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Abstract: In this paper, we consider a norm based on the infinitesimal generator of the shift semigroup
in a direction. The relevance of such a focus is guaranteed by an abstract representation of a uniformly
elliptic operator by means of a composition of the corresponding infinitesimal generator. The main
result of the paper is a theorem establishing equivalence of norms in functional spaces. Even
without mentioning the relevance of this result for the constructed theory, we claim it deserves to be
considered itself.
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1. Introduction

In theoretical mathematics, such abstract notions as norm equivalence, embedding of
spaces, and compact embedding of spaces have a significance comparable with the one
of various natural phenomena in physics. The era of these abstract notions became after
the time when Russian mathematician A.A. Dezin in 1953 had published the paper [1].
Ten years later, S.L. Sobolev appeared on the scientific scene, and his paper [2] became
well-known all over the world and enormously increased the interest of the global scientific
society to the topic. In 1971, R.A. Adams obtained a similar result comparable in its
significance for unbounded domains [3]. Nowadays, many authors pay attention to the
topic and many special results [4–6] as well as ones that are in the framework of the newly
created theories of mathematics [7–11] have been recognized as relevant. Thus, inspired by
the paper [12] written by I.A. Kiprianov, we want to make a modest contribution to the
theory. However, not only has the popularity and beauty of classical mathematics have
motivated us to write this, but also some of the facts that inspired us lie in the fractional
calculus theory. Basically, an event in which a differential operator with a fractional
derivative in final terms underwent a careful study [13,14] has played an important role
in our research. It is remarkable that various approaches exist to study the operator and
one of them is based on an opportunity to represent it in a sum. Here, we should note
that this method works if one of the summands is selfadjoint or normal. Thus, in the
case corresponding to a selfadjoint summand, we can partially solve the problem having
applied the results of the perturbation theory, within the framework of which the following
papers are well-known [15–20]. In other cases, we can use methods of [21], which are
relevant if we deal with non-selfadjoint operators. In the paper [22], we explore a special
operator class for which a number of spectral theory theorems can be applied. Furthermore,
we construct an abstract model of a differential operator in terms of m-accretive operators
and call it an m-accretive operator transform, and we find such conditions that, being
imposed, guarantee that the transform belongs to the class. One of them is a compact
embedding of a space generated by an m-accretive operator (infinitesimal generator) into
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the initial Hilbert space. Note that, in the case corresponding to the second order operator
with the Kiprianov operator in final terms, we obtain the embedding mentioned above in
the one-dimensional case only. In this paper, we try to reveal this problem, and the main
result is a theorem establishing equivalence of norms in function spaces which provides
a compact embedding of a space generated by the infinitesimal generator of the shift
semigroup in a direction into the Lebsgue space. We claim that the result is novel, and
we should also note the fact that gives us a rather abstract view on the issue, for we
pursue exceptionally theoretical goals and the majority of them involve how to describe the
uniformly elliptic and fractional integro-differential operators considered in [22] in terms
of the infinitesimal generator of the shift semigroup in a direction. As for relevance that is
more fundamental than applied, as it often occurs with such kind of results, we should turn
to the series of papers by I.A. Kiprianov devoted to an alternative branch of the fractional
calculus theory [12,23,24]. The author introduced a directional fractional derivative later
represented in [21] as a fractional power of the shift semigroup in a direction. Modern
results also exist; for instance, in the paper [25], the approach based on directional fractional
integro-differentiation was implemented. The progress in this area of research brings us to
the paper [22], the main result of which, by virtue of the results obtained in this paper, can
be reformulated in terms of the infinitesimal generator of the shift semigroup in a direction.
Eventually, we may say that an opportunity to apply spectral theorems [22] in the natural
way becomes relevant not only due to the application part, but a better comprehension of
the mathematical phenomenon.

The paper is organized as follows: In Section 1, a brief historical review as well as
some facts that motivated the author to write the paper is presented. In Section 2, some
denotations and notions that are used throughout the paper are presented. Section 3 is
devoted to the central results of the paper that are rather fundamental; this also contains
two subsections, and each of them is devoted to finding connections between the main
results and a concrete mathematical concept, the relevant mathematical objects such as a
uniformly elliptic operator, and a fractional integro-differential operator are considered.

2. Preliminaries

Let C, Ci, i ∈ N0 be real constants. We assume that a value of C is positive and can
be different in various formulas, but values of Ci are certain. Furthermore, if the contrary
is not stated, we consider linear densely defined operators acting on a separable complex
Hilbert space H. Denote by B(H) the set of linear bounded operators on H. Denote by L̃ the
closure of an operator L. Denote by D(L), R(L), N(L) the domain, the range, and the kernel or
null space of an operator L, respectively. The deficiency (codimension) of R(L), dimension
of N(L) are denoted by def T, nul T, respectively. In accordance with the terminology
of the monograph [26], the set Θ(L) := {z ∈ C : z = (L f , f )H, f ∈ D(L), ‖ f ‖H = 1} is
called the numerical range of an operator L. Consider a pair of complex Hilbert spaces H,H+,
the notation H+ ⊂⊂ H means that H+ is dense in H as a set of elements, and we have
a bounded embedding provided by the inequality ‖ f ‖H ≤ C0‖ f ‖H+ , C0 > 0, f ∈ H+.
Moreover, any bounded set with respect to the norm H+ is compact with respect to
the norm H. An operator L is called bounded from below if the following relation holds
Re(L f , f )H ≥ γL‖ f ‖2

H, f ∈ D(L), γL ∈ R, where γL is called a lower bound of L. An
operator L is called accretive if γL = 0. An operator L is called strictly accretive if γL > 0. An
operator L is called m-accretive if the next relation holds (L + ζ)−1 ∈ B(H), ‖(L + ζ)−1‖ ≤
(Reζ)−1, Reζ > 0. Assume that Tt, (0 ≤ t < ∞) is a semigroup of bounded linear operators
on H, by definition put

A f = − lim
t→+0

(
Tt − I

t

)
f ,

where D(A) is a set of elements for which the last limit exists in the sense of the norm H. In
accordance with definition ([27,28], p. 1), the operator—A is called the infinitesimal generator
of the semigroup Tt. Using notations of the paper [23], we assume that Ω is a convex domain,
with a sufficient smooth boundary (C3 class), of the n—dimensional Euclidean space En,
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P is a fixed point of the boundary ∂Ω, Q(r, e) is an arbitrary point of Ω; we denote by e a
unit vector having a direction from P to Q, denote by r = |P−Q| the Euclidean distance
between the points P, Q, and use the shorthand notation T := P + et, t ∈ R. We consider
the Lebesgue classes Lp(Ω), 1 ≤ p < ∞ of complex valued functions. For the function
f ∈ Lp(Ω), we have

∫
Ω

| f (Q)|pdQ =
∫
ω

dχ

d(e)∫
0

| f (Q)|prn−1dr < ∞, (1)

where dχ is an element of a solid angle of the unit sphere surface (the unit sphere belongs
to En), and ω is a surface of this sphere, d := d(e) is the length of the segment of the
ray going from the point P in the direction e within the domain Ω. We use a shorthand
notation P · Q = PiQi = ∑n

i=1 PiQi for the inner product of the points P = (P1, P2, ..., Pn),
Q = (Q1, Q2, ..., Qn), which belong to En. Denote by Di f a weak partial derivative of the
function f with respect to a coordinate variable with index 1 ≤ i ≤ n. We assume that all
functions have a zero extension outside of Ω̄. Furthermore, unless otherwise stated, we use
notations of the papers [23,24,26].

Lemma 1. Assuming that L is a closed densely defined operator, the following condition holds:

‖(L + t)−1‖R→H ≤
1
t

, t > 0, (2)

where a notation R := R(L + t) is used. Then, the operator L is m-accretive.

Proof. Using (2), consider

‖ f ‖2
H ≤

1
t2 ‖(L + t) f ‖2

H; ‖ f ‖2
H ≤

1
t2

{
‖L f ‖2

H + 2tRe(L f , f )H + t2‖ f ‖2
H

}
;

t−1‖L f ‖2
H + 2Re(L f , f )H ≥ 0, f ∈ D(L).

Let t be tended to infinity, then we obtain

Re(L f , f )H ≥ 0, f ∈ D(L). (3)

It means that the operator L is accretive. Due to (3), we have {λ ∈ C : Reλ < 0} ⊂
∆(L), where ∆(L) = C \ Θ(L). Applying Theorem 3.2 ([26], p. 268), we obtain that
L − λ has a closed range and nul(L − λ) = 0, def(L − λ) = const, ∀λ ∈ ∆(L). Let
λ0 ∈ ∆(L), Reλ0 < 0. Note that, as a consequence of inequality (3), we have

Re( f , (L− λ) f )H ≥ −Reλ‖ f ‖2
H, f ∈ D(L). (4)

Since the operator L− λ0 has a closed range, then

H = R(L− λ0)⊕ R(L− λ0)
⊥.

We remark that the intersection of the sets D(L) and R(L− λ0)
⊥ is zero because, if

we assume the contrary, then applying inequality (4), for arbitrary element f ∈ D(L) ∩
R(L− λ0)

⊥, we get
−Reλ0‖ f ‖2

H ≤ Re( f , [L− λ0] f )H = 0,

hence f = 0. It implies that

( f , g)H = 0, ∀ f ∈ R(L− λ0)
⊥, ∀g ∈ D(L).
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Since D(L) is a dense set in H, then R(L− λ0)
⊥ = 0. It implies that def(L− λ0) = 0,

and, if we take into account Theorem 3.2 ([26], p. 268), then we come to the conclusion that
def(L− λ) = 0, ∀λ ∈ ∆(L), hence the operator L is m-accretive. The proof is complete.

Assume that Ω ⊂ En is a convex domain, with a sufficient smooth boundary (C3 class)
of the n-dimensional Euclidian space. For the sake of the simplicity, we consider that Ω
is bounded. Consider the shift semigroup in a direction acting on L2(Ω) and defined as
follows Tt f (Q) = f (Q + et), where Q ∈ Ω, Q = P + er. The following lemma establishes
a property of the infinitesimal generator −A of the semigroup Tt.

Lemma 2. We claim that A = Ã0, N(A) = 0, where A0 is a restriction of A on the set C∞
0 (Ω).

Proof. Let us show that Tt is a strongly continuous semigroup (C0 semigroup). It can
be easily established due to the continuity in average property. Using the Minkowskii
inequality, we have

∫
Ω

| f (Q + et)− f (Q)|2dQ


1
2

≤


∫
Ω

| f (Q + et)− fm(Q + et)|2dQ


1
2

+


∫
Ω

| f (Q)− fm(Q)|2dQ


1
2

+


∫
Ω

| fm(Q)− fm(Q + et)|2dQ


1
2

= I1 + I2 + I3 < ε,

where f ∈ L2(Ω), { fn}∞
1 ⊂ C∞

0 (Ω); m is chosen so that I1, I2 < ε/3, and t is chosen so that
I3 < ε/3. Thus, there exists such a positive number t0 that

‖Tt f − f ‖L2 < ε, t < t0,

for arbitrary small ε > 0. Hence, in accordance with the definition, Tt is a C0 semigroup.
Using the assumption that all functions have the zero extension outside Ω̄, we have
‖Tt‖ ≤ 1. Hence, we conclude that Tt is a C0 semigroup of contractions (see [27]). Hence,
by virtue of Corollary 3.6 ([27], p. 11), we have

‖(λ + A)−1‖ ≤ 1
Reλ

, Reλ > 0. (5)

Inequality (5) implies that A is m-accretive. It is a well-known fact that an infinitesimal
generator −A is a closed operator, hence A0 is closeable. It is not hard to prove that Ã0 is
an m-accretive operator. For this purpose, let us rewrite relation (5) in the form

‖(λ + Ã0)
−1‖R→H ≤

1
Reλ

, Reλ > 0.

Applying Lemma 1, we obtain that Ã0 is an m-accretive operator. Note that there does not
exist an accretive extension of an m-accretive operator (see [26]). On the other hand, it is
clear that Ã0 ⊂ A. Thus, we conclude that Ã0 = A. Consider an operator

B f (Q) =
∫ r

0
f (P + e[r− t])dt, f ∈ L2(Ω).

It is not hard to prove that B ∈ B(L2); applying the generalized Minkowskii inequality,
we get

‖B f ‖L2 ≤
diam Ω∫

0

dt

∫
Ω

| f (P + e[r− t])|dQ

1/2

≤ C‖ f ‖L2 .
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Note that the fact A−1
0 ⊂ B, follows from the properties of the one-dimensional

integral defined on smooth functions. Using Theorem 2 ([29], p. 555), the proved above

fact Ã0 = A, we deduce that A−1 = Ã−1
0 , hence A−1 ⊂ B. The proof is complete.

3. Main Results

Consider a linear space Ln
2 (Ω) := { f = ( f1, f2, . . . , fn), fi ∈ L2(Ω)}, endowed with

the inner product

( f , g)Ln
2
=
∫
Ω

( f , g)En dQ, f , g ∈ Ln
2 (Ω).

It is clear that this pair forms a Hilbert space and let us use the same notation Ln
2 (Ω)

for it. Consider a sesquilinear form

t( f , g) :=
n

∑
i=1

∫
Ω

( f , ei)En(g, ei)En dQ, f , g ∈ Ln
2 (Ω),

where ei corresponds to Pi ∈ ∂Ω, i = 1, 2, ..., n (i.e., Q = Pi + eir).

Lemma 3. The points Pi ∈ ∂Ω, i = 1, 2, ..., n can be chosen so that the form t generates an
inner product.

Proof. It is clear that we should only establish an implication t( f , f ) = 0 ⇒ f = 0. Since
Ω ∈ En, then, without a loss of generality, we can assume that there exists Pi ∈ ∂Ω,
i = 1, 2, ..., n, such that

∆ =

∣∣∣∣∣∣∣∣
P11 P12 ... P1n
P21 P22 ... P2n
... ... ... ...

Pn1 Pn2 ... Pnn

∣∣∣∣∣∣∣∣ 6= 0, (6)

where Pi = (Pi1, Pi2, ..., Pin). It becomes clear if we remind readers that, in the contrary case,
for arbitrary set of points Pi ∈ ∂Ω, i = 1, 2, ..., n, we have

Pn =
n−1

∑
k=1

ckPk, ck = const.

From what follows this, we can consider Ω at least as a subset of En−1. Continuing this
line of reasoning, we can find such a dimension p that a corresponding ∆ 6= 0 and further
assume that Ω ∈ Ep. Consider a relation

n

∑
i=1

∫
Ω

|(ψ, ei)En |2dQ = 0, ψ ∈ Ln
2 (Ω).

It follows that (ψ(Q), ei)En = 0 a.e. i = 1, 2, ..., n. Note that every Pi corresponds to

the set ϑi := {Q ⊂ ϑi : (ψ(Q), ei)En 6= 0}. Considering Ω′ = Ω\
n⋃

i=1
ϑi, it is clear that

mess
(

n⋃
i=1

ϑi

)
= 0. Note that, due to this construction created, we can reformulate the

above relation obtained in the coordinate form
(P11 −Q1)ψ1(Q) + (P12 −Q2)ψ2(Q) + ... + (P1n −Qn)ψn(Q) = 0

(P21 −Q1)ψ1(Q) + (P22 −Q2)ψ2(Q) + ... + (P2n −Qn)ψn(Q) = 0

... ... ...

(Pn1 −Q1)ψ1(Q) + (Pn2 −Q2)ψ2(Q) + ... + (Pnn −Qn)ψn(Q) = 0

,
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where ψ = (ψ1, ψ2, ..., ψn), Q = (Q1, Q2, ..., Qn), Q ∈ Ω′. Therefore, if we prove that

Λ(Q) =

∣∣∣∣∣∣∣∣
P11 −Q1 P12 −Q2 ... P1n −Qn
P21 −Q1 P22 −Q2 ... P2n −Qn

... ... ... ...
Pn1 −Q1 Pn2 −Q2 ... Pnn −Qn

∣∣∣∣∣∣∣∣ 6= 0 a.e.,

then we obtain ψ = 0 a.e. Assume, on the contrary, i.e., that there exists such a set
Υ ⊂ Ω, mess Υ 6= 0, that Λ(Q) = 0, Q ∈ Υ. We have∣∣∣∣∣∣∣∣

P11 −Q1 P12 −Q2 ... P1n −Qn
P21 −Q1 P22 −Q2 ... P2n −Qn

... ... ... ...
Pn1 −Q1 Pn2 −Q2 ... Pnn −Qn

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

P11 P12 ... P1n
P21 −Q1 P22 −Q2 ... P2n −Qn

... ... ... ...
Pn1 −Q1 Pn2 −Q2 ... Pnn −Qn

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣
Q1 Q2 ... Qn

P21 −Q1 P22 −Q2 ... P2n −Qn
... ... ... ...

Pn1 −Q1 Pn2 −Q2 ... Pnn −Qn

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

P11 P12 ... P1n
P21 P22 ... P2n
... ... ... ...

Pn1 −Q1 Pn2 −Q2 ... Pnn −Qn

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣
P11 P12 ... P1n
Q1 Q2 ... Qn
... ... ... ...

Pn1 −Q1 Pn2 −Q2 ... Pnn −Qn

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣

Q1 Q2 ... Qn
P21 P22 ... P2n
... ... ... ...

Pn1 −Q1 Pn2 −Q2 ... Pnn −Qn

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
P11 P12 ... P1n
P21 P22 ... P2n
... ... ... ...

Pn1 Pn2 ... Pnn

∣∣∣∣∣∣∣∣−
n

∑
j=1

∆j = 0,

where

∆j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P11 P12 ... P1n
P21 P22 ... P2n
... ... ... ...

Pj−1 1 Pj−1 2 ... Pj−1 n
Q1 Q2 ... Qn

Pj+1 1 Pj+1 2 ... Pj+1 n
... ... ... ...

Pn1 Pn2 ... Pnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Therefore, we have
n

∑
j=1

∆j/∆ = 1,

since ∆ 6= 0. Hence, we can treat the above matrix constructions in the way that gives us
the following representation:

n

∑
j=1

αjPj = Q,
n

∑
j=1

αj = 1, αj = ∆j/∆.

Now, let us prove that Υ belongs to a hyperplane in En, and we have∣∣∣∣∣∣∣∣
P11 −Q1 P12 −Q2 ... P1n −Qn
P21 − P11 P22 − P12 ... P2n − P1n

... ... ... ...
Pn1 − Pn−1 1 Pn2 − Pn−1 2 ... Pnn − Pn−1 n

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

P11 P12 ... P1n
P21 P22 ... P2n
... ... ... ...

Pn1 Pn2 ... Pnn

∣∣∣∣∣∣∣∣
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−

∣∣∣∣∣∣∣∣
Q1 Q2 ... Qn

P21 − P11 P22 − P12 ... P2n − P1n
... ... ... ...

Pn1 − Pn−1 1 Pn2 − Pn−1 2 ... Pnn − Pn−1 n

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
P11 P12 ... P1n
P21 P22 ... P2n
... ... ... ...

Pn1 Pn2 ... Pnn

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣∣

n
∑

j=1
αjPj1

n
∑

j=1
αjPj2 ...

n
∑

j=1
αjPjn

P21 − P11 P22 − P12 ... P2n − P1n
... ... ... ...

Pn1 − Pn−1 1 Pn2 − Pn−1 2 ... Pnn − Pn−1 n

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
P11 P12 ... P1n
P21 P22 ... P2n
... ... ... ...

Pn1 Pn2 ... Pnn

∣∣∣∣∣∣∣∣−
n

∑
j=1

αj

∣∣∣∣∣∣∣∣
Pj1 Pj2 ... Pjn

P21 − P11 P22 − P12 ... P2n − P1n
... ... ... ...

Pn1 − Pn−1 1 Pn2 − Pn−1 2 ... Pnn − Pn−1 n

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
P11 P12 ... P1n
P21 P22 ... P2n
... ... ... ...

Pn1 Pn2 ... Pnn

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣

P11 P12 ... P1n
P21 P22 ... P2n
... ... ... ...

Pn1 Pn2 ... Pnn

∣∣∣∣∣∣∣∣
n

∑
j=1

αj

=

∣∣∣∣∣∣∣∣
P11 P12 ... P1n
P21 P22 ... P2n
... ... ... ...

Pn1 Pn2 ... Pnn

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣

P11 P12 ... P1n
P21 P22 ... P2n
... ... ... ...

Pn1 Pn2 ... Pnn

∣∣∣∣∣∣∣∣ = 0.

Hence, Υ belongs to a hyperplane generated by the points Pi, i = 1, 2, ..., n. Therefore,
messΥ = 0, and we obtain ψ = 0 a.e. The proof is complete.

Consider a pre Hilbert space Ln
2 (Ω) := { f : f ∈ Ln

2 (Ω)} endowed with the in-
ner product

( f , g)Ln
2

:=
n

∑
i=1

∫
Ω

( f , ei)En(g, ei)En dQ, f , g ∈ Ln
2 (Ω),

where ei corresponds to Pi ∈ ∂Ω, i = 1, 2, ..., n condition (6) holds. The following theorem
establishes a norm equivalence:

Theorem 1. The norms ‖ · ‖Ln
2

and ‖ · ‖Ln
2

are equivalent.

Proof. Consider the space Ln
2 (Ω) and a functional ϕ( f ) := ‖ f ‖Ln

2
, f ∈ Ln

2 (Ω). Let us prove
that ϕ( f ) ≥ C, f ∈ U, where U := { f ∈ Ln

2 (Ω), ‖ f ‖Ln
2
= 1}. Assume, on the contrary,

then there exists such a sequence {ψk}∞
1 ⊂ U, that ϕ(ψk)→ 0, k→ ∞. Since the sequence

{ψk}∞
1 is bounded, then we can extract a weekly convergent subsequence {ψkj

}∞
1 and claim

that the week limit ψ of the sequence {ψkj
}∞

1 belongs to U. Consider a functional

Lg( f ) :=
n

∑
i=1

∫
Ω

( f , ei)En(g, ei)En dQ, f , g ∈ Ln
2 (Ω).

Due to the following obvious chain of the inequalities

|Lg( f )| ≤
n

∑
i=1


∫
Ω

|( f , ei)En |2dQ


1
2

∫
Ω

|(g, ei)En |2dQ


1
2

≤ n‖ f ‖Ln
2
‖g‖Ln

2
, f , g ∈ Ln

2 (Ω), (7)
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we see that Lg is a linear bounded functional on Ln
2 (Ω). Therefore, by virtue of the weak

convergence of the sequence {ψkj
}, we have Lg(ψkj

)→ Lg(ψ), k j → ∞. On the other hand,
recall that, since it was supposed that ϕ(ψk)→ 0, k→ ∞, then we have ϕ(ψkj

)→ 0, k→ ∞.
Hence, applying (3), we conclude that Lg(ψkj

)→ 0, k j → ∞. Combining the given above
results, we obtain

Lg(ψ) =
n

∑
i=1

∫
Ω

(ψ, ei)En(g, ei)En dQ = 0, ∀g ∈ Ln
2 (Ω). (8)

Taking into account (8) and using the ordinary properties of Hilbert space, we obtain

n

∑
i=1

∫
Ω

|(ψ, ei)En |2dQ = 0.

Hence, in accordance with Lemma 3, we get ψ = 0 a.e. Notice that, by virtue of this
fact, we come to the contradiction with the fact ‖ψ‖Ln

2
= 1. Hence, the following estimate

is true: ϕ( f ) ≥ C, f ∈ U. Having applied the Cauchy Schwartz inequality to the Euclidian
inner product, we can also easily obtain ϕ( f ) ≤

√
n‖ f ‖Ln

2
, f ∈ Ln

2 (Ω). Combining the
above inequalities, we can rewrite these two estimates as follows: C0 ≤ ϕ( f ) ≤ C1, f ∈ U.
To make the issue clear, we can rewrite the previous inequality in the form

C0‖ f ‖Ln
2
≤ ϕ( f ) ≤ C1‖ f ‖Ln

2
, f ∈ Ln

2 (Ω), C0, C1 > 0. (9)

The proof is complete.

Consider a pre Hilbert space

H̃n
A :=

{
f , g ∈ C∞

0 (Ω), ( f , g)H̃n
A
=

n

∑
i=1

(Ai f , Aig)L2

}
,

where −Ai is an infinitesimal generator corresponding to the point Pi. Here, we should
point out that the form (·, ·)H̃n

A
generates an inner product due to the fact N(Ai) = 0,

i = 1, 2, ..., n proved in Lemma 2. Let us denote a corresponding Hilbert space by Hn
A.

Corollary 1. The norms ‖ · ‖Hn
A

and ‖ · ‖H1
0

are equivalent, and we have a bounded compact embedding

Hn
A ⊂⊂ L2(Ω).

Proof. Let us prove that
A f = −(∇ f , e)En , f ∈ C∞

0 (Ω).

Using the Lagrange mean value theorem, we have

∫
Ω

∣∣∣∣(Tt − I
t

)
f (Q)− (∇ f , e)En(Q)

∣∣∣∣2dQ =
∫
Ω

∣∣(∇ f , e)En(Qξ)− (∇ f , e)En(Q)
∣∣2dQ,

where Qξ = Q + eξ, 0 < ξ < t. Since the function (∇ f , e)En is continuous on Ω̄, then it
is uniformly continuous on Ω̄. Thus, for arbitrary ε > 0, a positive number δ > 0 can be
chosen so that ∫

Ω

∣∣(∇ f , e)En(Qξ)− (∇ f , e)En(Q),
∣∣2dQ < ε, t < δ,

from what follows the desired result. Taking it into account, we obtain
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‖A f ‖L2 =


∫
Ω

|(∇ f , e)En |2dQ


1/2

≤


∫
Ω

‖e‖2
En

n

∑
i=1
|Di f |2dQ


1/2

= ‖ f ‖H1
0
, f ∈ C∞

0 (Ω). (10)

Using this estimate, we easily obtain ‖ f ‖Hn
A
≤ C‖ f ‖H1

0
, f ∈ C∞

0 (Ω). On the other
hand, as a particular case of Formula (9), we obtain C0‖ f ‖H1

0
≤ ‖ f ‖Hn

A
, f ∈ C∞

0 (Ω).
Thus, we can combine the previous inequalities and rewrite them as follows: C0‖ f ‖H1

0
≤

‖ f ‖Hn
A
≤ C‖ f ‖H1

0
, f ∈ C∞

0 (Ω). Passing to the limit at the left-hand and right-hand side of
the last inequality, we get

C0‖ f ‖H1
0
≤ ‖ f ‖Hn

A
≤ C‖ f ‖H1

0
, f ∈ H1

0(Ω).

Combining the fact H1
0(Ω) ⊂⊂ L2(Ω), (Rellich–Kondrashov theorem) with the lower

estimate in the previous inequality, we complete the proof.

Remark 1. Note that the following relation follows directly from the definition

Ln
2 (Ω) = Ln

2 (Ω) = L2(Ω), n = 1.

By virtue of (10), it is also clear that

‖A f ‖L2(Ω) =


∫
Ω

|(∇ f , e)En |2dQ


1/2

= ‖ f ‖H1
0 (Ω), f ∈ C∞

0 (Ω), n = 1,

from what follows that Hn
A(Ω) = H1

0(Ω), n = 1.

Furthermore, we aim to represent some known operators in terms of the infinitesimal
generator of the shift semigroup in a direction and apply the obtained results to the
established representations. In this way, we come to natural conditions in terms of the
infinitesimal generator of the shift semigroup in a direction that allows us to apply theorems
(A)–(C) [22].

3.1. Uniformly Elliptic Operator in the Divergent Form

Consider a uniformly ecliptic operator

−T := −Dj(aijDi·), aij(Q) ∈ C2(Ω̄), aijξiξ j ≥ γa|ξ|2, γa > 0, i, j = 1, 2, ..., n,

D(T ) = H2(Ω) ∩ H1
0(Ω).

The following theorem gives us a key to apply results of the paper [22] in accordance
with which a number of spectral theorems can be applied to the operator −T . Moreover,
the conditions established bellow are formulated in terms of the operator A, which reveals
a mathematical nature of the operator −T .

Theorem 2. We claim that

− T =
1
n

n

∑
i=1

A∗i Gi Ai, (11)

and the following relations hold:

−Re(T f , f )L2 ≥ C‖ f ‖Hn
A

; |(T f , g)L2 | ≤ C‖ f ‖Hn
A
‖g‖Hn

A
, f , g ∈ C∞

0 (Ω),

where Gi are some operators corresponding to the operators Ai.
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Proof. It is easy to prove that

‖Ai f ‖L2 ≤ C‖ f ‖H1
0
, f ∈ H1

0(Ω). (12)

For this purpose, we should use a representation Ai f (Q) = −(∇ f , ei)En , f ∈ C∞
0 (Ω).

Applying the Cauchy–Schwarz inequality, we get

‖Ai f ‖L2 ≤


∫
Ω

|(∇ f , ei)En |2dQ


1/2

≤


∫
Ω

‖∇ f ‖2
En‖ei‖2

En dQ


1/2

= ‖ f ‖H1
0
, f ∈ C∞

0 (Ω).

Passing to the limit at the left-hand and right-hand side, we obtain (12). Thus, we get
H1

0(Ω) ⊂ D(Ai). Let us find a representation for the operator Gi. Consider the operators

Bi f (Q) =
∫ r

0
f (Pi + e[r− t])dt, f ∈ L2(Ω), i = 1, 2, ...n.

It is obvious that∫
Ω

Ai(BiT f · g)dQ =
∫
Ω

AiBiT f · g dQ +
∫
Ω

BiT f · Aig dQ, f ∈ C2(Ω̄), g ∈ C∞
0 (Ω). (13)

Using the divergence theorem, we get∫
Ω

Ai(BiT f · g) dQ =
∫
S

(ei, n)En(BiT f · g)(σ)dσ, (14)

where S is the surface of Ω. Taking into account that g(S) = 0 and combining (13) and (14),
we get

−
∫
Ω

AiBiT f · ḡ dQ =
∫
Ω

BiT f · Aig dQ, f ∈ C2(Ω̄), g ∈ C∞
0 (Ω). (15)

Supposing that f ∈ H2(Ω), then there exists a sequence { fn}∞
1 ⊂ C2(Ω̄) such that

fn
H2
−→ f (see ([29], p. 346)). Using this fact, it is not hard to prove that T fn

L2−→ T f .

Therefore, AiBiT fn
L2−→ T f , since AiBiT fn = T fn. It is also clear that BiT fn

L2−→ BiT f ,
since Bi is continuous (see proof of Lemma 2). Using these facts, we can extend relation (15)
to the following:

−
∫
Ω

T f · ḡ dQ =
∫
Ω

BiT f Aig dQ, f ∈ D(T ), g ∈ C∞
0 (Ω). (16)

Note that it was previously proved that A−1
i ⊂ Bi (see the proof of Lemma 2), H1

0(Ω) ⊂
D(Ai). Hence, Gi Ai f = BiT f , f ∈ D(T ), where Gi := BiT Bi. Using this fact, we can
rewrite relation (16) in a form

−
∫
Ω

T f · ḡ dQ =
∫
Ω

Gi Ai f Aig dQ, f ∈ D(T ), g ∈ C∞
0 (Ω). (17)

Note that, in accordance with Lemma 2, we have

∀g ∈ D(Ai), ∃{gn}∞
1 ⊂ C∞

0 (Ω), gn −→
Ai

g.

Therefore, we can extend relation (17) to the following:

−
∫
Ω

T f · ḡ dQ =
∫
Ω

Gi Ai f Aig dQ, f ∈ D(T ), g ∈ D(Ai). (18)
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Relation (18) indicates that Gi Ai f ∈ D(A∗i ), and it is clear that −T ⊂ A∗i Gi Ai. On the
other hand, in accordance with Chapter VI, Theorem 1.2 [30], we have that −T is a closed
operator. Using the divergence theorem, we get

−
∫
Ω

Dj(aijDi f )ḡdQ =
∫
Ω

aijDi f DjgdQ, f ∈ C2(Ω), g ∈ C∞
0 (Ω).

Passing to the limit at the left-hand and right-hand side of the last inequality, we can
extend it to the following:

−
∫
Ω

Dj(aijDi f ) ḡdQ =
∫
Ω

aijDi f DjgdQ, f ∈ H2(Ω), g ∈ H1
0(Ω).

Therefore, using the uniformly elliptic property of the operator −T , we get

− Re(T f , f )L2
≥ γa

∫
Ω

n

∑
i=1
|Di f |2 dQ = γa‖ f ‖2

H1
0
, f ∈ D(T ). (19)

Using the Poincaré-Friedrichs inequality, we get −Re(T f , f )L2
≥ C‖ f ‖2

L2
, f ∈ D(T ),

Applying the Cauchy–Schwarz inequality to the left-hand side, we can easily deduce
that the conditions of Lemma 1 are satisfied. Thus, the operator −T is m-accretive. In
particular, it means that there does not exist an accretive extension of the operator −T .
Let us prove that A∗i Gi Ai is accretive, for this purpose, combining (17) and (19), we get
(Gi Ai f , Ai f )L2

≥ 0, f ∈ C∞
0 (Ω). Due to the relation Ã0 = A, proved in Lemma 2, the

previous inequality can be easily extended to (Gi Ai f , Ai f )L2
≥ 0, f ∈ D(Gi Ai). In its

own turn, it implies that
(

A∗i Gi Ai f , f
)

L2
≥ 0, f ∈ D(A∗i Gi Ai). Thus, we have obtained

the desired result. Therefore, taking into account the facts given above, we deduce that
−T = A∗i Gi Ai, i = 1, 2, ... n and obtain (11). Note that, in accordance with the accepted
form of writing, we have

aijDi f Djg =
n

∑
i=1

n

∑
j=1

aijDi f · Djg,

where aij := aij. In these terms, applying the Cauchy–Schwarz inequality to the sums
twice, we have

∣∣∣aijDi f Djg
∣∣∣ :=

∣∣∣∣∣ n

∑
j=1

n

∑
i=1

aijDi f · Djg

∣∣∣∣∣ ≤ n

∑
j=1
|Djg|

n

∑
i=1

∣∣aijDi f
∣∣

≤
√

n

∑
i=1
|Di f |2

n

∑
j=1
|Djg|

√
n

∑
i=1
|aij|2 ≤

√√√√ n

∑
j=1

n

∑
i=1
|aij|2

√
n

∑
i=1
|Di f |2

√√√√ n

∑
j=1
|Djg|2

=

√√√√ n

∑
j=1

n

∑
i=1
|aij|2 · ‖∇ f ‖En ‖∇g‖En , f , g ∈ C∞

0 (Ω).

Using the integration by parts formula, the previously obtained relation, applying the
Cauchy–Schwarz inequality to the integrals, then, using Corollary 1, we obtain∣∣∣∣∣∣

∫
Ω

T f · ḡ dQ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
Ω

aijDi f Djg dQ

∣∣∣∣∣∣ ≤
∫
Ω

∣∣∣aijDi f Djg dQ
∣∣∣ ≤ a1

∫
Ω

‖∇ f ‖En ‖∇g‖En dQ

≤ a1‖ f ‖H1
0
‖g‖H1

0
≤ C‖ f ‖Hn

A
‖g‖Hn

A
, f , g ∈ C∞

0 (Ω),
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where

a1 = sup
Q∈Ω̄

√√√√ n

∑
i,j=1
|aij(Q)|2.

On the other hand, applying (12) and (19), we get

−Re(T f , f ) ≥ C‖ f ‖2
Hn

A
, f ∈ C∞

0 (Ω).

The proof is complete.

Thus, by virtue of Corollary 1 and Theorem 2, we are able to claim that theorems
(A)–(C) [22] can be applied to the operator −T .

3.2. Fractional Integro-Differential Operator

In this paragraph we assume that α ∈ (0, 1). In accordance with the definition given
in the paper [31], we consider a directional fractional integral. By definition, put

(Iα
0+ f )(Q) :=

1
Γ(α)

r∫
0

f (P + te)
(r− t)1−α

(
t
r

)n−1
dt, f ∈ Lp(Ω), 1 ≤ p ≤ ∞.

In addition, we consider an auxiliary operator, the so-called truncated directional
fractional derivative (see [31]). By definition, put

(Dα
d−, ε f )(Q) =

α

Γ(1− α)

d∫
r+ε

f (Q)− f (P + et)
(t− r)α+1 dt +

f (Q)

Γ(1− α)
(d− r)−α, 0 ≤ r ≤ d− ε,

(Dα
d−, ε f )(Q) =

f (Q)

α

(
1
εα
− 1

(d− r)α

)
, d− ε < r ≤ d.

Now, we can define a directional fractional derivative as follows:

Dα
d− f = lim

ε→0
(Lp)

Dα
d−,ε f , 1 ≤ p ≤ ∞.

The properties of these operators are described in detail in the paper [31]. We suppose
I0

0+ = I. Nevertheless, this fact can be easily established by virtue of the reasonings corre-
sponding to the one-dimensional case and given in [32]. We also consider an integral operator
with a weighted factor (see [32], p. 175) defined by the following formal construction:

(
Iα

0+µ f
)
(Q) :=

1
Γ(α)

r∫
0

(µ f )(P + te)
(r− t)1−α

(
t
r

)n−1
dt,

where µ is a real-valued function.
Consider a linear combination of an uniformly elliptic operator given in Theorem 2

and a composition of a fractional integro-differential operator, where the fractional differ-
ential operator is understood as the adjoint operator regarding the Kipriyanov operator
(see [14,23,24])

L := −T + Iσ
0+ρDα

d−, ρ ∈ L∞(Ω), σ ∈ [0, 1),

D(L) = H2(Ω) ∩ H1
0(Ω),

Theorem 3. We claim that

L =
1
n

n

∑
i=1

A∗i Gi Ai + FAα
1 , (20)
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where F is a bounded operator, P1 := P, and Gi are the same as in Theorem 2. Moreover if γa is
sufficiently large in comparison with ‖ρ‖L∞ , then the following relations hold:

Re(L f , f )L2 ≥ C‖ f ‖Hn
A

; |(L f , g)L2 | ≤ C‖ f ‖Hn
A
‖g‖Hn

A
, f , g ∈ C∞

0 (Ω).

Proof. The proof follows obviously from Theorem 2, Theorem 3 [22], and Corollary 1.

Combining the fact Hn
A ⊂⊂ L2(Ω) established in Corollary 1 and Theorem 3, we claim

that theorems (A)–(C) [22] can be applied to the operator L.

4. Discussion

In this paper, we have established the equivalence of the norm generated by the
infinitesimal generator of the shift semigroup in a direction and the norm of the Nicodemus
space. Firstly, we should turn again to the series of papers by I.A. Kiprianov devoted to
an alternative branch of the fractional calculus theory, and we say an alternative branch
since the author developed his own approach to classical questions of the operator theory
by virtue of which such a novel notion as a directional fractional derivative was appeared.
Throughout the papers [12,23,24], in technical reasonings, the author solely used the
spherical coordinates in the n-dimensional Euclidean space. This rather insignificant feature,
at first sight, determined many newly appeared constructions, for instance the spaces of
fractionally differentiable functions introduced in [23]. The embedding theorems for the
defined spaces were formulated afterwards in [12], and the attempt to consider fractional
powers of operators was made in [24]. Note that, by virtue of the obtained results of the
paper, we can offer an efficient approach to the issue, the central point of which is how to
connect the Kiprianov’s results with the classical ones, and we claim that Lemma 3 allows
us to establish this connection. Thus, we have an opportunity to reveal more fully a true
mathematical nature of differential operator as a notion. As a concrete achievement, we
have a compact embedding of the space generated by the infinitesimal generator into the
Lebsgue space. The considered particular cases correspond to a uniformly elliptic operator
and its linear combination with the fractional integro-differential operator. We stress that,
in the first case, the operator is not selfadjoint under the minimal assumptions regarding its
coefficients, and, in the second case, the one is represented by a sum of two non-selfadjoint
summands. Note that there are not many results devoted to the topic and this is why an
opportunity to apply spectral theorems in the natural way becomes relevant. Here, we
should explain that our aim is to describe the operators considered in [22] in terms of the
infinitesimal generator of the shift semigroup in a direction. We should note that it has
been done regarding the uniformly elliptic operator in the one-dimensional case. In this
respect, the following question appears if we deal with the multidimensional case—Is there
any simpler way to construct a suitable Hilbert space H+ that is defined in terms of the
infinitesimal generator and such that H+ ⊂⊂ L2 ? To answer the question, we should
note that a conjecture ‖ f ‖H1

0
≤ C‖A f ‖L2 , f ∈ D(A), which guarantees the desired result,

seems to be wrong in the multidimensional case. Certainly, a counterexample is required.
However, it is clear (see Remark 1) that the previous relation holds in the one-dimensional
case. As a theoretical achievement of the offered approach, we can study differential and
fractional integro-differential operators in terms of the semigroup theory considering more
general notions. In this regard (see [22]), we have the following results: an asymptotic
equivalence between the real component of a resolvent and the resolvent of the real
component was established for the fractional integro-differential operator; a classification,
in accordance with resolvent belonging to the Schatten–von Neumann class, was obtained;
a sufficient condition of completeness of the root vectors system was formulated; and an
asymptotic formula for the eigenvalues was obtained. Along with all these, we claim that,
by virtue of popularity and the well-known applicability of the Lebesgue spaces theory,
the result related to the norm equivalence deserves to be considered itself.
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