x, y) + d(x, Tx) + d(y, Ty)] for all x, y ∈ X,
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then T has a fixed point in X.

In addition, in the same year, Cirić gave the following extension [4].

Theorem 5. Ref. [4] Let T : X −→ X, where (X, d) a complete metric space. If there exists
k ∈ [0, 1) such that

d(Tx, Ty) ≤ kMax[d(x, y), d(x, Tx), d(y, Ty), d(y, Tx), d(Ty, x)] for all x, y ∈ X,

then T has a fixed point in X.

Many authors have investigated these situations and many results were proved
(see [5–13]).

In this article, we prove the uniqueness and existence of the fixed points in different
types contractions for a self mapping T defined on the union of tree closed subsets of a
complete metric space with k in different intervals.

2. Preliminaries

In best approximation theory, the concept of tricyclic mappings extends that of ordi-
nary cyclic mappings. Moreover, in the case where two of the sets, say A and C, coincide,
we find a cyclic mapping which is also a self-map, and, hence, a best proximity point result
for a tricyclic mappings means also a fixed point and a best proximity point result for a
self-map and a cyclic mapping.

Definition 1. Let A, B be nonempty subsets of a metric space (X, d). A mapping T : A ∪ B −→
A ∪ B is said to be cyclic if :

T(A) ⊆ B, T(B) ⊆ A.

In 2003, Kirk et al. [14] proved that, if T : A ∪ B −→ A ∪ B is cyclic and, for some
k ∈ (0, 1), d(Tx, Ty) ≤ kd(x, y) for all x ∈ A, y ∈ B, then A ∩ B 6= ∅, and T has a unique
fixed point in A ∩ B .

In 2017, Sabar et al. [15] proved a similar result for tricyclic mappings and introduced
the concept of tricyclic contractions.

Theorem 6. Ref. [15] Let A, B and C be nonempty closed subsets of a complete metric space
(X, d), and let a mapping T : A∪ B∪C −→ A∪ B∪C. If T(A) ⊆ B, T(B) ⊆ C and T(C) ⊆ A
and there exists k ∈ (0, 1) such that D(Tx, Ty, Tz) ≤ kD(x, y, z) for all (x, y, z) ∈ A× B× C,
then A ∩ B ∩ C is nonempty and T has a unique fixed point in A ∩ B ∩ C,

where D(x, y, z) = d(x, y) + d(x, z) + d(y, z).

Definition 2. Ref. [15] Let A, B and C be nonempty subsets of a metric space (X, d). A mapping
T : A ∪ B ∪ C −→ A ∪ B ∪ C is said to be tricyclic contracton if there exists 0 < k < 1 such that:

1. T(A) ⊆ B, T(B) ⊆ C and T(C) ⊆ A.
2. D(Tx, Ty, Tz) ≤ kD(x, y, z) + (1− k)δ(A, B, C) for all (x, y, z) ∈ A× B× C.

where δ(A, B, C) = inf{D(x, y, z) : x ∈ A, y ∈ B, z ∈ C}

Very Recently, Sabiri et al. introduced an extension of the aforementioned mappings
and called them p-cyclic contractions [16].

3. Main Results

Definition 3. Let A, B and C be nonempty subsets of a metric space (X, d). A mapping T :
A ∪ B ∪ C −→ A ∪ B ∪ C is said to be a Kannan-S-type tricyclic contraction, if there exists
k ∈

(
0, 1

3

)
such that
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1. T(A) ⊆ B, T(B) ⊆ C, T(C) ⊆ A.
2. D(Tx, Ty, Tz) ≤ k[d(x, Tx) + d(y, Ty) + d(z, Tz)] for all (x, y, z) ∈ A× B× C.

We give an example to show that a map can be a tricyclic contraction but not a
Kannan-S-type tricyclic contraction.

Example 1. Let X be R2 normed by the norm ‖ (x, y) ‖= |x|+ |y|, and A = [1, 2]× {0}, B =
{0} × [−2,−1], C = [−2,−1]× {0}, then

δ(A, B, C) = D((1, 0), (0,−1), (−1, 0)) = 6.

Put T : A ∪ B ∪ C −→ A ∪ B ∪ C such that

T(x, 0) =
(

0,− x + 2
3

)
if (x, 0) ∈ A ,

T(0, y) =
(

y− 2
3

, 0
)

i f (0, y) ∈ B,

T(z, 0) =
(
− z− 2

3
, 0
)

if (z, 0) ∈ C,

We have T(A) ⊆ B, T(B) ⊆ C and T(C) ⊆ A, and

D(T(x, 0), T(0, y), T(z, 0)) = D
(
(0,− x + 2

3
), (

y− 2
3

, 0), (− z− 2
3

, 0)
)

=
2
3
(x− y− z) + 4

=
1
3

D((x, 0), (0, y), (z, 0)) + 4

=
1
3

D((x, 0), (0, y), (z, 0)) + (1− 1
3
)δ(A, B, C)

for all (x, 0) ∈ A, (0, y) ∈ B, (z, 0) ∈ C.
On the other hand,

D(T(2, 0), T(0,−2), T(−2, 0)) = D
(
(0,−4

3
), (
−4
3

, 0), (
4
3

, 0)
)
= 8

and

d((2, 0), T(2, 0)) + d((0,−2), T(0,−2)) + d((−2, 0), T(−2, 0)) = 10,

which implies that
D(T(2, 0), T(0,−2), T(−2, 0))

>
1
3
[d((2, 0), T(2, 0)) + d((0,−2), T(0,−2)) + d((−2, 0), T(−2, 0))]

Then, T is tricyclic contraction but not a Kannan-S-type tricyclic contraction.

Now, we give an example for which T is a Kannan-S-type tricyclic contraction but not
a tricyclic contraction.

Example 2. Let X = R with the usual metric. Let A = B = C = [0, 1], then δ(A, B, C) = 0.
Put T : A ∪ B ∪ C −→ A ∪ B ∪ C such that

Tx =
1
6

if 0 ≤ x < 1, Tx =
1
4

if x = 1
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For x = 1, y = 1 and z = 23
24 , we have

D(T(1), T(1), T(
23
24

)) = D(
1
4

,
1
4

,
1
6
) = 2d(

1
4

,
1
6
) =

1
6

.

and
D(1, 1,

23
24

) = 2d(1,
23
24

) =
1

12
.

Then, T is not tricyclic contraction.
However T is a Kannan-S-type tricyclic contraction. Indeed:

• If x = y = z = 1, we have

D(T(1), T(1), T(1)) = 0 ≤ 9
4

k

for all k ≥ 0, then for 0 ≤ k < 1
3 .

• If x ∈ [0, 1), y ∈ [0, 1) and z ∈ [0, 1), we have

D(Tx, Ty, Tz) = 0 ≤ k(d(x,
1
6
) + d(y,

1
6
) + d(z,

1
6
)

for all k ≥ 0, then for 0 ≤ k < 1
3 .

• If x = 1, y ∈ [0, 1) and z ∈ [0, 1), we have

D(T1, Ty, Tz) = D(
1
4

,
1
6

,
1
6
) =

1
6

and
d(1, T(1)) + d(y, Ty) + d(z, Tz) =

3
4
+ d(y,

1
6
) + d(z,

1
6
),

then, for k = 2
9 , we have

D(T(1), T(y, Tz) ≤ k(d(1, T(1)) + d(y, Ty) + d(z, Tz)).

• If x = 1, y = 1 and z ∈ [0, 1), we have

D(T(1), T(1), Tz) = D(
1
4

,
1
4

,
1
6
) =

1
6

and
d(1, T(1)) + d(1, T(1)) + d(z, Tz) =

3
2
+ d(z,

1
6
).

Then, for k = 2
9 , we have

D(T(1), T(1), Tz) ≤ k(d(1, T(1)) + d(1, T(1)) + d(z, Tz)).

Consequently, for k = 2
9 , we have :

D(Tx, Ty, Tz) ≤ k(d(x, Tx) + d(y, Ty) + d(z, Tz)) for all (x, y, z) ∈ A× B× C.

Theorem 7. Let A, B and C be nonempty closed subsets of a complete metric space (X, d), and let
T : A ∪ B ∪ C −→ A ∪ B ∪ C be a Kannan-S-type tricyclic contraction. Then, T has a unique
fixed point in A ∩ B ∩ C.

Proof. Fix x ∈ A. We have

d
(

T3x, T2x
)
≤ D

(
T3x, T2x, Tx

)
≤ k

[
d
(

T2x, T3x
)
+ d
(

Tx, T2x
)
+ d(x, Tx)

]
.
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Then,
d
(

T3x, T2x
)
≤ k

[
d
(

T2x, T3x
)
+ d
(

Tx, T2x
)
+ d(x, Tx)

]
,

which implies

d
(

T3x, T2x
)
≤ k

(1− k)

[
d
(

Tx, T2x
)
+ d(x, Tx)

]
.

Similarly, we have

d
(

T2x, Tx
)
≤ k

(1− k)

[
d
(

T3x, T2x
)
+ d(x, Tx)

]
d
(

T2x, Tx
)
≤ k

(1− k)

[
k

(1− k)

[
d
(

Tx, T2x
)
+ d(x, Tx)

]
+ d(x, Tx)

]
=⇒ d

(
T2x, Tx

)
≤ k

1− 2k
(d(x, Tx)).

Then,

d
(

T2x, Tx
)
≤ td(x, Tx) where t =

k
1− 2k

and t ∈ (0, 1),

which implies
d
(

Tn+1x, Tnx
)
≤ tnd(x, Tx), for all n ≥ 1

Consequently,
+∞

∑
n=1

d
(

Tn+1x, Tnx
)
≤

+∞
(∑
n=1

tn)d(x, Tx) < +∞

implies that {Tnx} is a Cauchy sequence in (X, d). Hence, there exists z ∈ A ∪ B ∪ C such
that Tnx −→ z. Notice that {T3nx} is a sequence in A, {T3n−1x} is a sequence in C and
{T3n−2x} is a sequence in B and that both sequences tend to the same limit z. Regarding
the fact that A, B and C are closed, we conclude z ∈ A ∩ B ∩ C, hence A ∩ B ∩ C 6= ∅.
To show that z is a fixed point, we must show that Tz = z. Observe that

d(Tz, z) = lim d
(

Tz, T3nx
)
≤ lim D

(
T3nx, T3n−1x, Tz

)
≤ lim k[d

(
T3n−1x, T3nx

)
+ d
(

T3n−2x, T3n−1x
)
+ d(z, Tz)]

≤ kd(Tz, z),

which is equivalent to
(1− k)d(Tz, z) = 0.

Since k ∈
(

0, 1
3

)
, then d(Tz, z) = 0, which implies Tz = z.

To prove the uniqueness of z,, assume that there exists w ∈ A ∪ B ∪ C such that w 6= z
and Tw = w. Taking into account that T is tricyclic, we get w ∈ A ∩ B ∩ C. We have

d(z, w) = d(Tz, Tw) ≤ D(Tz, Tw, Tw) ≤ k[d(z, Tz) + d(w, Tw) + d(w, Tw)] = 0

which implies d(z, w) = 0. We get that z = w and hence z is the unique fixed point of T.

Example 3. Let X be R2 normed by the norm ‖ (x, y) ‖= |x|+ |y|, let A = {0} × [0,+1], B =
[0,+1]× {0}, C = {0} × [−1, 0] and let T : A ∪ B ∪ C −→ A ∪ B ∪ C be defined by

T(0, x) =
( x

6
, 0
)

if (0, x) ∈ A ,

T(y, 0) =
(

0,
−y
6

)
if (y, 0) ∈ B,
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T(0, z) =
(

0,
−z
6

)
if (0, z) ∈ C.

We have
T(A) ⊆ B, T(B) ⊆ C and T(C) ⊆ A

In addition, for all (0, x) ∈ A, (y, 0) ∈ B, (0, z) ∈ C, we have

D(T(0, x), T(y, 0), T(0, z)) = D
(( x

6
, 0
)

,
(

0,
−y
6

)
,
(

0,
−z
6

))
=

1
3
(x + y− z)

In addition, we have

d((0, x), T(0, x)) + d((y, 0), T(y, 0)) + d((0, z), T(0, z)) =
7
6
(x + y− z)

This implies

D(T(0, x), T(y, 0), T(0, z)) =
2
7
[d((0, x), T(0, x)) + d((y, 0), T(y, 0)) + d((0, z), T(0, z))].

Then, T is a Kannan-S-type tricyclic contraction, and T has a unique fixed point (0, 0) in
A ∩ B ∩ C.

Corollary 1. Let (X, d) be a complete metric space and a self mapping T : X −→ X. If there exists
k ∈

(
0, 1

3

)
such that

D(Tx, Ty, Tz) ≤ k[d(x, Tx) + d(y, Ty) + d(z, Tz)]

for all (x, y, z) ∈ X3, then T has a unique fixed point.

Now, we shall define another type of a tricyclic contraction.

Definition 4. Let A, B and C be nonempty subsets of a metric space (X, d). A mapping T : A ∪
B ∪ C −→ A ∪ B ∪ C is said to be a Chattergea-S-type tricyclic contraction if T(A) ⊆ B, T(B) ⊆
C, T(C) ⊆ A, and there exist k ∈

(
0, 1

3

)
such that D(Tx, Ty, Tz) ≤ k[d(y, Tx) + d(z, Ty) + d(x, Tz)]

for all (x, y, z) ∈ A× B× C.

Theorem 8. Let A, B and C be nonempty closed subsets of a complete metric space (X, d), and let
T : A ∪ B ∪ C −→ A ∪ B ∪ C be a Chattergea-S-type tricyclic contraction. Then, T has a unique
fixed point in A ∩ B ∩ C.

Proof. Fix x ∈ A. We have

D
(

Tx, T2x, T3x
)
≤ k

[
d(Tx, Tx) + d

(
T2x, T2x

)
+ d
(

T3x, x
)]

which implies
D
(

T3x, T2x, Tx
)
≤ kd

(
T3x, x

)
so

d
(

T3x, T2x
)
≤ k

[
d
(

T3x, T2x
)
+ d
(

T2x, Tx
)
+ d(Tx, x)

]
(by the triangular inequality)

=⇒ d
(

T3x, T2x
)
≤ k

(1− k)

[
d
(

Tx, T2x
)
+ d(x, Tx)

]
and

d
(

T2x, Tx
)
≤ D

(
T3x, T2x, Tx

)
≤ k

(1− k)

[
d
(

T3x, T2x
)
+ d(x, Tx)

]
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=⇒ d
(

T2x, Tx
)
≤ k

(1− k)

[
k

(1− k)

[
d
(

Tx, T2x
)
+ d(x, Tx)

]
+ d(x, Tx)

]
=⇒ d

(
T2x, Tx

)
≤ k

1− 2k
(d(x, Tx))

Then,

d
(

T2x, Tx
)
≤ td(x, Tx) where t =

k
1− 2k

and t ∈ (0, 1),

which implies
d
(

Tn+1x, Tnx
)
≤ tnd(x, Tx)

for all n ≥ 1. Consequently,

+∞

∑
n=1

d
(

Tn+1x, Tnx
)
≤

+∞
(∑
n=1

tn)d(x, Tx) < +∞

implies that {Tnx} is a Cauchy sequence in (X, d). Hence, there exists z ∈ A ∪ B ∪ C such
that Tnx −→ z. Notice that {T3nx} is a sequence in A, {T3n−1x} is a sequence in C, and
{T3n−2x} is a sequence in B and that both sequences tend to the same limit z. Regarding
that A, B and C are closed, we conclude z ∈ A ∩ B ∩ C, hence A ∩ B ∩ C 6= ∅.

To show that z is a fixed point, we must show that Tz = z. Observe that

d(Tz, z) = lim d
(

Tz, T3nx
)
≤ lim D

(
Tz, T3nx, T3n−1x

)
≤ lim k[d

(
T3n−1x, Tz

)
+
(

T3n−2x, T3nx
)
+ d(z, T3n−1x)] ≤ kd(Tz, z),

which is equivalent to (1− k)d(Tz, z) = 0. Since k ∈
(

1, 1
3

)
, then d(Tz, z) = 0, which

implies Tz = z.
To prove the uniqueness of z, assume that there exists w ∈ A ∪ B ∪ C such that w 6= z

and Tw = w. Taking into account that T is tricyclic, we get w ∈ A ∩ B ∩ C.
We have

d(z, w) = d(Tz, Tw) ≤ D(Tz, Tw, Tw)

≤ k[d(Tz, w) + d(Tw, w) + d(Tw, z)]

≤ 2kd(z, w).

Then, d(z, w) = 0. We conclude that z = w and hence z is the unique fixed point
of T.

Corollary 2. Let (X, d) be a complete metric space and a self mapping T : X −→ X. If there exists
k ∈

(
0, 1

3

)
such that

D(Tx, Ty, Tz) ≤ k[d(y, Tx) + d(z, Ty) + d(x, Tz)]

for all (x, y, z) ∈ X3, then T has a unique fixed point.

In this step, we define a Reich-S-type tricyclic contraction.

Definition 5. Let A, B and C be nonempty subsets of a metric space (X, d).
A mapping T : A ∪ B ∪ C −→ A ∪ B ∪ C is said to be a Reich-S-type tricyclic contraction if there
exists k ∈

(
0, 1

7

)
such that:

1. T(A) ⊆ B, T(B) ⊆ C, T(C) ⊆ A.
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2. D(Tx, Ty, Tz) ≤ k[D(x, y, z) + d(x, Tx) + d(y, Ty) + d(z, Tz)] for all (x, y, z) ∈ A ×
B× C.

Theorem 9. Let A, B and C be nonempty closed subsets of a complete metric space (X, d), and let
T : A ∪ B ∪ C −→ A ∪ B ∪ C be a Reich-S-type tricyclic contraction. Then, T has a unique fixed
point in A ∩ B ∩ C.

Proof. Fix x ∈ A. We have

d
(

T2x, T3x
)
≤ D

(
Tx, T2x, T3x

)
≤ k

[
D(x, Tx, T2x) + d

(
T2x, T3x

)
+ d
(

Tx, T2x
)
+ d(x, Tx)

]
=⇒ d

(
T2x, T3x

)
(1− k) ≤ k[2d

(
T2x, Tx

)
+ 2d(x, Tx) + d

(
T2x, x

)
]

=⇒ d
(

T2x, T3x
)
≤ k

1− k

[
2d
(

T2x, Tx
)
+ 2d(x, Tx) + d

(
T2x, x

)]
≤ k

1− k

[
2d
(

T2x, Tx
)
+ 2d(x, Tx) + d

(
T2x, Tx

)
+ d(Tx, x)

]
≤ k

1− k

[
3d
(

T2x, Tx
)
+ 3d(x, Tx)

]
=⇒ d

(
T2x, T3x

)
≤ 3k

1− k
[d
(

T2x, Tx
)
+ d(x, Tx)]

and

d
(

T2x, Tx
)
≤ D

(
Tx, T2x, T3x

)
≤ k

[
D(x, Tx, T2x) + d

(
T2x, T3x

)
+ d
(

Tx, T2x
)
+ d(x, Tx)

]
=⇒ d

(
T2x, Tx

)
≤ k

[
3d
(

T2x, Tx
)
+ 3d(x, Tx) + d

(
T2x, T3x

)]
=⇒ d

(
T2x, Tx

)
(1− 3k) ≤ k[d

(
T2x, T3x

)
+ 3d(x, Tx)]

=⇒ d
(

T2x, Tx
)
≤ k

1− 3k
d
(

T2x, T3x
)
+

3k
1− 3k

d(x, Tx)

=⇒ d
(

T2x, Tx
)
≤ k

1− 3k
3k

1− k
[d
(

T2x, Tx
)
+ d(x, Tx)] +

3k
1− 3k

d(x, Tx)

=⇒ d
(

T2x, Tx
)
≤ 3k2

(1− 3k)(1− k)
d
(

T2x, Tx
)
+ (

3k2

(1− 3k)(1− k)
+

3k
(1− 3k)

)d(x, Tx)

=⇒ d
(

T2x, Tx
)(

1− 3k2

(1− 3k)(1− k)

)
≤ 3k2 + 3k(1− k)

(1− 3k)(1− k)
d(x, Tx)

=⇒ d
(

T2x, Tx
)(

(1− 3k)(1− k)− 3k2
)
≤ (3k2 + 3k(1− k))d(x, Tx)

=⇒ d
(

T2x, Tx
)
(1− 4k) ≤ 3kd(x, Tx)

=⇒ d
(

T2x, Tx
)
≤ 3k

(1− 4k)
d(x, Tx).

Then,

d
(

T2x, Tx
)
≤ td(x, Tx) where t =

3k
(1− 4k)

and t ∈ (0, 1),

which implies
d
(

Tn+1x, Tnx
)
≤ tnd(x, Tx),
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consequently
+∞

∑
n=1

d
(

Tn+1x, Tnx
)
≤

+∞
(∑
n=1

tn)d(x, Tx) < +∞

This implies that {Tnx} is a Cauchy sequence in (X, d). Hence, there exists z ∈
A ∪ B ∪ C such that Tnx −→ z. Notice that {T3nx} is a sequence in A, {T3n−1x} is a
sequence in C and {T3n−2x} is a sequence in B and that both sequences tend to the same
limit z. Regarding the fact that A, B and C are closed, we conclude that z ∈ A ∩ B ∩ C,
hence A ∩ B ∩ C 6= ∅.

To show that z is a fixed point, we must show that Tz = z. Observe that

d(Tz, z) = lim d
(

Tz, T3nx
)

≤ lim D
(

T3nx, T3n−1x, Tz
)

≤ lim k[d
(

T3n−1x, T3n−2x
)
+ d
(

T3n−1x, z
)
+ d(T3n−2x, z)

+ d
(

T3n−1x, T3nx
)
+ d
(

T3n−2x, T3n−1x
)
+ d(z, Tz)]

≤ kd(Tz, z),

which is equivalent to (1− k)d(Tz, z) = 0.
Since k ∈

(
0, 1

7

)
, then d(Tz, z) = 0, which implies Tz = z.

To prove the uniqueness of z, assume that there exists w ∈ A ∪ B ∪ C such that w 6= z
and Tw = w. Taking into account that T is tricyclic, we get w ∈ A ∩ B ∩ C.

d(z, w) = d(Tz, Tw)

≤ D(Tz, Tw, Tw)

≤ k[2d(z, w) + d(w, w) + d(z, Tz) + d(Tw, w) + d(Tw, w)]

≤ 2kd(z, w)

implies d(z, w) = 0. We conclude that z = w and hence z is the unique fixed point of T.

Example 4. We take the same example 3.
Let X be R2 normed by the norm ‖ (x, y) ‖= |x|+ |y|,

A = {0} × [0,+1], B = [0,+1]× {0}, C = {0} × [−1, 0]

and let T : A ∪ B ∪ C −→ A ∪ B ∪ C be defined by

T(0, x) =
( x

6
, 0
)

if (0, x) ∈ A ,

T(y, 0) =
(

0,
−y
6

)
if (y, 0) ∈ B,

T(0, z) =
(

0,
−z
6

)
if (0, z) ∈ C,

We have T is tricyclic and for all (0, x) ∈ A, (y, 0) ∈ B, (0, z) ∈ C ,

D(T(0, x), T(y, 0), T(0, z)) = D
(( x

6
, 0
)

,
(

0,
−y
6

)
,
(

0,
−z
6

))
=

1
3
(x + y− z).
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In addition, we have

D((0, x), (y, 0), (0, z)) + d((0, x), T(0, x)) + d((y, 0), T(y, 0)) + d((0, z), T(0, z))

= 2(x + y− z) +
7
6
(x + y− z) =

19
6
(x + y− z).

Then,

D(T(0, x), T(y, 0), T(0, z)) =
2
19

(D((0, x), (y, 0), (0, z)) + d((0, x), T(0, x))

+d((y, 0), T(y, 0)) + d((0, z), T(0, z)))

≤ 1
7
(D((0, x), (y, 0), (0, z)) + d((0, x), T(0, x))

+d((y, 0), T(y, 0)) + d((0, z), T(0, z)))

This implies that T is a Reich-S-type tricyclic contraction, and T has a unique fixed point
(0, 0) in A ∩ B ∩ C.

Corollary 3. Let (X, d) a complete metric space and a self mapping T : X −→ X. If there exists
k ∈

(
0, 1

7

)
such that

D(Tx, Ty, Tz) ≤ k[D(x, y, z) + d(x, Tx) + d(y, Ty) + d(z, Tz)]

for all (x, y, z) ∈ X3, then T has a unique fixed point in X.

The next tricyclic contraction considered in this section is the Cirić-S-type tricyclic
contraction defined below.

Definition 6. Let A, B and C be nonempty subsets of a metric space (X, d), T : A ∪ B ∪ C −→
A ∪ B ∪ C be a Cirié-S-type tricyclic contraction, if there exists k ∈ (0, 1) such that

1. T(A) ⊆ B, T(B) ⊆ C, T(C) ⊆ A
2. D(Tx, Ty, Tz) ≤ kM(x, y, z) for all (x, y, z) ∈ A× B× C.

where M(x, y, z) = max{D(x, y, z), d(x, Tx), d(y, Ty), d(z, Tz)}

The fixed point theorem of the Cirić-S-type tricyclic contraction reads as follows.

Theorem 10. Let A, B and C be nonempty closed subsets of a complete metric space (X, d), and
let T : A∪ B∪ C −→ A∪ B∪ C be a Cirić-S- type tricyclic contraction, then T has a unique fixed
point in A ∩ B ∩ C.

Proof. Taking x ∈ A, we have D(Tx, Ty, Tz) ≤ kM(x, y, z) for all (x, y, z) ∈ A× B× C.
If M(x, y, z) = D(x, y, z), Theorem 7 implies the desired result.

Consider the case M(x, y, z) = d(x, Tx). We have:

D
(

Tx, T2x, T3x
)
≤ kd(x, Tx) =⇒ d

(
Tx, T2x

)
≤ kd(x, Tx)

=⇒ d
(

Tnx, Tn+1x
)
≤ knd(x, Tx)

Consequently,

+∞

∑
n=1

d
(

Tn+1x, Tnx
)
≤

+∞
(∑
n=1

kn)d(x, Tx) < +∞

which implies that {Tnx} is a Cauchy sequence in (X, d). Hence, there exists z ∈ A∪ B∪ C
such that Tnx −→ z. Notice that {T3nx} is a sequence in A, {T3n−1x} is a sequence in C,



Axioms 2021, 10, 72 11 of 12

and {T3n−2x} is a sequence in B and that both sequences tend to the same limit z; regarding
the fact that A, B and C are closed, we conclude z ∈ A ∩ B ∩ C, hence A ∩ B ∩ C 6= ∅.

To show that z is a fixed point, we must show that Tz = z. Observe that

d(Tz, z) = lim d
(

Tz, T3nx
)
≤ lim D

(
T3nx, T3n−1x, Tz

)
≤ kd(Tz, z),

which is equivalent to (1− k)d(Tz, z) = 0. Since k ∈ (0, 1), then d(Tz, z) = 0, which
implies Tz = z.

To prove the uniqueness of z, assume that there exists w ∈ A ∪ B ∪ C such that w 6= z
and Tw = w.

Taking into account that T is tricyclic, we get w ∈ A ∩ B ∩ C.
d(z, w) = d(Tz, Tw) ≤ D(Tz, Tw, Tw) ≤ kd(z, Tz) = 0 implies d(z, w) = 0. We con-

clude that z = w and hence z is the unique fixed point of T.
Consider the case M(x, y, z) = d(y, Ty). We have :

D
(

Tx, T2x, T3x
)
≤ kd

(
Tx, T2x

)
=⇒ d

(
Tx, T2x

)
≤ kd

(
Tx, T2x

)
< d

(
Tx, T2x

)
,

which is impossible since k ∈ (0, 1)
Consider the case M(x, y, z) = d(z, Tz). We have:

D
(

Tx, T2x, T3x
)
≤ kd

(
T2x, T3x

)
=⇒ d

(
T2x, T3x

)
≤ kd

(
T2x, T3x

)
< d

(
T2x, T3x

)
,

which is impossible since k ∈ (0, 1).

Corollary 4. Let A, B and C be a nonempty subset of a complete metric space (X, d) and let a
mapping T : A ∪ B ∪ C −→ A ∪ B ∪ C. If there exists k ∈ (0, 1) such that

1. T(A) ⊆ B, T(B) ⊆ C, T(C) ⊆ A.
2. D(Tx, Ty, Tz) ≤ k max{D(x, y, z), d(x, Tx)} ∀(x, y, z) ∈ A× B× C.

Then, T has a unique fixed point in A ∩ B ∩ C.
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