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game. One of the main features of this game is that the weight matrix of the minimizer’s control
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developed an appropriate dual representation. By developing the variational derivatives of this
regularized cost functional, we apply Popov’s approximation method and show how the numerical
results coincide with the dual representation.
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1. Introduction

In this paper, we present a zero-sum differential game with linear dynamics and
a quadratic cost functional. Such games appear in many areas of control theory, for
example, robust controllability [1], pursuit-evasion [2–5], robust tracking [6] and robust
investment [7], to name but a few.

The singularity of such a game is caused by the weight matrix of the minimizer’s
control cost, meaning that problem of minimization its variational Hamiltonian with respect
to the minimizer control has either infinitely many solutions or no solutions. This makes
the game challenging, since it can not be solved by some well-known approaches, such as
the Isaacs min-max principle [8] and the Bellman–Isaacs equation [8–11].

Known techniques in the literature involve high order optimality conditions, but their
practical usage is quite limited and not general enough [2,5]. Regularization approaches
with additional assumption have been studied by several researchers, such as [12]. Other
related results include [13–15].

In [16] the differential game is tackled by introducing a cost functional containing
the minimizer’s control cost. A regularization approach is then considered, yielding an
auxiliary differential game with partial cheap control of the minimizer. While differential
games with total cheap control of at least one of the players has been studied enough
already—see, e.g., [1,6,17–20]—partial cheap control of at least one of the players has been
studied by only a few [16].

In the recent work of the authors [21], a saddle-point reformulation of the zero-sum
singular differential game was studied, and two gradient methods were presented and
analyzed. This work considering a slightly more general game than [16] and a pursuit–
evasion game illustrates the applicability of the numerical methods.

Following the above and as a continuing work of [21], the objectives of this work are
as follows:
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1. Introduce an appropriate cost functional that includes in addition to relative lateral
velocity, lateral relative separation.

2. For the above functional, develop a dual representation and present its variational
derivatives.

3. Present numerical calculations of the dual representation that gives the interception.
4. Validate the above via Popov’s approximation method.

The paper is organized as follows. We first recall some basic definitions and results in
Section 2. In Section 3, an interception game is considered. In Section 4, the dual represen-
tation of the game’s cost functional is derived, which follows by numerical validation of
the double projection methods for finding saddle points in Section 5. Final conclusions are
given in Section 6.

2. Preliminaries

A standard linear zero-sum differential game consists of constraint

dz(t)
dt

= Az(t) + Bu(t) + Cv(t), z(0) = z0, t ∈ [0, t f ], (1)

and a cost functional

J(u, v) , zT(t f )Fz(t f ) +

t f∫
0

[
zT(t)Dz(t) + uT(t)Guu(t)− vT(t)Gvv(t)

]
dt, (2)

to be minimized by u and maximized by v. The involved parameters in (1) and (2) are:
t f , a given final time moment; T, the transpose; En, an n dimensional Euclidean space;
z(t) ∈ En, a state vector; u(t) ∈ Er; (r ≤ n); v(t) ∈ Es, the players’ controls and quadratic
integrable; A, B and C are the given matrices, where B is fully ranked. Moreover, z0 ∈ En

is a given initial vector; F, D and Gu are given positive semi-definite symmetric matrices;
and Gv is a positive, definite symmetric matrix.

Next we recall several definitions.

Definition 1. The differential control game (1) and (2) is called singular if all or some of the
coordinates of the minimizer’s control are singular, that is, Gu = 0 or

Gu = diag

gu1 , . . . , guq , 0, . . . , 0︸ ︷︷ ︸
r−q

, guj > 0, j = 1, . . . , q, (3)

Definition 2. The control game (1) and (2) are called regular if the cost functional (2) for a small
enough ε > 0 has one of the following structures:

Jε(u, v) = z(t f )
T Fz(t f ) +

t f∫
0

[zT(t)Dz(t) + ε2uT(t)u(t)− vT(t)Gvv(t)]dt. (4)

Or

Jε(u, v) = zT(t f )Fz(t f ) +

t f∫
0

(
zT(t)Dz(t) + uT(t)(Gu + E)u(t)− vT(t)Gvv(t)

)
dt, (5)

where

Gu + E = diag

gu1 , . . . , guq , ε2, . . . , ε2︸ ︷︷ ︸
r−q

. (6)
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Such regular cheap/partial cheap control games were analyzed in [12,16,22,23] using
the study of the Riccati matrix differential equation for a finite-horizon game, and the
Riccati matrix algebraic equation fora n infinite-horizon game.

In this work we study an interception game, which is a special regular differential game, in
order to minimize with respect to u and maximize with respect to v the associated regularized
cost functional. This then suggested exploring the equivalent saddle-point reformulation.

Consider the Hilbert space L2[0, t f ] and let Q ⊆ L2[0, t f ] and R ⊆ L2[0, t f ] be two
closed, convex and bounded sets of admissible controls. Then, solving (1)–(4) is equivalent
to solving the following min-max problem.

min
u∈Q

max
v∈R

Jε(u, v) (7)

where Jε is continuous, convex–concave (convex in u and concave in v) and differentiable.
See [24] for further details.

A saddle-point reformulation of the min-max problem (7) is formulated as finding a
point (u∗, v∗) ∈ Q× R such that

Jε(u∗, v) ≤ Jε(u∗, v∗) ≤ Jε(u, v∗) (8)

for all v ∈ R and u ∈ Q.
Another known relationship with the above assumptions on Jε is the following varia-

tional inequality reformulation. The saddle-point problem (8) is equivalent to finding a
point (u∗, v∗) ∈ Q× R such that〈( δJε

δu (u
∗, v∗)

− δJε

δv (u
∗, v∗)

)
,
(

u
v

)
−
(

u∗

v∗

)〉
≥ 0 for all (u, v) ∈ Q× R

where 〈·, ·〉 is an appropriate inner product and δJε/(δu) and δJε/(δv) are the variational
derivatives of the functional Jε, as will be explained later (can be thought of as partial
derivatives in the case of real functions).

Saddle-point problems (as well as variational inequalities) stand at the core of many
real-world applications in convex programming, game theory and many more instances;
see, e.g., Rockafellar [25]. In [21] we considered two gradient methods for solving saddle-
point problems, the Arrow–Hurwicz–Uzawa algorithm [26] and Korpelevich’s extragradi-
ent method [27]; see also [28–32] and the many references therein.

These methods use gradients in each of their update rules. Thus we recall the varia-
tional/functional derivative definition next (see, for example, [33]).

Definition 3. Consider an integral functional J(x(t)) of an argument x(t). The variational/functional
derivative of J(x(t)) with respect to x(t), δJ

δx : [0, T] 7→ Rn is defined as

δJ(x(t))h(t) =
∫ t f

0

δJ
δx(t)

h(t)dt. (9)

Recall that for a function f : Rn 7→ R, the gradient ∇ f is defined by

d
dε

f (x + εh)|ε=0 = ∇ f (x) · h

Thus the variational derivative works similarly as such; that is,

d
dε

J(x + εh)|ε=0 = δJ(x) · h,

and with (9), we get
d
dε

J(x + εh)|ε=0 =
∫ t f

0

δJ
δx

h(t)dt. (10)
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Remark 1. In a more general setting, where the zero-sum differential cost functional is not differentiable,
subdifferentials/subgradients are needed; see [24,25,34] and references therein.

Now we recall the Arrow–Hurwicz–Uzawa method [26] and Korpelevich’s extragra-
dient method [27], which we applied in our previous paper [21]. For simplicity we present
the algorithms for solving variational inequalities, and clearly the translation to min-max
and saddle-point problems can be easily derived.

LetH1,H2 be two real Hilbert spaces and a bifunction F : H1 ×H2 → R with partial
derivatives ∇uF and ∇vF. Choose an arbitrary starting point (u0, v0) ∈ Q× R and step-
size α > 0. Given the current iterate (uk, vk), the Arrow–Hurwicz–Uzawa update rule is
formulated as follows: {

uk+1 = PQ(uk − α∇uF(uk, vk))
vk+1 = PR(vk + α∇vF(uk, vk))

(11)

where PQ and PR are the orthogonal projection operators for the sets Q and R, respectively.
A related modification with weaker convergence assumptions is Korpelevich’s method,

in which additional mid-points computations are done, corresponding to gradients, and
thus its known name is the extragradient method:

uk = PQ(uk − α∇uF(uk, vk))
vk = PR(vk + α∇vF(uk, vk))
uk+1 = PQ(uk − α∇uF(uk, vk))
vk+1 = PR(vk + α∇vF(uk, vk))

(12)

Although convergence of the extragradient method is guaranteed under weaker
assumptions than the Arrow–Hurwicz–Uzawa method, there is still the need to calculate
two evaluations of ∇F = (∇uF,∇vF) and two projections onto Q and R. One step in the
direction of simplifying the extragradient method with respect to the double projections
is Censor et al.’s [30,31] subgradient extragradient method. In this method, the second
orthogonal projection onto R is replaced by an easy computed projection onto some
constructible set Tk. 

uk = PQ(uk − α∇uF(uk, vk))
vk = PR(vk + α∇vF(uk, vk))
uk+1 = PTk (uk − α∇uF(uk, vk))
vk+1 = PTk (vk + α∇vF(uk, vk))

(13)

For avoiding the extra evaluations of ∇F per each iteration, Popov [35] proposed the
following modification introducing the so-called "leading" point:

uk = PQ(uk − α∇uF(uk, vk))
vk = PR(vk + α∇vF(uk, vk))
uk+1 = PQ(uk − α∇uF(uk, vk))
vk+1 = PR(vk + α∇vF(uk, vk))

A standard assumption, which we also use, for the convergence of the above methods,
is the so-called roundedness of the derivatives, which means that the functional derivatives
of Jε(uk, vk) and Jε(uk, vk) with respect to u and v, respectively, are uniformly bounded; i.e.,
there is a constant M > 0 such that∣∣∣∣∣∣∣∣ δJε(uk, vk)

δu(t)

∣∣∣∣∣∣∣∣ ≤ M,
∣∣∣∣∣∣∣∣ δJε(uk, vk)

δv(t)

∣∣∣∣∣∣∣∣ ≤ M, (14)

for all k ≥ 0.
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Since the introduction of the above methods, many modifications and extensions
have been offered using various techniques—inertial, hybrid, viscosity and more; see,
e.g., [36,37] and the references therein.

3. Interception Game

In this section we consider a particular singular problem (1)–(4), namely, n = 2, r = 1,
s = 1. The matrices of coefficients in (1) and (2) are

A =

(
0 1
0 0

)
, D =

(
0 0
0 0

)
, F =

(
f1 0
0 f2

)
(15)

BT = (0, 1), CT = (0, 1), Gv = g (16)

with the scalars g, f1, f2 > 0.
The initial position z0 is

zT
0 (0) = (0, 1). (17)

The system (1) subject to the data (15), (16) has the following form:{ dz1(t)
dt = z2(t)

dz2(t)
dt = u(t) + v(t)

(18)

The solution of (18) with initial position (17) has the following integral form:

z(t) =
(

z1(t)T | z2(t)T
)
= M(t)M(0)−1z0(0) +

∫ t

0
M(t)M(s)−1 f (s)ds, (19)

where

M(t) =
(

1 t
0 1

)
(20)

is a fundamental matrix solution of the corresponding homogeneous system{
dz1(t)

dt = z2(t)
dz2(t)

dt = 0
(21)

and

f (s) =
(

0
u(s) + v(s)

)
. (22)

Thus, the analytical solution (after some technical calculations in (19) with (20) and (22))
can be written as

z1(t) = t +
∫ t

0
(t− s)(u(s) + v(s))ds (23)

z2(t) = 1 +
∫ t

0
(u(s) + v(s))ds (24)

The system (18), with (17) is a linearized kinematic model of a planar engagement
between two vehicles—an interceptor (pursuer) and a target (evader) where both vehi-
cles are directly controlled by their lateral accelerations u(t) = −ap(t) and v(t) = ae(t),
respectively. The coordinates of the state vector z(t) = (z1(t), z2(t)) are the relative lateral
separation and the relative lateral velocity of the vehicles. The basic schematic view of the
planar engagement geometry is shown in Figure 1, where:

1. The x-axis of the coordinate system is aligned with the initial line of sight;
2. The points (xp, yp), (xe, ye) are the current coordinates;
3. The origin is collocated with the initial pursuer position;
4. Vp and Ve are the velocities;
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5. ap and ae are the lateral accelerations;
6. ϕp and ϕe are the respective aspect angles between velocities vectors and reference

line of sight;
7. y = ye − yp is the relative lateral separation normal to the initial sight of line;
8. r is the current range between the vehicles;
9. The line-of-sight angle λ is the angle between the current and initial lines of sight.

Figure 1. Geometry of the interception game.

More details of such an engagement can be found, for instance, in [38,39].
The behavior of each player in this singular game is evaluated by the following

regularized cost functional.

Jε(u, v) = f1z2
1(t f ) + f2z2

2(t f ) +
∫ t f

0

(
ε2u2(t)− gv2(t)

)
dt. (25)

The cost functional (25) has to be minimized by the pursuer u(t) and maximized by
the evader v(t).

The game, consisting of the dynamics (1), with the data (15) and (16), initial condition
(17) and cost functional (25) is called the interception differential game.

By combining the above data and definitions and substituting in the functional (25)
we obtain:

Jε(u, v) = f1

(
t f +

∫ t f

0

(
t f − t

)
(u(t) + v(t))dt

)
(26)

+ f2

(
1 +

∫ t f

0
(u(t) + v(t))dt

)2
+
∫ t f

0

(
ε2u2(t)− gv2(t)

)
dt.

For the numerical validation of the saddle-point approximation of this functional, we
next develop the appropriate variational derivatives.

Theorem 1. The variational derivatives of (26) are given by:

δJε

δu
= 2 f1(t f − t)

(
t f +

∫ t f

0
(t f − t)(u(t) + v(t))dt

)
(27)

+2 f2

(
1 +

∫ t f

0
(u(t) + v(t))dt

)
+ 2ε2u(t),
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and

δJε

δv
= 2 f1(t f − t)

(
t f +

∫ t f

0
(t f − t)(u(t) + v(t))dt

)
(28)

+2 f2

(
1 +

∫ t f

0
(u(t) + v(t))dt

)
− 2gv(t).

Proof. Our functional Jε has two dependent variables of t (u and v), and we have to find
the variational derivative with respect to u and v. In the view of above arguments, we have∫ t f

0

δJε

δu
h1(t)dt = δJε(u) · h1 =

∂

∂ε1
Jε(u + ε1h1, v + ε2h2)

∣∣∣(ε1,ε2)=(0,0) , (29)

and ∫ t f

0

δJε

δv
h2(t)dt = δJε(v) · h2 =

∂

∂ε2
Jε(u + ε1h1, v + ε2h2)

∣∣∣(ε1,ε2)=(0,0) . (30)

Equations (29) and (30) will render the functional derivatives δJε

δu and δJε

δv , respectively.
Therefore, we start with the (29):

∂

∂ε1
Jε(u + ε1h1, v + ε2h2)

∣∣∣(ε1,ε2)=(0,0)

=
∂

∂ε1

[
f1

(
t f +

∫ t f

0
(t f − t)(u(t) + ε1h1(t) + v(t) + ε2h2(t))dt

)2
]∣∣∣(ε1,ε2)=(0,0)

+
∂

∂ε1

[
f2

(
1 +

∫ t f

0
(u(t) + ε1h1(t) + v(t) + ε2h2(t))dt

)2
]∣∣∣(ε1,ε2)=(0,0)

+
∂

∂ε1

[∫ t f

0
(ε2(u(t) + ε1h1(t))2 − g(v(t) + ε2h2(t))2)dt

]∣∣∣(ε1,ε2)=(0,0)

= 2 f1

(
t f +

∫ t f

0
(t f − t)(u(t) + ε1h1(t) + v(t) + ε2h2(t))dt

) ∫ t f

0
(t f − t)h1(t)dt

∣∣∣(ε1,ε2)=(0,0)

+2 f2

(
1 +

∫ t f

0
(u(t) + ε1h1(t) + v(t) + ε2h2(t))dt

) ∫ t f

0
h1(t)dt

∣∣∣(ε1,ε2)=(0,0)

+
∫ t f

0
2ε2(u(t) + ε1h1(t))h1(t))dt

∣∣∣(ε1,ε2)=(0,0)

= 2 f1

(
t f +

∫ t f

0
(t f − t)(u(t) + v(t))dt

) ∫ t f

0
(t f − t)h1(t)dt

+2 f2

(
1 +

∫ t f

0
(u(t) + v(t))dt

) ∫ t f

0
h1(t)dt +

∫ t f

0
2ε2u(t)h1(t)dt

= 2 f1

(
t f

∫ t f

0
(t f − t)h1(t)dt +

∫ t f

0
(t f − t)(u(t) + v(t))dt

∫ t f

0
(t f − t)h1(t)dt

)
+2 f2

∫ t f

0

(
1 +

∫ t f

0
(u(t) + v(t))dt

)
h1(t)dt +

∫ t f

0
2ε2u(t)h1(t)dt

= 2 f1

(
t f

∫ t f

0
(t f − t)h1(t)dt +

∫ t f

0
(t f − t)

{∫ t f

0
(t f − t)(u(t) + v(t))dt

}
h1(t)dt

)
+2 f2

∫ t f

0

(
1 +

∫ t f

0
(u(t) + v(t))dt

)
h1(t)dt +

∫ t f

0
2ε2u(t)h1(t)dt.

The above expression together with (10) yield∫ t f

0

δJε

δu
h1(t)dt =

∫ t f

0

[
2 f1t f (t f − t) + 2 f1(T − t)

{∫ t f

0
(t f − t)(u(t) + v(t))dt

}
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+ 2 f2

(
1 +

∫ t f

0
(u(t) + v(t))dt

)
+ 2ε2u(t)

]
h1(t)dt.

It follows that the variational derivative of Jε with respect to u is given by

δJε

δu
= 2 f1t f (t f − t) + 2 f1(t f − t)

{∫ t f

0
(t f − t)(u(t) + v(t))dt

}
+2 f2

(
1 +

∫ t f

0
(u(t) + v(t))dt

)
+ 2ε2u(t).

with some simplifications, we obtain (27), and in a similar way we derive (28); and the
proof is complete.

4. Duality Representation

We consider the functional (26) with the constants f1, f2, g > 0 and a small parameter
ε > 0, and present its variational derivatives.

Theorem 2. The dual representation of the functional (26) is given by:

u∗(t) = − 1
2ε2 hT(t)`∗, (31)

v∗(t) =
1

2g
hT(t)`∗, (32)

where

`∗ = arg max
`∈E2

[
`Td− 1

4
`TG`

]
. (33)

or equivalently in scalar form

`∗ = arg max
`∈E2

[
`1t f + `2 −

1
4

(
`2

1
f 1

+
`2

2
f2

)
− 1

4
t f

(
1
ε2 −

1
g

)(
`2

1

t3
f

3
+ `1`2t f + `2

2

)]
(34)

and all the coefficients will be presented in the proof itself.

Proof. In the lines of [40], let us calculate the program maxi-min:

ρ = max
v(·)∈L2[0,t f ]

min
u(·)∈L2[0,t f ]

Jε (35)

Using [41]

zT Rz = max
`∈En

(
`Tz− 1

4
`T R−1`

)
, (36)

where R is symmetric positive definite matrix. Note that

f1z2
1(t f ) + f2z2

2(t f ) = zT(t f )Fz(t f ), (37)

in (25) where z = (z1, z2)
T ,

F =

[
f1 0
0 f2

]
. (38)

Then,
Jε = max

`∈E2
ϕ(`, u(·), v(·)), (39)

where

ϕ(`, u(·), v(·)) = `Tz(t f )−
1
4
`T F−1`+

t f∫
0

(
ε2u2(t)− gv2(t)

)
dt, (40)
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F−1 =


1
f1

0

0
1
f2

. (41)

Consequently,
ρ = max

v(·)
min
u(·)

max
`∈E2

ϕ(`, u(·), v(·)). (42)

Then (40) becomes:

ϕ(`, u(·), v(·)) = `1

t f +

t f∫
0

(
t f − t

)
(u(t) + v(t))dt

+ `2

1 +

t f∫
0

(u(t) + v(t))dt



−1
4

(
1
f1
`2

1 +
1
f2
`2

2

)
+

t f∫
0

(
ε2u2(t)− gv2(t)

)
dt =

`1T + `2 −
1
4

(
1
f1
`2

1 +
1
f2
`2

2

)
+ ϕu(`, u(·)) + ϕv(`, v(·)), (43)

where

ϕu(`, u(·)) ,
t f∫

0

[(
`1(t f − t) + `2

)
u(t) + ε2u2(t)

]
dt, (44)

ϕv(`, v(·)) ,
t f∫

0

[(
`1(t f − t) + `2

)
v(t)− gv2(t)

]
dt, (45)

In (42), the operations of maximum over ` ∈ E2 and minimum over u(·) ∈ L2[0, t f ]
commute. Therefore,

ρ = max
`∈E2

max
v(·)

min
u(·)

ϕ(`, u(·), v(·)) =

max
`1,`2∈E

[
`1t f + `2 −

1
4

(
1
f1
`2

1 +
1
f2
`2

2

)
+ min

u(·)
ϕu(`, u(·)) + max

v(·)
ϕv(`, v(·))

]
. (46)

The inner minimizer and maximizer in (46) are

u∗(t, `) = −
`1(t f − t) + `2

2ε2 , (47)

v∗(t, `) =
`1(t f − t) + `2

2g
. (48)

Substituting (47) and (48) into (43),

χ(`) = ϕ(`, u∗(·, `), v∗(·, `)) =

`1T + `2 −
1
4

(
1
f1
`2

1 +
1
f2
`2

2

)
+ ϕu(`, u∗(·, `) + ϕv(`, v∗(·, `)) = (49)

`Td− 1
4
`TG`,

where
d = (T, 1)T , (50)

G = F−1 + µ

t f∫
0

h(t)hT(t)dt, (51)
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µ =
1
ε2 −

1
g

, (52)

h(t) = (t f − t, 1)T . (53)

Thus,

G =


1
f 1 +

µt3
f

3

µt2
f

2

µt2
f

2
1
f 2 + µt f

 (54)

Observe that the above is associated with the theory of symmetrical matrices [42].
Moreover, note that the studied interception differential game is solvable if the matrix G
given by (54) is positive definite. Hence, the desired result has been obtained.

5. Numerical Validation

In this section we examine the numerical behavior of the double projection methods
described in Section 2 (Arrow–Hurwicz–Uzawa [26], Korpelevich’s extragradient [27] and
Popov [35]). We show that under boundedness of the derivatives assumption (14) the
results such as ε → 0+ coincide with the dual development of the previous section. We
choose g = 4, f1, f2 = 0.5, t f = 4 and present the results for ε = 0.1, 0.01, 0.001. Observe
that the Tables 1–3 and Figures 2–6 show that for ε→ 0+, the values z1(4) and z2(4) go to
zero, meaning that the relative lateral velocity z2 and relative lateral separation z1 of the
vehicles tend to zero at the end of the game, and the objective of the interception control is
achieved. Observe also that the graphs of the inner minimizer and maximizer in Figure 2
coincide with the results in Table 2. Moreover, the values of the cost functional (26) decrease
to 0.

Since we barely noticed any major differences between the numerical methods, we
decided to present only the results of Popov [35].

Figure 2. u∗(t) and v∗(t).
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Figure 3. The relative lateral separation z1(t) for varying ε.

Figure 4. A zoom of z1(4) for varying ε.

Figure 5. The relative lateral velocity z2(t) for varying ε.

Figure 6. A zoom of z2(4) for varying ε.
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Table 1. Duality.

ε `1 `2 `∗

0.1 0.007417428195 −0.00977333591 0.009948188435
0.01 0.00007499156434 −0.00009997687968 0.00009999468885

0.001 7.499991563× 10−7 −9.999976875× 10−7 9.999994680× 10−7

Table 2. The inner minimizer and maximizer for varying ε.

ε u∗(t) v∗(t)

0.1 −0.9948188435 + 0.3708714098 · t 0.002487047109− 0.0009271785245 · t
0.01 −0.9999468885 + 0.3749578217 · t 0.00002499867221− 0.000009373945540 · t

0.001 −0.9999994690 + 0.3749995782 · t 2.499998672× 10−7 − 9.374989455× 10−8 · t

Table 3. Numerical calculations for varying ε.

ε z1(4) z2(4) the Cost Functional (26)

0.1 0.007417429 −0.009773335 0.009948188431
0.01 0.000074991 −0.000099977 0.00009999468883
0.001 7.49× 10−7 −0.000001 9.999994685× 10−7

6. Conclusions

In this work we presented a singular, zero-sum, linear-quadratic differential game in
which the weight matrix of the minimizer’s control cost in the cost functional is singular. As
an application we focused on an interception differential game and introduced a regularized
cost functional; we examined its dual representation and validated it via numerical schemes
for finding saddle points.
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