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Abstract: In this paper, binomial convolution in the frame of quantum calculus is studied for the
set Aq of q-Appell sequences. It has been shown that the set Aq of q-Appell sequences forms an
Abelian group under the operation of binomial convolution. Several properties for this Abelian
group structure Aq have been studied. A new definition of the q-Appell polynomials associated with
a random variable is proposed. Scale transformation as well as transformation based on expectation
with respect to a random variable is used to present the determinantal form of q-Appell sequences.
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Appell polynomials [1] were defined by Appell in 1880. F.A. Costabile and E. Longo
studied the Appell polynomial using determinantal approach [2]. Based on the quantum
calculus, The family of q-Appell polynomials [3] were introduced by Al-Salam in 1967.
Furthermore, M.E. Keleshteri and N.I. Mahmudov studied q-Appell polynomial using
determinantal approach [4]. For other literature related to Appell polynomials, one can
refer [5–11].

These polynomials have been used in many branches of mathematics including num-
ber theory, applied mathematics and theoretical physics. According to the Weierstrass
approximation theorem [12], every continuous function can be approximated by polynomi-
als. Thus, polynomials play an important role in approximation theory. For some recent
papers related to approximation by polynomials and applications in CAGD, one can refer
to [13–19]. Appell and q-Appell polynomial have been studied for interpolation by several
authors [20,21]. T. Ernst in [22] introduced the term multiplicative q-Appell polynomial
and has shown that the set of q-Appell polynomials forms a commutative ring. Apart from
this, convolution plays a very important role in approximation theory, probability, statistics,
computer vision, image and signal processing, etc. Motivated by the above facts, we study
here various properties of the q-Appell polynomial with the operation of convolution using
q-calculus. This paper is organized as follows:

The paper considers the binomial convolution for the set of q-Appel sequences. It
is proven that the set of q-Appel sequences equipped with the binomial convolution
forms an Abelian group. By using the probabilistic approach to q-Appel polynomials, a
new definition of q-Appel polynomials related to a random variable similar to the work
done in [21] is discussed. Furthermore, the scale transform and transformations based on
expectations are defined and their characteristics discussed.

Let us recall some basics from the quantum calculus (see [23–28]). The quantum or
q-analogue [µ]q of a number µ is defined by
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[µ]q =


1− qµ

1− q
, q 6= 1,

µ, q = 1.

The q-factorial [µ]q! is defined by

[µ]q! =

{
[µ]q[µ− 1]q · · · [1]q , µ ∈ N,
1 , µ = 0.

The q-binomial coefficient
[

µ
s

]
q

is defined by

[
µ
s

]
q
=

[µ]q!
[s]q! [µ− s]q!

, µ, s ∈ N; 0 ≤ s ≤ µ.

The q-analogue of the function (y + x)µ are defined by

(y + x)µ
q =


µ−1
∏
j=0

(y + qjx), f or µ = 1, 2, 3, · · ·

1, f or µ = 0

=
µ

∑
k=0

[
µ
k

]
q
q

k(k−1)
2 yµ−kxk.

The q-derivative of a function f is defined by

Dq f (y) =

{ f (y) − f (qy)
(1 − q) y , y 6= 0

f
′
(0) , y = 0.

Exponential functions based on q-calculus is used in the standard approach as follows:

eq(y) =
∞

∑
µ=0

yµ

[µ]q!
, 0 <| q |< 1 ; | y |< 1

| 1− q | .

Let y and x be elements of a commutative multiplicative semigroup. Then, the NWA
q-addition is given by [29]

(y⊕q x)µ =
µ

∑
k=0

[
µ
k

]
q
ykxµ−k.

For every power series fn(t), with fn(0) 6= 0, the q-Appell polynomials of degree µ
and order n have the following generating function [29]:

fn(t)eq(tx) =
∞

∑
µ=0

A(n)
µ,q (x)

tµ

[µ]q!
,

Putting x = 0, we have:

fn(t) =
∞

∑
µ=0

A(n)
µ,q

tµ

[µ]q!
,

where A(n)
µ,q is called a q-Appell number of degree µ and order n

q-Appell polynomials of degree µ and order n satisfy the following q-differential
Equation [29]:
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Dq,y A(n)
µ,q (y) = [µ]q A(n)

µ−1,q(y), µ = 1, 2, · · · . (1)

1. Quantum Binomial Convolutions and Generating Functions

Let N denote the set of positive integers and N0 = N ∪ {0}. Now, onwards µ ∈ N0,
y ∈ R, and z ∈ C, satisfying | z |≤ r, r > 0. Let us denote by Gq the set of all real sequences
uq = (uµ,q)µ≥0 where u0,q 6= 0 and:

∞

∑
µ=0
| uµ,q |

rµ

[µ]q!
< ∞.

If uq ∈ Gq, then its generating function will be denoted by

G(uq, z) =
∞

∑
µ=0

uµ,q
zµ

[µ]q!
.

The q-binomial convolution [8] of uq and vq, will be denoted by uq ×q vq =
(
(uq ×q

vq)µ

)
µ≥0 for uq and vq ∈ Gq is defined as

(uq ×q vq)µ =
µ

∑
k=0

[
µ
k

]
q
uk,qvµ−k,q. (2)

The q-addition is a special case of the q-binomial convolution [29].
The q-multinomial coefficient is given by[

µ
j1, · · · , jm

]
q
=

[µ]q!
[j1]q! · · · [jm]q!

, j1 + · · ·+ jm = µ, ji = 0, 1, · · · , µ, i = 0, 1, · · · , m and µ ∈ N0,

Proposition 1. Let that u(k)
q = (u(k)

µ,q)µ≥0 ∈ Gq, k = 1, 2, · · · , m, µ belong to the set of positive

integers (see [29]). Then, u(1)
q ×q · · · ×q u(m)

q ∈ Gq and:

(u(1)
q ×q · · · ×q u(m)

q )µ = ∑
j1+···+jm=µ

[
µ

j1, j2, · · · , jm

]
q

u(1)
j1,q · · · u

(m)
jm ,q.

In addition:

G(u(1)
q ×q · · · ×q u(m)

q , z) = G(u(1)
q , z) · · ·G(u(m)

q , z). (3)

Proof. Suppose uq and vq ∈ Gq with r and s as their radii, respectively. Let t = min(r, s).
Then, from (2), we have:

G(| (uq ×q vq) |, t) =
∞

∑
µ=0
| (uq ×q vq)µ |

tµ

[µ]q!
≤

∞

∑
µ=0

tµ

[µ]q!

µ

∑
k=0

[
µ
k

]
q
| uk,q || vµ−k,q |

=
∞

∑
k=0
| uk,q |

tk

[k]q!

∞

∑
µ=k
| vµ−k,q |

tµ−k

[µ− k]q!
= G(| uq |, t)G(| vq |, t).

Then G(uq ×q vq, z) = G(uq, z)G(vq, z), | z |≤ t. Thus, by applying the induction on m,
result follows.

Corollary 1. (Gq,×) is an Abelian group having an identity element as eq = (δµ0)µ≥0, where
δ00 = 1 and δµ0 = 0 for µ ∈ N.
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Proof. Closure: for uq, vq ∈ Gq, then uq ×q vq =
(
(uq ×q vq)µ

)
µ≥0 ∈ Gq as (uq ×q vq)µ =

µ

∑
k=0

[
µ
k

]
q
uk,qvµ−k,q ∈ R.

Associativity: let uq, vq, wq ∈ Gq be any elements:
(uq ×q vq) ×q wq =

(
((uq ×q vq) ×q wq)µ

)
µ≥0 and uq ×q (vq ×q wq) =

(
(uq ×q (vq ×q

wq)µ

)
µ≥0

(
uq ×q (vq ×q wq)

)
µ
=

µ

∑
s=0

[
µ
s

]
q
us,q(vq ×q wq)µ−s

=
µ

∑
s=0

µ−s

∑
r=0

[
µ
s

]
q

[
µ− s

r

]
q
us,qvr,qwµ−s−r,q

=
µ

∑
s=0

µ

∑
r=s

[
µ
s

]
q

[
µ− s
r− s

]
q
us,qvr−s,qwµ−r,q

=
µ

∑
r=0

r

∑
s=0

[
µ
r

]
q

[
r
s

]
q
us,qvr−s,qwµ−r,q

=
µ

∑
r=0

[
µ
r

]
q
(uq ×q vq)rwµ−r,q

=
(
(uq ×q vq)×q wq

)
µ

Existence of identity: it is easy to see that uq ×q eq = eq ×q uq = uq for all uq ∈ Gq
where eq = (δµ0)µ≥0, Existence of inverse: let uq ∈ Gq. Since G(uq, 0) = u0,q 6= 0, then
| G(uq, z) |> 0, | z |< λ, for some λ > 0. This implies that 1

G(uq ,z) is a well-defined function
that can be represented via power series due to analyticity as

1
G(uq, z)

=
∞

∑
µ=0

vµ,q
zµ

[µ]q!
=: G(vq, z), | z |≤ ρ, (4)

for some real sequence vq = (vµ,q)µ≥0 and some ρ > 0. Here, one can observe that
v0,q = 1

u0,q
6= 0 by (4), and that vq ∈ Gq. Again, it can be observed from (3) and (4), that vq

is the inverse of uq. Thus, vq is the unique solution to the systems of equations:

(uq ×q vq)µ =
µ

∑
k=0

[
µ
k

]
q
uk,qvµ−k,q = δµ0. (5)

Commutative: it is easy to see that uq ×q vq = vq ×q uq for all uq, vq ∈ Gq.
The proof is complete.

Let Aq(y) =
(

Aµ,q(y)
)

µ≥0 be a sequence of polynomials such that Aq(0) =
(

Aµ,q(0)
)

µ≥0
∈ Gq. Recall that Aq(y) is called a q-Appell sequence if one of the following equivalent
conditions is satisfied:

Dq,y
(

Aµ,q(y)
)
= [µ]q Aµ−1,q(y), µ ∈ N, (6)

Aµ,q(y) =
µ

∑
k=0

[
µ
k

]
q
Ak,q(0)yµ−k, (7)

or:
G
(
Aq(y), z

)
= G

(
Aq(0), z

)
eyz

q . (8)
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The set of all q-Appell sequence will be denoted by Aq. Let Iq(y) = (yµ)µ≥0 be the
unit q-Appell sequence. Using (2), the condition (7) can be expressed as

Aq(y) = Aq(0)×q Iq(y). (9)

From Proposition (1), Aq(y) ∈ Gq, for any y ∈ R. From the binomial identity, Iq(y⊕q
x) = Iq(y)×q Iq(x), for x ∈ R. Thus, from Equation (9) and Corollary (1):

Aq(y⊕q x) = Aq(y)×q Iq(x) = Aq(x)×q Iq(y), x ∈ R. (10)

2. The Abelian Group Structure of Aq

Let Aq(y), Cq(y) ∈ Aq. The q-binomial convolution of Aq(y) and Cq(y), denoted by
(Aq ×q Cq)(y) =

(
(Aq ×q Cq)µ(y)

)
µ≥0 and is defined as

(Aq ×q Cq)(y) = Aq(y)×q Cq(0) = Aq(0)×q Cq(y) = Aq(0)×q Cq(0)×q Iq(y), (11)

The last two equalities of (11) can be obtained using (9) and Corollary (1). Equivalently:

(Aq ×q Cq)µ(y) =
µ

∑
k=0

[
µ
k

]
q
Ak,q(0)Cµ−k,q(y) =

µ

∑
k=0

[
µ
k

]
q
Ck,q(0)Aµ−k,q(y)

=
µ

∑
k=0

[
µ
k

]
q
yµ−k

k

∑
j=0

[
k
j

]
q
Aj,q(0)Ck−j,q(0)

= ∑
j1+j2+j3=µ

[
µ

j1, j2, j3

]
q

Aj1,q(0)Cj2,q(0)yj3 .

(12)

Theorem 1. Let Aq(y), Cq(y) ∈ Aq. Then, (Aq ×q Cq)(y) is an q-Appell sequences characterized
by its generating function:

G
(
(Aq ×q Cq)(y), z

)
= G

(
Aq(0), z

)
G
(
Cq(0), z

)
eyz

q . (13)

As a consequence, (Aq,×q) is an Abelian group with identity element Iq(y). In addition,
we have:

(Aq ×q Cq)(y⊕q x) = Aq(y)×q Cq(x), x ∈ R. (14)

In general, for any A(i)
q (y) ∈ Aq and yi ∈ R, i = 1, · · · , m, with y1 ⊕q · · · ⊕q ym = y:

A(1)
q (y1)×q · · · ×q A(m)

q (ym) =
(
A(1)

q ×q · · · ×q A(m)
q
)
(y). (15)

Proof. By (12), (Aq ×q Cq)0(0) = A0,q(0)C0,q(0) 6= 0. Using (11) and proposition 1,
we have:

G
(
(Aq ×q Cq)(y), z

)
= G

(
Aq(0), z

)
G
(
Cq(0), z

)
eyz

q = G
(
(Aq ×q Cq)(0), z

)
eyz

q .

Thus, the first statement in Theorem 1 is evident from (8). Similarly, from (13) and
Proposition 1, Formula (14) can be obtained. Now, we will show that Cq(y) ∈ Aq will
be the inverse of Aq(y) ∈ Aq. Similar to the method used in Corollary 1, let Cq(0) =
(Cµ,q(0))µ≥0 ∈ Gq be the real sequence having a generating function as

G
(
Cq(0), z

)
=

1
G(Aq(0), z)

. (16)

Then, the q-Appell sequences Cq(y) = Cq(0)×q Iq(y) will be inverse of Aq(y). Equiv-
alently, Cq(0) will be the unique solution to the systems of equations:
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(Aq ×q Cq)µ(y) =
µ

∑
k=0

[
µ
k

]
q
Ck,q(0)Aµ−k,q(y) = Iµ,q(y) = yµ, (17)

which completes the proof.

Note that Theorem 1 is equivalent to q-Appell polynomials determinantal approach,
now we state the following:

Corollary 2.
(
Determinantal form

)
. For the real sequence Aq(y) ∈ Aq and Cq(0) ∈ Gq whose

generating function is represented in (16). Then, A0,q(y) = 1
C0,q(0)

and we have for µ ∈ N:

Aµ,q(y) =
(−1)µ

(C0,q(0))µ+1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 y y2 · · · yµ−1 yµ

C0,q(0) C1,q(0) C2,q(0) · · · Cµ−1,q(0) Cµ,q(0)

0 C0,q(0)
[

2
1

]
q
C1,q(0) · · ·

[
µ− 1

1

]
q
Cµ−2,q(0)

[
µ
1

]
q
Cµ−1,q(0)

0 0 C0,q(0) · · ·
[

µ− 1
2

]
q
Cµ−3,q(0)

[
µ
2

]
q
Cµ−2,q(0)

...
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 0 · · · C0,q(0)
[

µ
µ− 1

]
q
C1,q(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Proof. It suffices to put formula (17) in a determinantal form.

Corollary 2 has applications in Corollary 3.

3. Scale Transformations

Now, we will study scale transformations. For α ∈ R and Aq(y) ∈ Aq, Tα Aq(y) =(
Tα Aµ,q(y)

)
µ≥0 is defined as

Tα Aµ,q(y) = αµ Aµ,q(y/α) =
µ

∑
k=0

[
µ

k

]
q

αk Ak,q(0)yµ−k, a 6= 0

T0 Aµ,q(y) = A0,q(0)yµ

(18)

where the last equality of the first equation of (18) is by using (7). These transformations
will be characterized next.

Proposition 2. Let α, β ∈ R, then TαAq(y) is a q-Appell sequence if Aq(y), Cq(y) ∈ Aq and
characterized by generating function:

G
(
TαAq(y), z

)
= G

(
Aq(0), αz

)
eyz

q (19)

In addition

G
(
(TαAq ×q TβCq)(y), z

)
= G

(
Aq(0), αz

)
G
(
Cq(0), βz

)
eyz

q . (20)

As a consequence, the map Tα : Aq −→ Aq is an isomorphism, whenever a 6= 0.
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Proof. By (18), Tα A0,q(0) = A0,q(0) 6= 0. Again by (18) and Proposition 1, we have:

G
(
TαAq(y), z

)
= G

(
Aq(0), αz

)
eyz

q = G
(
TαAq(0), z

)
eyz

q

since Tα A0,q(0) = αµ Aµ,q(0). Hence, the first statement in Proposition 2 follows from (8).
On the other hand, we have from (13) and (19):

G
(
(TαAq ×q TβCq)(y), z

)
= G

(
TαAq(0), z

)
G
(
TβCq(0), z

)
eyz

q = G
(
Aq(0), αz

)
G
(
Cq(0), βz

)
eyz

q ,

thus showing (20). Moreover, by (13) and (19), we have

Tα(Aq ×q Cq)(y) = (TαAq ×q TαCq)(y) (21)

as both sides of (21) have the same generating function.
On the other hand, if TαAq(y) = TαCq(y), then Aq(0) = Cq(0), as follows from (19)

and we have Aq(y) = Cq(y). By (19), Tα

(
Tα−1Aq

)
(y) = Aq(y), thus it shows that Tα is an

isomorphism and thus the proof is completed.

The order m generalized q-Bernoulli polynomials can be expressed in terms of the
q-Bernoulli polynomials Bq(y) as

Bq(α1, · · · , αm; y) =
(
Tα1Bq ×q · · · ×q Tαm Bq

)
(y). (22)

Relation (22) can be obtained using above the table and Proposition 2 as follows:

G
(
Bq(α1, · · · , αm; y) , z

)
= eyz

q

m

∏
i=1

αiz
eαiz

q − 1

= eyz
q

m

∏
i=1

G
(
Bq(0) , αiz

)
= G

(
(Tα1Bq ×q Tα2Bq ×q · · · ×q Tαm Bq)(y) , z

)
.

Similarly, by using the result of relation (20) in Proposition 2, the order m generalized
q-Euler polynomials can be expressed by means of the type q-Euler polynomials E(y) as

Eq(α1, · · · , αm; y) =
(
Tα1Eq ×q · · · ×q Tαm Eq

)
(y). (23)

Finally, we have the relating q-Bernoulli and q-Euler polynomials:

(Bq ×q Eq)(y) = T2Bq(y). (24)

From Table 1:

∞

∑
µ=0

Bµ,q

(
y
2

)
zµ

[µ]q!
=

zeyz/2
q

ez
q − 1

=
z/2

ez/2
q − 1

2eyz/2
q

ez/2
q + 1

=
∞

∑
µ=0

Bµ,q(0)
(z/2)µ

[µ]q!

∞

∑
s=0

Es,q(y)
(z/2)s

[s]q!

=
∞

∑
µ=0

(
2−µ

µ

∑
s=0

[
µ
s

]
q
Bµ−s,q(0)Es,q(y)

)
zµ

[µ]q!
.
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Table 1. Generating the function of some q-Appell type polynomials.

Notation Polynomials Generating Functions

Bq(y) q-Bernoulli polynomials [26] zeyz
q

ez
q−1

Bq(α1, · · · , αm; y) Order m generalized q-Bernoulli polynomials
[29] (p. 117, 4.125) eyz

q ∏m
i=1

αiz
eαi z

q −1

Eq(y) q-Euler polynomials [26] 2eyz
q

ez
q+1

Eq(α1, · · · , αm; y) Order m generalized q-Euler polynomials
[29] (p. 129, 4.197) eyz

q ∏m
i=1

2
eαi z

q +1

Gq(y) q-Genocchi polynomials [26] 2zeyz
q

ez
q+1

Then, we have:

Bµ,q

(
y
2

)
= 2−µ

µ

∑
s=0

[
µ
s

]
q
Bs,q(0)Eµ−s,q(y).

Similarly we can get:

Bµ,q

(
y
2

)
= 2−µ

µ

∑
s=0

[
µ
s

]
q
Es,q(0)Bµ−s,q(y).

Then:

(Bq ×q Eq)µ(y) =
µ

∑
s=0

[
µ
s

]
q
Bs,q(0)Eµ−s,q(y)

=
µ

∑
s=0

[
µ
s

]
q
Es,q(0)Bµ−s,q(y)

= 2−µBµ,q

(
y
2

)
= T2Bµ,q(y).

4. Transformations Based on Expectations

Let X be a random variables such that:

Eer|X|
q < ∞, for r > 0.

Here, we consider expectations and transformations of q-Appell sequences Aq(y) by
replacing x by X in (10) similar to a classical analogue [7,30]. These transformations are
the result due to a probabilistic approach to q-Appell polynomials. For Aq(y) ∈ Aq and a
random variable X, we define RXAq(y) =

(
RX Aµ,q(y)

)
µ≥0 as

RX Aµ,q(y) = EAµ,q(y⊕q X) =
µ

∑
k=0

[
µ
k

]
q
Ak,q(0)E(y⊕q X)µ−k

=
µ

∑
k=0

[
µ
k

]
q
EXk Aµ−k,q(y) =

µ

∑
k=0

[
µ
k

]
q
EAk,q(X)yµ−k, (25)

follow from (7) and (10). Notice that whenever X = 0, RXAq(y) = Aq(y). In addition:

RXIq(y) =
(
E(y⊕q X)µ

)
µ≥0. (26)
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Identity Iq(y) transformation plays an important role as which is evident from equality
in (25), we obtain:

RXAq(y) = (Aq ×q RXIq)(y). (27)

Now, we will study some results following the characterization of the transformations
based on expectations and will present some of their properties.

Proposition 3. Let Y and X denote two independent random variables and Aq(y), Cq(y) ∈ Aq.
Then, RXAq(y) is a q-Appell sequence represented in terms of generating a function as

G
(

RXAq(y), z
)
= G

(
Aq(0), z

)
Ee

z(y⊕qX)
q . (28)

Moreover, the following properties are true:
(a) RX(Aq ×q Cq)(y) = (RXAq ×q Cq)(y) = (Aq ×q RXCq)(y).
(b) (RYAq ×q RXCq)(y) = RY⊕qX(Aq ×q Cq)(y).
(c) RYRXAq(y) = RY⊕qXAq(y).

Proof. Using (25), RXA0,q(0) = A0,q(0) 6= 0. By interchanging sum with expectation, from
(26) we have:

G
(

RXIq(y), z
)
=

∞

∑
µ=0

E(y⊕q X)µ zµ

[µ]q!
= Ee

z(y⊕qX)
q . (29)

Thus, from (13), (27)–(29) can be obtained. Formula (28) implies that:

G
(

RXAq(y), z
)
= G

(
RXAq(0), z

)
eyz

q .

Combining it with (8), will prove the first statement in Proposition 3. From Proposition 1
and (27), we obtain:

RX(Aq ×q Cq)(y) = (Aq ×q Cq ×q RXIq)(y) = (RXAq ×q Cq)(y) = (Aq ×q RXCq)(y),

hence, we obtain (a). Notice that:

(RYIq ×q RXIq)(y) = RY⊕qXIq(y),

as it is clear from (13), (29), and the independence between the variables Y and X. From
(27) and Proposition 1, we obtain:

(RYAq ×q RXCq)(y) = (Aq ×q RYIq ×q Cq ×q RXIq)(y) = RY⊕qX(Aq ×q Cq)(y),

which justifies (b). Similarly, one can prove (c).

It is to note that the map RX : Aq −→ Aq is not a homomorphism, which follows from
Proposition 3(a).

5. The Subset Rq

Let us consider the exponential moments (finite) MX(t) := E(etX
q ) for a random

variable X s.t. | t |< ρ similar to its classical case defined in [30]. Then, E(Xµ) < ∞ for all
µ = 1, 2, · · · , and:

E(etX
q ) =

∞

∑
µ=0

tµ

[µ]q!
E(Xµ), | t |< ρ.

For t ∈ C, the right hand side of (5) will be a complex analytic function z 7→ ϕ(z),
| z |< ρ, z ∈ C. As MX(0) = 1, | ϕ(z) |> 0 for | z |< ρ due to the continuity of ϕ. Thus,
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z 7→ 1
ϕ(z) is a well-defined analytic function and can be expressed in the form of power

series:
1

ϕ(z)
=

∞

∑
µ=0

cµ,qzµ, | z |< λ,

where λ > 0 denotes the radius of convergence. For z = t ∈ R such that | z |< λ we have:

1
E(etX

q )
=

∞

∑
µ=0

cµ,qtµ =
∞

∑
µ=0

ĉµ,q
tµ

[µ]q!
,

where ĉµ,q = cµ,q[µ]q!. For y ∈ R and | t |< λ it holds:

ety
q

E(etX
q )

=
∞

∑
s=0

ts

[s]q!
ys

∞

∑
m=0

tm

[m]q!
ĉm,q

=
∞

∑
s=0

∞

∑
m=0

ts+m

[s]q![m]q!
ĉm,qys

=
∞

∑
µ=0

tµ

[µ]q!

∞

∑
m=0

[
µ
m

]
q
ĉmyµ−m.

(30)

As both series are absolutely convergent in the neighborhood of the origin, the sum
will therefore not depend on the order of summation. Motivated by (30), we now present
the definition of q-Appell polynomials related to a random variable X.

Definition 1. Let X be a random variable having some exponential moments. The polynomials
Aµ,q(y), µ = 0, 1, 2, · · · , satisfying:

∞

∑
µ=0

tµ

[µ]q!
Aµ,q(y) =

ety
q

E(etX
q )

f or all y ∈ R (31)

where Aµ,q(y) are called as q-Appell polynomials of order µ associated with random variable X.

Now, we denote byRq the set of Appell sequences Aq(y) such that:

G
(
Aq(y), z

)
=

eyz
q

EezX
q

, (32)

for a random variable X. For another random variable Y satisfying (32), due to the unique-
ness theorem for characteristic functions, Y and X will follow same law. Thus, Aq(y) has
associated the random variable X. Notice that for X = 0, Iq(y) ∈ Rq. Then, we present a
preposition for the construction of other q-Appell polynomials.

Proposition 4. For associated independent random variable Y and X and let: Aq(y), Cq(y) ∈ Rq,
respectively, where α, β ∈ R. Then, (TαAq ×q TβCq)(y) belong to aRq with the associated random
variable αY⊕q βX.

In particular, if Aq(y), Cq(y) ∈ Rq, then (Aq ×q Cq)(y) belongs to Rq with associated
random variable Y⊕q X.

Proof. From Equations (13), (19), and (32) and using the property that Y and X are inde-
pendent:
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G
(
(TαAq ×q TβCq)(y), z

)
= G

(
TαAq(0), z

)
G
(
TβCq(0), z

)
eyz

q

= G
(
Aq(0), αz

)
G
(
Cq(0), βz

)
eyz

q

=
eyz

q

Ee
z(αY⊕q βX)
q

where we get the required result.

The q-Appell sequence inRq is characterized as follows.

Theorem 2. The following statements are equivalent:
(a) Aq(y) ∈ Rq with the associated random variable X.
(b) G

(
Aq(0), z

)
= (EezX

q )−1.
(c) RXAq(y) = Iq(y).
(d) The inverse element of Aq(y) is RXIq(y).

Proof. From (32), equivalence of (a) and (b) can be obtained. Similarly, (27) gives equiva-
lence between (c) and (d). If (b) is true, then from (28), we have:

G
(

RXAq(y), z
)
= G

(
Aq(0), z

)
Ee

z(y⊕qX)
q = eyz

q = G
(
Iq(y), z

)
,

which together with (8), shows (c). Finally, if (d) holds, we see from (13) and (28):

eyz
q = G

(
(RXIq ×q A)(y), z

)
= G

(
RXIq(0), z

)
G
(
Aq(0), z

)
eyz

q = EezX
q G

(
Aq(0), z

)
eyz

q

thus showing (b) which completes the proof.

For any q-Appell sequence, its determinantal form Aq(y) ∈ Rq can be expressed in
terms of the moments of its associated random variable X.

Corollary 3. Let Aq(y) ∈ Rq with associated random variable X. Denote RX Iµ,q(0) = EXµ =:
Tµ,q. Then, A0,q(y) = 1

T0,q
= 1 and:

Aµ,q(y) = (−1)µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 y y2 · · · yµ−1 yµ

1 T1,q T2,q · · · Tµ−1,q Tµ,q

0 1
[

2
1

]
q
T1,q · · ·

[
µ− 1

1

]
q
Tµ−2,q

[
µ
1

]
q
Tµ−1,q

0 0 1 · · ·
[

µ− 1
2

]
q
Tµ−3,q

[
µ
2

]
q
Tµ−2,q

...
...

...
. . .

...
...

...
...

...
. . .

...
...

0 0 0 · · · 1
[

µ
µ− 1

]
q
T1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, µ ∈ N (33)

Proof. From Corollary 2 and Theorem 2(d) proof follows.

Another important result from Theorem 2 is as follows:

Corollary 4. Let Aq(y) ∈ Rq with associated random variable X. For any Cq(y) ∈ Aq, we have:

Cq(y) = E(Cq ×q Aq)(y⊕q X). (34)
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As a consequence, we have for any x ∈ R:

Cµ,q(y⊕q x) = E(Cq ×q Aq)µ(y⊕q x⊕q X) =
µ

∑
k=0

[
µ
k

]
q
ECk,q(x⊕q X)Aµ−k,q(y). (35)

In particular:

yµ = EAµ,q(y⊕q X) =
µ

∑
k=0

[
µ
k

]
q
Tk,q Aµ−k,q(y). (36)

Proof. By Proposition 3(a) and Theorem 2(c), we have:

Cq(y) = (Iq ×q Cq)(y) = (RXAq ×q Cq)(y) = RX(Aq ×q Cq)(y) = E(Aq ×q Cq)(y⊕q X),

which shows (34). Formula (35) follows by replacing y by y⊕q x in (34) and then applying
(14). Identity (36) follows by setting Cq(y) = Iq(y) and x = 0 in (35). Thus, the proof is
completed.
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