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Abstract: Suppose that in a real Hilbert space H, the variational inequality problem with Lips-
chitzian and pseudomonotone mapping A and the common fixed-point problem of a finite family of
nonexpansive mappings and a quasi-nonexpansive mapping with a demiclosedness property are
represented by the notations VIP and CFPP, respectively. In this article, we suggest two Mann-type
inertial subgradient extragradient iterations for finding a common solution of the VIP and CFPP.
Our iterative schemes require only calculating one projection onto the feasible set for every iteration,
and the strong convergence theorems are established without the assumption of sequentially weak
continuity for A. Finally, in order to support the applicability and implementability of our algorithms,
we make use of our main results to solve the VIP and CFPP in two illustrating examples.
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1. Introduction

In a real Hilbert space (H, ‖ · ‖), equipped with the inner product 〈·, ·〉, we assume
that C is a nonempty closed convex subset and PC is the metric projection of H onto C. If
S : C → H is a mapping on C, then we denote by Fix(S) the fixed-point set of S. Moreover,
we denote by R the set of all real numbers. Given a mapping A : H → H. Consider the
classical variational inequality problem (VIP) of finding x∗ ∈ C such that 〈Ax∗, x− x∗〉 ≥ 0
for all x ∈ C. We denote by VI(C, A) the solution set of the VIP.

To the best of our knowledge, one of the most efficient methods to deal with the VIP is
the extragradient method invented by Korpelevich [1] in 1976, that is, for any given u0 ∈ C,
{um} is the sequence constructed by{

vm = PC(um − `Aum),
um+1 = PC(um − `Avm) ∀m ≥ 0,

(1)

with constant ` ∈ (0, 1
L ). If VI(C, A) 6= ∅, one knows that this method has only weak

convergence, and only requires that A is monotone and L-Lipschitzian. The literature
on the VIP is vast, and Korpelevich’s extragradient method has received great attention
from many authors, who improved it via various approaches so that some new iterative
methods happen to solve the VIP and related optimization problems; see, e.g., [2–12] and
the references therein, to name but a few.

It is worth pointing out that the extragradient method needs to calculate two projec-
tions onto the feasible set C per iteration. Without question, once one is hard to calculate the
projection onto C, the minimum distance problem has to be solved twice per iteration. This
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perhaps affects the applicability and implementability of the method. To improve Algo-
rithm 1, one has to reduce the number of projections per iteration. In 2011, Censor et al. [13]
first suggested the subgradient extragradient method, in which the second projection onto
C is replaced by a projection onto a half-space:

vm = PC(um − `Aum),
Cm = {w ∈ H : 〈um − `Aum − vm, w− vm〉 ≤ 0},
um+1 = PCm(um − `Avm) ∀m ≥ 0,

(2)

where A is a L-Lipschitzian monotone mapping and ` ∈ (0, 1
L ).

Since then, various modified extragradient-like iterative methods have been investi-
gated by many researchers; see, e.g., [14–19]. In 2014, combining the subgradient extra-
gradient method and Halpern’s iteration method, Kraikaew and Saejung [20] proposed
the Halpern subgradient extragradient method for solving the VIP, that is, for any given
u0 ∈ H, {um} is the sequence constructed by

vm = PC(um − `Aum),
Cm = {v ∈ H : 〈um − `Aum − vm, v− vm〉 ≤ 0},
wm = PCm(um − `Avm),
um+1 = αmu0 + (1− αm)wm ∀m ≥ 0,

(3)

where ` ∈ (0, 1
L ), {αm} ⊂ (0, 1), limm→∞ αm = 0 and ∑∞

m=1 αm = +∞. They proved the
strong convergence of {um} to PVI(C,A)u0.

In 2018, Thong and Hieu [21] first suggested the inertial subgradient extragradient
method, that is, for any given u0, u1 ∈ H, the sequence {um} is generated by

wm = um + αm(um − um−1),
vm = PC(wm − `Awm),
Cm = {v ∈ H : 〈wm − `Awm − vm, v− vm〉 ≤ 0},
um+1 = PCm(wm − `Avm) ∀m ≥ 1,

(4)

with constant ` ∈ (0, 1
L ). Under suitable conditions, they proved the weak convergence of

{um} to an element of VI(C, A). Later, Thong and Hieu [22] designed two inertial subgra-
dient extragradient algorithms with linesearch process for solving a VIP with monotone
and Lipschitz continuous mapping A and a FPP of quasi-nonexpansive mapping T with a
demiclosedness property in H. Under appropriate conditions, they established the weak
convergence results for the suggested algorithms.

Suppose that the notations VIP and CFPP represent a variational inequality problem
with Lipschitzian and pseudomonotone mapping A : H → H and a common fixed-
point problem of finitely many nonexpansive mappings {Ti}N

i=1 and a quasi-nonexpansive
mapping T with a demiclosedness property, respectively. Inspired by the research works
above, we design two Mann-type inertial subgradient extragradient iterations for finding
a common solution of the VIP and CFPP. Our algorithms require only computing one
projection onto the feasible set C per iteration, and the strong convergence theorems are
established without the assumption of sequentially weak continuity for A on C. Finally, in
order to support the applicability and implementability of our algorithms, we make use of
our main results to solve the VIP and CFPP in two illustrating examples.

This paper is organized as follows: In Section 2, we recall some definitions and
preliminaries for the sequel use. Section 3 deals with the convergence analysis of the
proposed algorithms. Finally, in Section 4, in order to support the applicability and
implementability of our algorithms, we make use of our main results to find a common
solution of the VIP and CFPP in two illustrating examples.
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2. Preliminaries

Throughout this paper, we assume that C is a nonempty closed convex subset of a
real Hilbert space H. If {um} is a sequence in H, then we denote by um → u (respectively,
um ⇀ u) the strong (respectively, weak) convergence of {um} to u. A mapping F : C → H
is said to be nonexpansive if ‖Fu− Fv‖ ≤ ‖u− v‖ ∀u, v ∈ C. Recall also that F : C → H
is called

(i) L-Lipschitz continuous (or L-Lipschitzian) if ∃L > 0 such that ‖Fu− Fv‖ ≤ L‖u−
v‖ ∀u, v ∈ C;

(ii) monotone if 〈Fu− Fv, u− v〉 ≥ 0 ∀u, v ∈ C;
(iii) pseudomonotone if 〈Fu, v− u〉 ≥ 0⇒ 〈Fv, v− u〉 ≥ 0 ∀u, v ∈ C;
(iv) α-strongly monotone if ∃α > 0 such that 〈Fu− Fv, u− v〉 ≥ α‖u− v‖2 ∀u, v ∈ C;
(v) quasi-nonexpansive if Fix(F) 6= ∅, and ‖Fu− p‖ ≤ ‖u− p‖ ∀u ∈ C, p ∈ Fix(F);
(vi) sequentially weakly continuous on C if for {um} ⊂ C, the relation holds: um ⇀ u⇒

Fum ⇀ Fu.

It is clear that every monotone operator is pseudomonotone, but the converse is
not true. Next, we provide an example of a quasi-nonexpansive mapping which is not
nonexpansive.

Example 1. Let H = R with the inner product 〈a, b〉 = ab and induced norm ‖ · ‖ = | · |.
Let T : H → H be defined as Tu := u

2 sin u ∀u ∈ H. It is clear that Fix(T) = {0} and T is
quasi-nonexpansive. However, we claim that T is not nonexpansive. Indeed, putting u = 2π and
v = 3π

2 , we have ‖Tu− Tv‖ = ‖ 2π
2 sin 2π − 3π

4 sin 3π
2 ‖ =

3π
4 > ‖2π − 3π

2 ‖ =
π
2 .

Definition 1 ([23]). Assume that T : H → H is a nonlinear operator with Fix(T) 6= ∅. Then
I − T is said to be demiclosed at zero if for any {un} in H, the implication holds: un ⇀ u and
(I − T)un → 0⇒ u ∈ Fix(T).

Very recently, Thong and Hieu gave an example to illustrate that there exists a quasi-
nonexpansive mapping T, but I − T is not demiclosed at zero; see ([22], Example 2). For
each u ∈ H, we know that there exists a unique nearest point in C, denoted by PCu, such
that ‖u− PCu‖ ≤ ‖u− v‖ ∀v ∈ C. PC is called a metric projection of H onto C.

Lemma 1 ([23]). The following hold:

(i) 〈u− v, PCu− PCv〉 ≥ ‖PCu− PCv‖2 ∀u, v ∈ H;
(ii) 〈u− PCu, v− PCu〉 ≤ 0 ∀u ∈ H, v ∈ C;
(iii) ‖u− v‖2 ≥ ‖u− PCu‖2 + ‖v− PCu‖2 ∀u ∈ H, v ∈ C;
(iv) ‖u− v‖2 = ‖u‖2 − ‖v‖2 − 2〈u− v, v〉 ∀u, v ∈ H;
(v) ‖λu + (1− λ)v‖2 = λ‖u‖2 + (1− λ)‖v‖2 − λ(1− λ)‖u− v‖2 ∀u, v ∈ H, λ ∈ [0, 1].

Lemma 2 ([24]). For all u ∈ H and α ≥ β > 0, the inequalities hold: ‖u−PC(u−αAu)‖
α ≤

‖u−PC(u−βAu)‖
β and ‖u− PC(u− βAu)‖ ≤ ‖u− PC(u− αAu)‖.

Lemma 3 ([13]). Suppose that A : C → H is pseudomonotone and continuous. Then u∗ ∈ C is a
solution to the VIP 〈Au∗, u− u∗〉 ≥ 0 ∀u ∈ C, if and only if 〈Au, u− u∗〉 ≥ 0 ∀u ∈ C.

Lemma 4 ([25]). Suppose that {am} is a sequence of nonnegative numbers satisfying the condi-
tions: am+1 ≤ (1− λm)am + λmγm ∀m ≥ 1, where {λm} and {γm} lie in R = (−∞, ∞) such
that (i) {λm} ⊂ [0, 1] and ∑∞

m=1 λm = ∞, and (ii) lim supm→∞ γm ≤ 0 or ∑∞
m=1 |λmγm| < ∞.

Then limm→∞ am = 0.
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Lemma 5 ([23]). Suppose that T : C → C is a nonexpansive mapping with Fix(T) 6= ∅. Then
I − T is demiclosed at zero, that is, if {um} is a sequence in C such that um ⇀ u ∈ C and
(I − T)um → 0, then (I − T)u = 0, where I is the identity mapping of H.

Lemma 6 ([25]). Suppose that λ ∈ (0, 1], T : C → H is a nonexpansive mapping, and the
mapping Tλ : C → H is defined as Tλu := Tu − λµF(Tu) ∀u ∈ C, where F : H → H is
κ-Lipschitzian and η-strongly monotone. Then Tλ is a contraction provided 0 < µ < 2η

κ2 , that is,
‖Tλu− Tλv‖ ≤ (1− λ`)‖u− v‖ ∀u, v ∈ C, where ` := 1−

√
1− µ(2η − µκ2) ∈ (0, 1].

Lemma 7 ([26]). Suppose that {Γm} is a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {Γmk} of {Γm} which satisfies Γmk < Γmk+1 for each
integer k ≥ 1. Define the sequence {τ(m)}m≥m0 of integers as follows:

τ(m) = max{k ≤ m : Γk < Γk+1},

where integer m0 ≥ 1 such that {k ≤ m0 : Γk < Γk+1} 6= ∅. Then, the following conclusions hold:

(i) τ(m0) ≤ τ(m0 + 1) ≤ · · · and τ(m)→ ∞;
(ii) Γτ(m) ≤ Γτ(m)+1 and Γm ≤ Γτ(m)+1 ∀m ≥ m0.

3. Iterative Algorithms and Convergence Criteria

In this section, let the feasible set C be a nonempty closed convex subset of a real
Hilbert space H, and assume always that the following hold:

Ti : H → H is nonexpansive for i = 1, ..., N and T : H → H is a quasi-nonexpansive
mapping such that I − T is demiclosed at zero;

A : H → H is L-Lipschitz continuous, pseudomonotone on H, and satisfies the
condition that for {xn} ⊂ C, xn ⇀ z ⇒ ‖Az‖ ≤ lim infn→∞ ‖Axn‖;

Ω = ∩N
i=0Fix(Ti) ∩VI(C, A) 6= ∅ with T0 := T;

f : H → H is a contraction with constant δ ∈ [0, 1), and F : H → H is η-strongly
monotone and κ-Lipschitzian such that δ < τ := 1−

√
1− ρ(2η − ρκ2) for ρ ∈ (0, 2η

κ2 );
{ζn}, {βn}, {γn} ⊂ (0, 1), and {τn} ⊂ (0, ∞) are such that

(i) βn + γn < 1 and ∑∞
n=1 βn = ∞;

(ii) limn→∞ βn = 0 and τn = ◦(βn), i.e., limn→∞ τn/βn = 0;
(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 and 0 < lim infn→∞ ζn ≤ lim supn→∞ ζn <

1.

In addition, we write Tn := TnmodN for integer n ≥ 1 with the mod function taking
values in the set {1, 2, ..., N}, i.e., if n = jN + q for some integers j ≥ 0 and 0 ≤ q < N, then
Tn = TN if q = 0 and Tn = Tq if 0 < q < N.

Algorithm 1. Initialization: Let λ1 > 0, α > 0, µ ∈ (0, 1) and x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1), choose αn such that 0 ≤ αn ≤ ᾱn,

where

ᾱn =

{
min{α, τn

‖xn−xn−1‖
} if xn 6= xn−1,

α otherwise.
(5)

Step 2. Compute wn = xn + αn(xn − xn−1) and yn = PC(wn − λn Awn).
Step 3. Construct the half-space Cn := {z ∈ H : 〈wn − λn Awn − yn, z− yn〉 ≤ 0}, and

compute zn = PCn(wn − λn Ayn).
Step 4. Calculate vn = ζnxn + (1− ζn)Tnwn and xn+1 = βn f (xn) + γnTzn + ((1−

γn)I − βnρF)vn, and update

λn+1 =

{
min{µ ‖wn−yn‖2+‖zn−yn‖2

2〈Awn−Ayn ,zn−yn〉 , λn} if 〈Awn − Ayn, zn − yn〉 > 0,
λn otherwise.

(6)
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Let n := n + 1 and return to Step 1.

Remark 1. It is easy to see that, from (5) we get limn→∞
αn
βn
‖xn − xn−1‖ = 0. Indeed, we

have αn‖xn − xn−1‖ ≤ τn ∀n ≥ 1, which together with limn→∞
τn
βn

= 0 implies that αn
βn
‖xn −

xn−1‖ ≤ τn
βn
→ 0 as n→ ∞.

Lemma 8. Let {λn} be generated by (6). Then {λn} is a nonincreasing sequence with λn ≥ λ :=
min{λ1, µ

L} ∀n ≥ 1, and limn→∞ λn ≥ λ := min{λ1, µ
L}.

Proof. First, from (6) it is clear that λn ≥ λn+1 ∀n ≥ 1. Furthermore, observe that

1
2 (‖wn − yn‖2 + ‖zn − yn‖2) ≥ ‖wn − yn‖‖zn − yn‖
〈Awn − Ayn, zn − yn〉 ≤ L‖wn − yn‖‖zn − yn‖

}
⇒ λn+1 ≥ min{λn,

µ

L
}.

Remark 2. In terms of Lemmas 2 and 8, we claim that if wn = yn or Ayn = 0, then yn is an
element of VI(C, A). Indeed, if wn = yn or Ayn = 0, then 0 = ‖yn − PC(yn − λn Ayn)‖ ≥
‖yn − PC(yn − λAyn)‖. Thus, the assertion is valid.

The following lemmas are quite helpful for the convergence analysis of our algorithms.

Lemma 9. Let {wn}, {yn}, {zn} be the sequences generated by Algorithm 1. Then

‖zn− p‖2 ≤ ‖wn− p‖2− (1− µ
λn

λn+1
)‖wn− yn‖2− (1− µ

λn

λn+1
)‖zn− yn‖2 ∀p ∈ Ω. (7)

Proof. First, by the definition of {λn} we claim that

2〈Awn − Ayn, zn − yn〉 ≤
µ

λn+1
‖wn − yn‖2 +

µ

λn+1
‖zn − yn‖2 ∀n ≥ 1. (8)

Indeed, if 〈Awn − Ayn, zn − yn〉 ≤ 0, then inequality (8) holds. Otherwise, from (6)
we get (8). Furthermore, observe that for each p ∈ Ω ⊂ C ⊂ Cn,

‖zn − p‖2 = ‖PCn(wn − λn Ayn)− PCn p‖2 ≤ 〈zn − p, wn − λn Ayn − p〉
= 1

2‖zn − p‖2 + 1
2‖wn − p‖2 − 1

2‖zn − wn‖2 − 〈zn − p, λn Ayn〉,

which hence yields

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2〈zn − p, λn Ayn〉. (9)

From p ∈ VI(C, A), we get 〈Ap, x− p〉 ≥ 0 ∀x ∈ C. By the pseudomonotonicity of
A on C we have 〈Ax, x− p〉 ≥ 0 ∀x ∈ C. Putting x := yn ∈ C we get 〈Ayn, p− yn〉 ≤ 0.
Thus,

〈Ayn, p− zn〉 = 〈Ayn, p− yn〉+ 〈Ayn, yn − zn〉 ≤ 〈Ayn, yn − zn〉. (10)

Substituting (10) for (9), we obtain

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − yn‖2 − ‖yn − wn‖2 + 2〈wn − λn Ayn − yn, zn − yn〉. (11)

Since zn = PCn(wn − λn Ayn), we get zn ∈ Cn := {z ∈ H : 〈wn − λn Awn − yn, z−
yn〉 ≤ 0}, and hence
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2〈wn − λn Ayn − yn, zn − yn〉 = 2〈wn − λn Awn − yn, zn − yn〉+ 2λn〈Awn − Ayn, zn − yn〉
≤ 2λn〈Awn − Ayn, zn − yn〉,

which together with (8), implies that

2〈wn − λn Ayn − yn, zn − yn〉 ≤ µ
λn

λn+1
‖wn − yn‖2 + µ

λn

λn+1
‖zn − yn‖2.

Therefore, substituting the last inequality for (11), we infer that inequality (7) holds.

Lemma 10. Suppose that {wn}, {xn}, {yn}, and {zn} are bounded sequences generated by Algo-
rithm 1. If xn − xn+1 → 0, wn − yn → 0, wn − zn → 0, zn − Tnzn → 0, and ∃{wnk} ⊂ {wn}
s.t. wnk ⇀ z ∈ H, then z ∈ Ω.

Proof. Utilizing the similar arguments to those in the proof of Lemma 3.3 of [12], we can
derive the desired result.

Lemma 11. Assume that {wn}, {xn}, {yn}, {zn} are the sequences generated by Algorithm 1.
Then they all are bounded.

Proof. Since 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 and 0 < lim infn→∞ ζn ≤ lim supn→∞
ζn < 1, we may assume, without loss of generality, that

{γn} ⊂ [a, b] ⊂ (0, 1) and {ζn} ⊂ [c, d] ⊂ (0, 1). (12)

Choose a fixed p ∈ Ω arbitrarily. Then we obtain Tp = p and Tn p = p for all
n ≥ 1, and (7) holds. Noticing limn→∞(1− µ λn

λn+1
) = 1− µ > 0, we might assume that

1− µ λn
λn+1

> 0 for all n ≥ 1. So it follows from (7) that for all n ≥ 1,

‖zn − p‖ ≤ ‖wn − p‖. (13)

Furthermore, note that

‖wn − p‖ ≤ ‖xn − p‖+ αn‖xn − xn−1‖ = ‖xn − p‖+ βn ·
αn

βn
‖xn − xn−1‖. (14)

In terms of Remark 1, one has αn
βn
‖xn − xn−1‖ → 0 as n→ ∞. Hence we deduce that

∃M1 > 0 s.t.
M1 ≥

αn

βn
‖xn − xn−1‖ ∀n ≥ 1. (15)

Using (13)–(15), we obtain that for all n ≥ 1,

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖+ βn M1. (16)

Noticing βn + γn < 1 ∀n ≥ 1, we have βn
1−γn

< 1 for all n ≥ 1. So, using Lemma 6 and
(16) we deduce that

‖vn − p‖ ≤ ζn‖xn − p‖+ (1− ζn)‖Tnwn − p‖
≤ ζn‖xn − p‖+ (1− ζn)‖wn − p‖
≤ ζn(‖xn − p‖+ βn M1) + (1− ζn)(‖xn − p‖+ βn M1)
= ‖xn − p‖+ βn M1,
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and hence

‖xn+1 − p‖ = ‖βn f (xn) + γnTzn + ((1− γn)I − βnρF)vn − p‖
≤ βn‖ f (xn)− p‖+ γn‖Tzn − p‖
+ (1− βn − γn)‖( 1−γn

1−βn−γn
I − βn

1−βn−γn
ρF)vn − p‖

≤ βn(‖ f (xn)− f (p)‖+ ‖ f (p)− p‖) + γn‖zn − p‖
+ (1− βn − γn)‖( 1−γn

1−βn−γn
I − βn

1−βn−γn
ρF)vn − p‖

≤ βn(δ‖xn − p‖+ ‖ f (p)− p‖) + γn‖zn − p‖
+ (1− γn)‖(I − βn

1−γn
ρF)vn − (1− βn

1−γn
)p‖

= βn(δ‖xn − p‖+ ‖ f (p)− p‖) + γn‖zn − p‖
+ (1− γn)‖(I − βn

1−γn
ρF)vn − (I − βn

1−γn
ρF)p + βn

1−γn
(I − ρF)p‖

≤ βn(δ‖xn − p‖+ ‖ f (p)− p‖) + γn‖zn − p‖
+ (1− γn)[(1− βn

1−γn
τ)‖vn − p‖+ βn

1−γn
‖(I − ρF)p‖]

= βn(δ‖xn − p‖+ ‖ f (p)− p‖) + γn‖zn − p‖
+ (1− γn − βnτ)‖vn − p‖+ βn‖(I − ρF)p‖
≤ βnδ(‖xn − p‖+ βn M1) + βn‖ f (p)− p‖+ γn(‖xn − p‖+ βn M1)
+ (1− γn − βnτ)(‖xn − p‖+ βn M1) + βn‖(I − ρF)p‖
≤ [1− βn(τ − δ)]‖xn − p‖+ βn(M1 + ‖ f (p)− p‖+ ‖(I − ρF)p‖)
= [1− βn(τ − δ)]‖xn − p‖+ βn(τ − δ) · M1+‖ f (p)−p‖+‖(I−ρF)p‖

τ−δ

≤ max{‖xn − p‖, M1+‖ f (p)−p‖+‖(I−ρF)p‖
τ−δ }.

By induction, we obtain ‖xn − p‖ ≤ max{‖x1 − p‖, M1+‖ f (p)−p‖+‖(I−ρF)p‖
τ−δ } ∀n ≥ 1.

Thus, {xn} is bounded, and so are the sequences {wn}, {yn}, {zn}, {Tzn}, {Fvn}, {Tnwn}.

Theorem 1. Let the sequence {xn} be constructed by Algorithm 1. Then {xn} converges strongly
to the unique solution x∗ ∈ Ω of the following VIP:

〈(ρF− f )x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω.

Proof. First, it is not difficult to show that PΩ( f + I − ρF) is a contraction. In fact, by
Lemma 6 and the Banach contraction mapping principle, we obtain that PΩ( f + I − ρF)
has a unique fixed point. Say x∗ ∈ H, i.e., x∗ = PΩ( f + I − ρF)x∗. Thus, the following VIP
has only a solution x∗ ∈ Ω:

〈(ρF− f )x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω. (17)

We now claim that

γn(1− µ
λn

λn+1
)[‖wn − yn‖2 + ‖zn − yn‖2] ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + βn M4,

for some M4 > 0. In fact, observe that

xn+1 − x∗ = βn( f (xn)− x∗) + γn(Tzn − x∗) + (1− βn − γn){ 1−γn
1−βn−γn

[(I − βn
1−γn

ρF)vn

− (I − βn
1−γn

ρF)x∗] + βn
1−βn−γn

(I − ρF)x∗}
= βn( f (xn)− f (x∗)) + γn(Tzn − x∗) + (1− γn)[(I − βn

1−γn
ρF)vn − (I − βn

1−γn
ρF)x∗]

+ βn( f − ρF)x∗.

Using Lemma 6 and the convexity of the function h(t) = t2 ∀t ∈ R, we have
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‖xn+1 − x∗‖2

≤ ‖βn( f (xn)− f (x∗)) + γn(Tzn − x∗) + (1− γn)[(I − βn
1−γn

ρF)vn − (I − βn
1−γn

ρF)x∗]‖2

+ 2βn〈( f − ρF)x∗, xn+1 − x∗〉
≤ βnδ‖xn − x∗‖2 + γn‖zn − x∗‖2 + (1− βnτ − γn)‖vn − x∗‖2 + βn M2

(18)

where M2 ≥ supn≥1 2‖ f − ρF)x∗‖‖xn − x∗‖ for some M2 > 0. From (7) and (17), we have

‖xn+1 − x∗‖2 ≤ βnδ‖xn − x∗‖2 + γn[‖wn − x∗‖2 − (1− µ λn
λn+1

)‖wn − yn‖2 − (1− µ λn
λn+1

)‖zn − yn‖2]

+ (1− βnτ − γn)[ζn‖xn − x∗‖2 + (1− ζn)‖wn − x∗‖2] + βn M2.
(19)

Again from (16), we obtain

‖wn − x∗‖2 ≤ (‖xn − x∗‖+ βn M1)
2 ≤ ‖xn − x∗‖2 + βn M3, (20)

where M3 ≥ supn≥1(2M1‖xn − x∗‖+ βn M2
1) for some M3 > 0. Using (19) and (20), we get

‖xn+1 − x∗‖2

≤ [1− βn(τ − δ)](‖xn − x∗‖2 + βn M3)− γn(1− µ λn
λn+1

)[‖wn − yn‖2 + ‖zn − yn‖2] + βn M2

≤ ‖xn − x∗‖2 − γn(1− µ λn
λn+1

)[‖wn − yn‖2 + ‖zn − yn‖2] + βn M4,

where M4 := M2 + M3. Consequently,

γn(1− µ
λn

λn+1
)[‖wn − yn‖2 + ‖zn − yn‖2] ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + βn M4. (21)

Next we claim that

‖xn+1 − x∗‖2 ≤ [1− βn(τ − δ)]‖xn − x∗‖2

+ βn(τ − δ)[ 2
τ−δ 〈( f − ρF)x∗, xn+1 − x∗〉+ 3M

τ−δ ·
αn
βn
· ‖xn − xn−1‖]

for some M > 0. In fact, it is easy to see that

‖wn − x∗‖2 ≤ ‖xn − x∗‖2 + αn‖xn − xn−1‖[2‖xn − x∗‖+ αn‖xn − xn−1‖]. (22)

Using (16), (18), and (22), we get

‖xn+1 − x∗‖2 ≤ βnδ‖xn − x∗‖2 + γn‖wn − x∗‖2 + (1− βnτ − γn)[ζn‖xn − x∗‖2

+ (1− ζn)‖wn − x∗‖2] + 2βn〈( f − ρF)x∗, xn+1 − x∗〉
≤ βnδ‖xn − x∗‖2 + γn[‖xn − x∗‖2 + αn‖xn − xn−1‖(2‖xn − x∗‖+ αn‖xn − xn−1‖)]
+ (1− βnτ − γn){ζn‖xn − x∗‖2 + (1− ζn)[‖xn − x∗‖2 + αn‖xn − xn−1‖(2‖xn − x∗‖
+ αn‖xn − xn−1‖)]}+ 2βn〈( f − ρF)x∗, xn+1 − x∗〉
≤ [1− βn(τ − δ)]‖xn − x∗‖2 + βn(τ − δ) · [ 2〈( f−ρF)x∗ ,xn+1−x∗〉

τ−δ + 3M
τ−δ ·

αn
βn
· ‖xn − xn−1‖],

(23)

where M ≥ supn≥1{‖xn − x∗‖, αn‖xn − xn−1‖} for some M > 0.
For each n ≥ 0, we set

Γn = ‖xn − x∗‖2,
εn = βn(τ − δ),
ϑn = αn‖xn − xn−1‖3M + 2βn〈( f − ρF)x∗, xn+1 − x∗〉.

Then (23) can be rewritten as the following formula:

Γn+1 ≤ (1− εn)Γn + ϑn ∀n ≥ 0. (24)

We next show the convergence of {Γn} to zero by the following two cases:
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Case 1. Suppose that there exists an integer n0 ≥ 1 such that {Γn} is non-increasing. Then

Γn − Γn+1 → 0.

From (21), we get

γn(1− µ
λn

λn+1
)[‖wn − yn‖2 + ‖zn − yn‖2] ≤ Γn − Γn+1 + βn M4.

Since βn → 0, Γn − Γn+1 → 0, 1− µ λn
λn+1
→ 1− µ and {γn} ⊂ [a, b] ⊂ (0, 1), we have

lim
n→∞

‖wn − yn‖ = lim
n→∞

‖zn − yn‖ = 0. (25)

Using Lemma 1 (v), we deduce from (16) that

‖xn+1 − x∗‖2

= ‖βn f (xn) + γnTzn + ((1− γn)I − βnρF)vn − x∗‖2

= ‖βn( f (xn)− ρFvn) + γn(Tzn − x∗) + (1− γn)(vn − x∗)‖2

≤ ‖γn(Tzn − x∗) + (1− γn)(vn − x∗)‖2 + 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉
= γn‖Tzn − x∗‖2 + (1− γn)‖vn − x∗‖2 − γn(1− γn)‖Tzn − vn‖2

+ 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉
= γn‖Tzn − x∗‖2 + (1− γn)[ζn‖xn − x∗‖2 + (1− ζn)‖Tnwn − x∗‖2 − ζn(1− ζn)‖xn − Tnwn‖2]
− γn(1− γn)‖Tzn − vn‖2 + 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉
≤ γn‖zn − x∗‖2 + (1− γn)[ζn‖xn − x∗‖2 + (1− ζn)‖wn − x∗‖2 − ζn(1− ζn)‖xn − Tnwn‖2]
− γn(1− γn)‖Tzn − vn‖2 + 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉
≤ γn(‖xn − x∗‖+ βn M1)

2 + (1− γn)(‖xn − x∗‖+ βn M1)
2 − (1− γn)ζn(1− ζn)‖xn − Tnwn‖2

− γn(1− γn)‖Tzn − vn‖2 + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖
= (‖xn − x∗‖+ βn M1)

2 − (1− γn)ζn(1− ζn)‖xn − Tnwn‖2

− γn(1− γn)‖Tzn − vn‖2 + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖,

which immediately yields

(1− γn)ζn(1− ζn)‖xn − Tnwn‖2 + γn(1− γn)‖Tzn − vn‖2

≤ (‖xn − x∗‖+ βn M1)
2 − ‖xn+1 − x∗‖2 + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖

= Γn − Γn+1 + βn M1(2‖xn − x∗‖+ βn M1) + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖.

Since βn → 0, Γn − Γn+1 → 0, {γn} ⊂ [a, b] ⊂ (0, 1) and {ζn} ⊂ [c, d] ⊂ (0, 1),
we have

lim
n→∞

‖xn − Tnwn‖ = lim
n→∞

‖Tzn − vn‖ = 0. (26)

Using Lemma 1 (v) again, we have

‖Tzn − vn‖2 = ‖ζn(Tzn − xn) + (1− ζn)(Tzn − Tnwn)‖2

= ζn‖Tzn − xn‖2 + (1− ζn)‖Tzn − Tnwn‖2 − ζn(1− ζn)‖Tnwn − xn‖2.

So it follows from (26) and {ζn} ⊂ [c, d] ⊂ (0, 1) that

lim
n→∞

‖Tzn − xn‖ = lim
n→∞

‖Tzn − Tnwn‖ = 0. (27)

Therefore, from (25)–(27), we conclude that

‖wn − zn‖ ≤ ‖wn − yn‖+ ‖yn − zn‖ → 0 (n→ ∞), (28)

‖zn − Tnzn‖ ≤ ‖zn − wn‖+ ‖wn − xn‖+ ‖xn − Tnwn‖+ ‖Tnwn − Tnzn‖
≤ 2‖zn − wn‖+ ‖wn − xn‖+ ‖xn − Tnwn‖ → 0 (n→ ∞),

(29)

and
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‖xn+1 − xn‖ = ‖βn f (xn) + γnTzn + ((1− γn)I − βnρF)vn − xn‖
= ‖βn( f (xn)− ρFvn) + γn(Tzn − xn) + (1− γn)(vn − xn)‖
≤ βn‖ f (xn)− ρFvn‖+ γn‖Tzn − xn‖+ (1− γn)‖vn − xn‖
≤ βn(‖ f (xn)‖+ ‖ρFvn‖) + γn‖Tzn − xn‖+ (1− γn)(‖vn − Tzn‖+ ‖Tzn − xn‖)
≤ βn(‖ f (xn)‖+ ‖ρFvn‖) + ‖Tzn − xn‖+ ‖vn − Tzn‖ → 0 (n→ ∞).

(30)

Next, by the boundedness of {xn}, we know that ∃{xnk} ⊂ {xn} s.t.

lim sup
n→∞

〈( f − ρF)x∗, xn − x∗〉 = lim
k→∞
〈( f − ρF)x∗, xnk − x∗〉. (31)

Further we might assume that xnk ⇀ x̂. So, from (31) we have

lim sup
n→∞

〈( f − ρF)x∗, xn − x∗〉 = 〈( f − ρF)x∗, x̂− x∗〉. (32)

Noticing wn − xn → 0 and xnk ⇀ x̂, we obtain wnk ⇀ x̂. Since xn − xn+1 → 0, wn −
yn → 0, wn− zn → 0, zn− Tnzn → 0 (due to (25) and (28)–(30)) and wnk ⇀ x̂, by Lemma 10
we get x̂ ∈ Ω. So it follows from (17) and (32) that

lim sup
n→∞

〈( f − ρF)x∗, xn − x∗〉 = 〈( f − ρF)x∗, x̂− x∗〉 ≤ 0, (33)

which hence yields

lim sup
n→∞

〈( f − ρF)x∗, xn+1 − x∗〉

≤ lim sup
n→∞

[‖( f − ρF)x∗‖‖xn+1 − xn‖+ 〈( f − ρF)x∗, xn − x∗〉] ≤ 0.
(34)

Since {βn(τ − δ)} ⊂ [0, 1], ∑∞
n=1 βn(τ − δ) = ∞, and

lim sup
n→∞

[
2〈( f − ρF)x∗, xn+1 − x∗〉

τ − δ
+

3M
τ − δ

· αn

βn
· ‖xn − xn−1‖] ≤ 0,

by Lemma 4 we conclude from (23) that limn→0 ‖xn − x∗‖ = 0.

Case 2. Suppose that ∃{Γnk} ⊂ {Γn} s.t. Γnk < Γnk+1 ∀k ∈ N, where N is the set of all positive
integers. Define the mapping τ : N→ N by

τ(n) := max{k ≤ n : Γk < Γk+1}.

Using Lemma 7, we have

Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1.

Putting Γn = ‖xn − x∗‖2 ∀n ∈ N and using the same inference as in Case 1, we can
obtain

lim
n→∞

‖xτ(n)+1 − xτ(n)‖ = 0 (35)

and
lim sup

n→∞
〈( f − ρF)x∗, xτ(n)+1 − x∗〉 ≤ 0. (36)

Because of Γτ(n) ≤ Γτ(n)+1 and βτ(n) > 0, we conclude from (23) that

‖xτ(n) − x∗‖2 ≤ 2
τ−δ 〈( f − ρF)x∗, xτ(n)+1 − x∗〉+ 3M

τ−δ ·
ατ(n)
βτ(n)
· ‖xτ(n) − xτ(n)−1‖,

and hence
lim sup

n→∞
‖xτ(n) − x∗‖2 ≤ 0.
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Thus, we have
lim

n→∞
‖xτ(n) − x∗‖2 = 0.

Using (35), we obtain

‖xτ(n)+1 − x∗‖2 − ‖xτ(n) − x∗‖2

= 2〈xτ(n)+1 − xτ(n), xτ(n) − x∗〉+ ‖xτ(n)+1 − xτ(n)‖2

≤ 2‖xτ(n)+1 − xτ(n)‖‖xτ(n) − x∗‖+ ‖xτ(n)+1 − xτ(n)‖2 → 0 (n→ ∞).

Taking into account Γn ≤ Γτ(n)+1, we have

‖xn − x∗‖2 ≤ ‖xτ(n)+1 − x∗‖2

≤ ‖xτ(n) − x∗‖2 + 2‖xτ(n)+1 − xτ(n)‖‖xτ(n) − x∗‖+ ‖xτ(n)+1 − xτ(n)‖2.

It is easy to see from (35) that xn → x∗ as n→ ∞. This completes the proof.

Next, we introduce another Mann-type inertial subgradient extragradient algorithm.
Algorithm 2. Initialization: Let λ1 > 0, α > 0, µ ∈ (0, 1) and x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1), choose αn such that 0 ≤ αn ≤ ᾱn,

where

ᾱn =

{
min{α, τn

‖xn−xn−1‖
} if xn 6= xn−1,

α otherwise.
(37)

Step 2. Compute wn = xn + αn(xn − xn−1) and yn = PC(wn − λn Awn).
Step 3. Construct the half-space Cn := {z ∈ H : 〈wn − λn Awn − yn, z− yn〉 ≤ 0}, and

compute zn = PCn(wn − λn Ayn).
Step 4. Calculate vn = ζnxn + (1− ζn)Tzn and xn+1 = βn f (xn) + γnTnwn + ((1−

γn)I − βnρF)vn, and update

λn+1 =

{
min{µ ‖wn−yn‖2+‖zn−yn‖2

2〈Awn−Ayn ,zn−yn〉 , λn} if 〈Awn − Ayn, zn − yn〉 > 0,
λn otherwise.

(38)

Let n := n + 1 and return to Step 1.
It is worth pointing out that Lemmas 8–11 are still valid for Algorithm 2.

Theorem 2. Let the sequence {xn} be constructed by Algorithm 2. Then {xn} converges strongly
to the unique solution x∗ ∈ Ω of the following VIP:

〈(ρF− f )x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω.

Proof. Utilizing the same arguments as in the proof of Theorem 1, we deduce that there
exists a unique solution x∗ ∈ Ω = ∩N

i=0Fix(Ti) ∩VI(C, A) to the VIP (17).

We now claim that

(1− βnτ − γn)(1− ζn)(1− µ
λn

λn+1
)[‖wn − yn‖2 + ‖zn − yn‖2] ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + βn M4, (39)

for some M4 > 0. In fact, observe that

xn+1 − x∗ = βn( f (xn)− f (x∗)) + γn(Tnwn − x∗)
+ (1− γn)[(I − βn

1−γn
ρF)vn − (I − βn

1−γn
ρF)x∗] + βn( f − ρF)x∗,
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where vn := ζnxn + (1− ζn)Tzn. Using the similar arguments to those of (19) and (20),
we have

‖xn+1 − x∗‖2 ≤ βnδ‖xn − x∗‖2 + γn‖wn − x∗‖2 + (1− βnτ − γn){ζn‖xn − x∗‖2

+ (1− ζn)[‖wn − x∗‖2 − (1− µ λn
λn+1

)‖wn − yn‖2 − (1− µ λn
λn+1

)‖zn − yn‖2]}+ βn M2.

and
‖wn − x∗‖2 ≤ (‖xn − x∗‖+ βn M1)

2 ≤ ‖xn − x∗‖2 + βn M3,

where M2 ≥ supn≥1 2‖( f − ρF)x∗‖‖xn− x∗‖ for some M2 > 0 and M3 ≥ supn≥1(2M1‖xn−
x∗‖+ βn M2

1) for some M3 > 0. Combining the last inequalities, we obtain

‖xn+1 − x∗‖2

≤ βnδ‖xn − x∗‖2 + γn(‖xn − x∗‖2 + βn M3) + (1− βnτ − γn)(‖xn − x∗‖2 + βn M3)

− (1− βnτ − γn)(1− ζn)[(1− µ λn
λn+1

)‖wn − yn‖2 + (1− µ λn
λn+1

)‖zn − yn‖2] + βn M2

≤ ‖xn − x∗‖2 − (1− βnτ − γn)(1− ζn)(1− µ λn
λn+1

)[‖wn − yn‖2 + ‖zn − yn‖2] + βn M4,

where M4 := M2 + M3. This ensures that (39) holds.
Next we claim that

‖xn+1 − x∗‖2 ≤ [1− βn(τ − δ)]‖xn − x∗‖2

+ βn(τ − δ)[ 2
τ−δ 〈( f − ρF)x∗, xn+1 − x∗〉+ 3M

τ−δ ·
αn
βn
· ‖xn − xn−1‖]

(40)

for some M > 0. In fact, using the similar arguments to those of (22) and (23), we have

‖wn − x∗‖2 ≤ ‖xn − x∗‖2 + αn‖xn − xn−1‖[2‖xn − x∗‖+ αn‖xn − xn−1‖],

and

‖xn+1 − x∗‖2

≤ βnδ‖xn − x∗‖2 + γn‖wn − x∗‖2 + (1− βnτ − γn)[ζn‖xn − x∗‖2 + (1− ζn)‖zn − x∗‖2]
+ 2βn〈( f − ρF)x∗, xn+1 − x∗〉
≤ βnδ‖xn − x∗‖2 + (1− βnτ)[‖xn − x∗‖2 + αn‖xn − xn−1‖(2‖xn − x∗‖
+ αn‖xn − xn−1‖)] + 2βn〈( f − ρF)x∗, xn+1 − x∗〉
≤ [1− βn(τ − δ)]‖xn − x∗‖2 + αn‖xn − xn−1‖(2‖xn − x∗‖+ αn‖xn − xn−1‖)
+ 2βn〈( f − ρF)x∗, xn+1 − x∗〉
≤ [1− βn(τ − δ)]‖xn − x∗‖2 + βn(τ − δ) · [ 2〈( f−ρF)x∗ ,xn+1−x∗〉

τ−δ + 3M
τ−δ ·

αn
βn
· ‖xn − xn−1‖],

(41)

where M ≥ supn≥1{‖xn − x∗‖, αn‖xn − xn−1‖} for some M > 0.
For each n ≥ 0, we set

Γn = ‖xn − x∗‖2,
εn = βn(τ − δ),
ϑn = αn‖xn − xn−1‖3M + 2βn〈( f − ρF)x∗, xn+1 − x∗〉.

Then (41) can be rewritten as the following formula:

Γn+1 ≤ (1− εn)Γn + ϑn ∀n ≥ 0. (42)

We next show the convergence of {Γn} to zero by the following two cases:

Case 3. Suppose that there exists an integer n0 ≥ 1 such that {Γn} is non-increasing. Then

Γn − Γn+1 → 0.

Using the similar arguments to those of (25), we have

lim
n→∞

‖wn − yn‖ = lim
n→∞

‖zn − yn‖ = 0. (43)
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Using Lemma 1 (v), we get

‖xn+1 − x∗‖2

= ‖βn( f (xn)− ρFvn) + γn(Tnwn − x∗) + (1− γn)(vn − x∗)‖2

≤ ‖γn(Tnwn − x∗) + (1− γn)(vn − x∗)‖2 + 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉
= γn‖Tnwn − x∗‖2 + (1− γn)‖vn − x∗‖2 − γn(1− γn)‖Tnwn − vn‖2

+ 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉
= γn‖Tnwn − x∗‖2 + (1− γn)[ζn‖xn − x∗‖2 + (1− ζn)‖Tzn − x∗‖2 − ζn(1− ζn)‖xn − Tzn‖2]
− γn(1− γn)‖Tnwn − vn‖2 + 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉
≤ γn‖wn − x∗‖2 + (1− γn)[ζn‖xn − x∗‖2 + (1− ζn)‖zn − x∗‖2 − ζn(1− ζn)‖xn − Tzn‖2]
− γn(1− γn)‖Tnwn − vn‖2 + 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉
≤ γn(‖xn − x∗‖+ βn M1)

2 + (1− γn)(‖xn − x∗‖+ βn M1)
2 − (1− γn)ζn(1− ζn)‖xn − Tzn‖2

− γn(1− γn)‖Tnwn − vn‖2 + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖
= (‖xn − x∗‖+ βn M1)

2 − (1− γn)ζn(1− ζn)‖xn − Tzn‖2

− γn(1− γn)‖Tnwn − vn‖2 + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖,

which immediately yields

(1− γn)ζn(1− ζn)‖xn − Tzn‖2 + γn(1− γn)‖Tnwn − vn‖2

≤ (‖xn − x∗‖+ βn M1)
2 − ‖xn+1 − x∗‖2 + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖

= Γn − Γn+1 + βn M1(2‖xn − x∗‖+ βn M1) + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖.

Since βn → 0, Γn − Γn+1 → 0, {γn} ⊂ [a, b] ⊂ (0, 1) and {ζn} ⊂ [c, d] ⊂ (0, 1), we
have

lim
n→∞

‖xn − Tzn‖ = lim
n→∞

‖Tnwn − vn‖ = 0. (44)

Note that

‖Tnwn − vn‖2 = ‖ζn(Tnwn − xn) + (1− ζn)(Tnwn − Tzn)‖2

= ζn‖Tnwn − xn‖2 + (1− ζn)‖Tnwn − Tzn‖2 − ζn(1− ζn)‖Tzn − xn‖2.

Hence, from (44) we have

lim
n→∞

‖Tnwn − xn‖ = lim
n→∞

‖Tnwn − Tzn‖ = 0. (45)

So, from (43)–(45) we infer that

‖wn − zn‖ ≤ ‖wn − yn‖+ ‖yn − zn‖ → 0 (n→ ∞), (46)

‖zn − Tnzn‖ ≤ ‖zn − wn‖+ ‖wn − xn‖+ ‖xn − Tnwn‖+ ‖Tnwn − Tnzn‖
≤ 2‖zn − wn‖+ ‖wn − xn‖+ ‖xn − Tnwn‖ → 0 (n→ ∞),

(47)

and

‖xn+1 − xn‖ = ‖βn f (xn) + γnTnwn + ((1− γn)I − βnρF)vn − xn‖
= ‖βn( f (xn)− ρFvn) + γn(Tnwn − xn) + (1− γn)(vn − xn)‖
≤ βn‖ f (xn)− ρFvn‖+ γn‖Tnwn − xn‖+ (1− γn)‖vn − xn‖
≤ βn(‖ f (xn)‖+ ‖ρFvn‖) + γn‖Tnwn − xn‖+ (1− γn)(‖vn − Tnwn‖+ ‖Tnwn − xn‖)
≤ βn(‖ f (xn)‖+ ‖ρFvn‖) + ‖Tnwn − xn‖+ ‖vn − Tnwn‖ → 0 (n→ ∞).

(48)

In addition, using the similar arguments to those of (33) and (34), we have

lim sup
n→∞

〈( f − ρF)x∗, xn − x∗〉 ≤ 0,

and hence
lim sup

n→∞
〈( f − ρF)x∗, xn+1 − x∗〉 ≤ 0.

Consequently, applying Lemma 4 to (41), we have limn→0 ‖xn − x∗‖ = 0.
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Case 4. Suppose that ∃{Γnk} ⊂ {Γn} s.t. Γnk < Γnk+1 ∀k ∈ N, where N is the set of all positive
integers. Define the mapping τ : N → N by τ(n) := max{k ≤ n : Γk < Γk+1}. In the
remainder of the proof, using the same arguments as in Case 2 of the proof of Theorem 1,
we obtain the desired assertion. This completes the proof.

It is markable that our results improve and extend the corresponding results of
Kraikaew and Saejung [20] and Ceng et al. [11], in the following aspects.

(i) Our problem of finding an element of ∩N
i=0Fix(Ti) ∩VI(C, A) includes as a special

case the problem of finding an element of VI(C, A) in [20], where T1, ..., TN are nonexpan-
sive and T0 = T is quasi-nonexpansive. It is worth mentioning that Halpern’s subgradient
extragradient method for solving the VIP in [20] is extended to develop our Mann-type
inertial subgradient extragradient rule for solving the VIP and CFPP, in which A is L-
Lipschitz continuous, pseudomonotone on H, but it is not required to be sequentially
weakly continuous on C.

(ii) Our problem of finding an element of ∩N
i=0Fix(Ti) ∩VI(C, A) includes as a special

case the problem of finding an element of ∩N
i=1Fix(Ti) ∩VI(C, A) in [11], where in [11], A

is required to be L-Lipschitz continuous, pseudomonotone on H, and sequentially weakly
continuous on C. The modified inertial subgradient extragradient method for solving
the VIP and CFPP in [11] is extended to develop our Mann-type inertial subgradient
extragradient rule for solving the VIP and CFPP, where Ti is nonexpansive for i = 1, ..., N
and T0 = T is quasi-nonexpansive.

4. Applicability and Implementability of Algorithms

In this section, in order to support the applicability and implementability of our
Algorithms 1 and 2, we make use of our main results to find a common solution of the VIP
and CFPP in two illustrating examples.

Example 2. Let C = [−1, 1] and H = R with the inner product 〈a, b〉 = ab and induced norm
‖ · ‖ = | · |. Let x0, x1 ∈ H be arbitrary. Put f (x) = F(x) = 1

2 x, βn = 1
n+1 , τn = β2

n, µ =

0.2, α = λ1 = 0.1, γn = ζn = 1
3 , ρ = 2, and

αn =

{
min{ β2

n
‖xn−xn−1‖

, α} if xn 6= xn−1,
α otherwise.

Then we know that κ = η = 1
2 and τ = 1−

√
1− ρ(2η − ρκ2) = 1 ∈ (0, 1]. For N = 1, we

now present Lipschitz continuous and pseudomonotone mapping A, quasi-nonexpansive mapping
T and nonexpansive mapping T1 such that Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A) 6= ∅. Indeed, let
A, T, T1 : H → H be defined as Ax := 1

1+| sin x| −
1

1+|x| , T1x := sin x and Tx := x
2 sin x for all

x ∈ H. We first show that A is pseudomonotone and L-Lipschitz continuous with L = 2. Indeed,
it is easy to see that for all x, y ∈ H,

‖Ax− Ay‖ = | 1
1+‖ sin x‖ −

1
1+‖x‖ −

1
1+‖ sin y‖ +

1
1+‖y‖ |

≤ | ‖y‖−‖x‖
(1+‖x‖)(1+‖y‖) |+ |

‖ sin y‖−‖ sin x‖
(1+‖ sin x‖)(1+‖ sin y‖) |

≤ ‖x−y‖
(1+‖x‖)(1+‖y‖) +

‖ sin x−sin y‖
(1+‖ sin x‖)(1+‖ sin y‖)

≤ 2‖x− y‖,

and

〈Ax, y− x〉 = (
1

1 + | sin x| −
1

1 + |x| )(y− x) ≥ 0⇒ 〈Ay, y− x〉 = (
1

1 + | sin y| −
1

1 + |y| )(y− x) ≥ 0.

Furthermore, it is clear that Fix(T) = {0}, T is quasi-nonexpansive but not nonexpansive.
Meantime, I − T is demiclosed at 0 due to the continuity of T. In addition, it is clear that T1 is
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nonexpansive and Fix(T1) = {0}. Therefore, Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A) = {0} 6= ∅. In
this case, Algorithm 1 can be rewritten as follows:

wn = xn + αn(xn − xn−1),
yn = PC(wn − λn Awn),
zn = PCn(wn − λn Ayn),
vn = 1

3 xn +
2
3 T1wn,

xn+1 = 1
n+1 ·

1
2 xn +

1
3 Tzn + ( n

n+1 −
1
3 )vn ∀n ≥ 1,

(49)

where for each n ≥ 1, Cn and λn are chosen as in Algorithm 1. So, using Theorem 1, we know
that {xn} converges to 0 ∈ Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A). Meanwhile, Algorithm 2 can be
rewritten as follows:

wn = xn + αn(xn − xn−1),
yn = PC(wn − λn Awn),
zn = PCn(wn − λn Ayn),
vn = 1

3 xn +
2
3 Tzn,

xn+1 = 1
n+1 ·

1
2 xn +

1
3 T1wn + ( n

n+1 −
1
3 )vn ∀n ≥ 1,

(50)

where, for each n ≥ 1, Cn and λn are chosen as in Algorithm 2. So, using Theorem 2, we know that
{xn} converges to 0 ∈ Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A).

Example 3. Let H = L2([0, 1]) with the inner product and induced norm defined by

〈x, y〉 =
∫ 1

0
x(t)y(t)dt and ‖x‖ = (

∫ 1

0
|x(t)|2dt)1/2 ∀x, y ∈ H,

respectively. Then (H, 〈·, ·〉) is a Hilbert space. Let C := {x ∈ H : ‖x‖ ≤ 1} be the unit closed
ball of H. It is known that

PC(x) =

{
x
‖x‖ if ‖x‖ > 1,
x if ‖x‖ ≤ 1.

Let x0, x1 ∈ H be arbitrary. Put f (x) = F(x) = 1
2 x, βn = 1

n+1 , τn = β2
n, µ = 0.2, α =

λ1 = 0.1, γn = ζn = 1
3 , ρ = 2, and

αn =

{
min{ β2

n
‖xn−xn−1‖

, α} if xn 6= xn−1,
α otherwise.

Then we know that κ = η = 1
2 and τ = 1−

√
1− ρ(2η − ρκ2) = 1 ∈ (0, 1]. For N = 1, we

now present Lipschitz continuous and pseudomonotone mapping A, quasi-nonexpansive mapping
T and nonexpansive mapping T1 such that Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A) 6= ∅. Indeed, let
A, T, T1 : H → H be defined as (Ax)(t) := max{0, x(t)}, (T1x)(t) := 1

2 x(t)− 1
2 sin x(t) and

(Tx)(t) := 1
2 x(t) + 1

2 sin x(t) for all x ∈ H. It can be easily verified (see, e.g., [8,9]) that A is
monotone and L-Lipschitz continuous with L = 1, and the solution set of the VIP for A is given by

VI(C, A) = {0} 6= ∅.

We next show that T and T1 are nonexpansive and Fix(T) = Fix(T1) = {0}. Indeed, it is
easy to see that for all x, y ∈ H,

‖Tx− Ty‖ = (
∫ 1

0 |
1
2 (x(t)− y(t)) + 1

2 (sin x(t)− sin y(t))|2dt)1/2

≤ (
∫ 1

0 (
1
2 |x(t)− y(t)|+ 1

2 |x(t)− y(t)|)2dt)1/2

= (
∫ 1

0 |x(t)− y(t)|2dt)1/2

= ‖x− y‖.
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Similarly, we get ‖T1x− T1y‖ ≤ ‖x− y‖ ∀x, y ∈ H. Moreover, it is clear that Fix(T) =
Fix(T1) = {0}. Therefore, Ω = Fix(T1) ∩ Fix(T) ∩ VI(C, A) = {0} 6= ∅. In this case,
Algorithm 1 can be rewritten as follows:

wn = xn + αn(xn − xn−1),
yn = PC(wn − λn Awn),
zn = PCn(wn − λn Ayn),
vn = 1

3 xn +
2
3 T1wn,

xn+1 = 1
n+1 ·

1
2 xn +

1
3 Tzn + ( n

n+1 −
1
3 )vn ∀n ≥ 1,

(51)

where for each n ≥ 1, Cn and λn are chosen as in Algorithm 1. So, using Theorem 1, we know that
{xn} converges strongly to 0 ∈ Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A). Meantime, Algorithm 2 can
be rewritten as follows:

wn = xn + αn(xn − xn−1),
yn = PC(wn − λn Awn),
zn = PCn(wn − λn Ayn),
vn = 1

3 xn +
2
3 Tzn,

xn+1 = 1
n+1 ·

1
2 xn +

1
3 T1wn + ( n

n+1 −
1
3 )vn ∀n ≥ 1,

(52)

where for each n ≥ 1, Cn and λn are chosen as in Algorithm 2. So, using Theorem 2, we know that
{xn} converges strongly to 0 ∈ Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A).
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