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Abstract: The number of actuators of an underactuated robot is less than its degree of freedom. In
other words, underactuated robots can be designed with fewer actuators than fully actuated ones.
Although an underactuated robot is more complex than a fully actuated robot, it has many advantages,
such as energy, material, and space saving. Therefore, it has high research value in both control
theory and practical applications. Swing-up is a mechanism with two links, which mimics a gymnast
performing a horizontal bar movement. Over the past few decades, many sufficiently robust control
techniques have been developed for a fully actuated robot but almost none of them can be directly
applicable to an underactuated robot system. The reason is that such control techniques require
certain assumptions that are valid only for fully actuated robot systems but not for underactuated
ones. In this paper, a control system design method for underactuated robots based on operator
theory and an isomorphism scheme is first proposed. Bezout identity is designed using isomorphism.
The effectiveness of the design method is confirmed by simulation. The simulation results show
that the performances, such as robust stability and response time, of an underactuated robot control
system are improved.

Keywords: nonlinear control system; operator theory; right coprime factorization; underactuated
robot; swing-up

MSC: 93C10

1. Introduction

According to the relationship between degree of freedom (DOF) of a robot and the
number of independent control inputs, robots can be devided into three types: fully
actuated, redundantly actuated, and underactuated ones [1]. The number of actuators of an
underactuated robot is less than its DOF. Despite the higher complicity of an underactuated
robot than that of a fully actuated one , it has the advantages of energy, material, and
space saving, etc. In some specific cases, if there is precise drive control, it can achieve
higher efficiency and better flexibility despite its high DOF [2]. Therefore, it deserves more
investigations in theory and practice.

Its typical example is acrobot. An acrobotic robot is a two-link mechanism that mimics
a gymnast performing a horizontal bar movement [3]. In recent decades, many sufficiently
robust control techniques have been developed for a fully actuated robot but they are
not directly applicable to an underactuated robot system. [4] concerns the energy-based
swing-up control for a remotely driven acrobot (RDA), which is a 2-link planar robot with
the first link being underactuated and the second link being remotely driven by an actuator
mounted at a fixed base through a belt. An energy-based control law for swinging up the
acrobot is proposed in [5]. The control law is designed and the convergence analysis is
carried out based on Lyapunov stability theory. The paper [6] provides a complete analysis
of the convergence of the energy and the motion of the acrobot and clearly illustrates
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several unique characteristics of the closed-loop system of the acrobot under the energy-
based control. The combination of the partial linearization control for the swing-up phase
proposed by [7] and the robust control for the capture and balance phase is utilized in [8].
The reason is that their deployment requires some assumptions that are true for fully
actuated robot systems but not for an underactuated one [3,9]. A major problem is that the
stability of the control system cannot be guaranteed when they are applied to the latter.
The stabilization analysis in [10] is based on the attractive ellipsoid method (AEM) for a
class of uncertain nonlinear systems having “quasi-Lipschitz” nonlinearities. The paper
[11] presents a development of adaptive state estimator and output controller based on
Attractive Ellipsoid Method (AEM) for the stabilization of the Furuta’s pendulum. The
proposed method guarantees that the controlled system trajectories are stabilized within
an ellipsoid of a “minimal size”. The proposed method for swinging up and stabilizing
underactuated two-link robots in [12] does not need to switch control laws when the system
is near to the desired equilibrium point, and as the system approach to this equilibrium, the
nonlinear control law becomes an LQR controller. Moreover, nonlinear dynamics is also a
factor that needs to be considered. In [13], Zakai and Kushner-Stratonovich equations of the
nonlinear filtering problem for a non-Gaussian signal-observation system are considered.
Operator theory is a kind of nonlinear control theory which has the characteristics of
nonlinear and uncertain unstable elements [14–20]. In addition, robust stability analysis
can be performed only in a time domain without conversion to a frequency domain. Its
advantage is that it can be done relatively easily, which indicates the effectiveness of
operator theory. Further, an isomorphism is a map from one algebraic structure to another
of the same type that preserves some relevant structures and properties uch as identity
elements, inverse elements, and binary operations [21]. That is, the robust stability for
nonlinear feedback control systems and the output tracking problems are studied. For the
problem of factorizing an unstable plant for its nonlinear feedback control systems, its right
factorization can be conducted by using an isomorphism approach [22].

In this paper, a control system design method based on operator theory and an
isomorphism scheme is proposed to improve the performance of an underactuated robot
with instability and uncertainties. That is, operator theory is employed for guaranteeing the
robust stability, while an isomorphism scheme is used to avoid the existence of differential
controller in operator-based control systems. The application of operator theory and the
isomorphism scheme enable a shorter swing-up time. Extensive simulation is performed
to validate the effectiveness of the proposed method. In summary, the highlights of our
work include: (1) We use isomorphism to design feedback controller Q−1 to stabilize the
system for the first time. (2) We use the new stable term to design Bezout identity. (3) We
have applied it in acrobot and obtained good results.

The remainder of this paper is organized as follows. In Section 3, modelling of swing-
up and operator theory are introduced. In Section 4, a control system design method for an
underactuated robot is presented. The simulations are given to illustrate the effectiveness
of the proposed method in Section 5. Finally, conclusions are drawn in Section 6.

2. Notation

In this section, we will present some notations in this paper in Table 1.
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Table 1. Notations.

S(U, Y) the set of stable operators from U to Y
U (U, Y) the set of unimodular operators
‖ · ‖Us , ‖ · ‖YS norm
‖A‖ Lipschitz semi-norm
A : US → YS an operator mapping from Us to YS
D(A) the domain and range of A
R(A) the range of A
N (Us; Ys) the family of all nonlinear operators mapping

from D(A) ⊆ Us into Ys
Us, Ys normed linear space over the field of complex

numbers endowed with norms ‖ · ‖Us , ‖ · ‖YS

Lip(DS, Ys) a Lipschitz operator mapping from Ds to Ys
P plant
∆P uncertainties
P̃ the actual plant with uncertainties
A, N, B, D, Ã, Ñ, B̃, D̃ operators of the system
M, M̃ unimodular operators

3. Preliminaries
3.1. Modeling of Swing-Up

As mentioned above, swing-up is a two-link device that mimics a gymnast performing
a horizontal bar movement, as shown in Figure 1. Link1 models a gymnast’s hand, and
Link2 models a gymnast’s waist [9]. Driving torque is applied only to the Link1, and the
system can rotate freely. Swing-up has only one actuator to drive, but there are two links to
be controlled. Thus, it is an underactuated robot system. Table 2 shows each parameter.
Then, the equations of motion for each link are derived using the Lagrange equations of
motion. Therefore, the motion equations of swing-up are as follows

d11q̈1 + d12q̈2 + h1 + φ1 = 0 (1)

d21q̈1 + d22q̈2 + h2 + φ2 = τ (2)

where d11, d12, d21, d22, h1, h2, φ1, and φ2 are shown in the following equations

d11 = m1l2
c1 + m2(l2

1 + l2
c2) + 2l1lc1 cos q2 + I1 + I2

d12 = d21 = m2(l2
c2 + l1lc2 cos q2) + I2

d22 = m2l2
c2 + I2

h1 = −m2l1lc2q̇2
2 sin q2 − 2m2l2lc2q̇1q̇2 sin q2

h2 = m2l1lc2q̇2
1 sin q2

φ1 = (m1lc1 + m2l1)g cos q1 + m2lc2g cos(q1 + q2)

φ2 = m2lc2g cos(q1 + q2)
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Table 2. Parameter of swing-up.

L Lagrangian [J]
K Kinetic energy of acrobot [J]
V Potential energy of acrobot [J]
qi Target angle [rad]
τ Torque [N·m]
q1 Angle of Link1 [rad]
q2 Angle of Link2 [rad]
m1 Mass of Link1 0.175 kg
m2 Mass of Link2 0.285 kg
l1 Length of Link1 0.3 m
l2 Length of Link2 0.5 m
lc1 Lengh from First joint to the

center of gravity of Link1 0.177 m

lc2
Lengh from Second joint to

the
center of gravity of Link2 0.25 m

I1 Moment of inertia of Link1 0.0013 kg·m2

I2 Moment of inertia of Link2 0.0059 kg·m2

g Acceleration of gravity [m/s2]

Figure 1. Model of swing-up.

3.2. Operator Theory

In this section, operator theory [14] is described. Using operator theory, a robust
stability analysis can be performed even with uncertainties that are difficult to model in
mathematics. Here, a nonlinear control system with uncertainties can be designed in the
time domain by operator theory instead of being converted into the frequency domain
by using a transfer function in a linear system. A nonlinear feedback system based on
operator theory is shown in Figure 2.

Figure 2. Nonlinear feedback system based on operator theory.
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Definition 1. Let S(U, Y) be the set of stable operators from U to Y . Then, S(U, Y) contains a
subset defined by

U (U, Y) =
{

M ∈ S(U, Y); M is invertible with M−1 ∈ S(Y, U)
}

Elements of U (U, Y) are called unimodular operators.

Let Us and Ys be two normed linear spaces over the field of of complex numbers,
endowed, respectively, with norms ‖·‖Us and ‖·‖Ys . Let A : Us → Ys be an operator
mapping from Us to Ys and denoted by D(A) and R(A), respectively, the domain and
range of A. Let N(Us; Ys) be the family of all nonlinear operators mapping from D(A) ⊆ Us
into Ys. Let Ds be a subset of Us and F(Ds, Ys) be the family of operators A in N(Us, Ys)
with D(A) = Ds. A (semi)-norm on (a subset of) F(Ds, Ys) is denoted by

‖A‖ := sup
x1,x2∈DS

x1 6=x2

‖A(x1)− A(x2)‖Ys

‖x1 − x2‖US

if it is finite. In general, it is a semi-norm in the sense that ‖A‖ = 0 does not necessarily
imply A = 0. In fact, it can be easily seen that ‖A‖ = 0 if and only if A is a constant
operator (need not be zero) that maps all elements from Ds to the same element in Ys.

Definition 2. Let Lip(DS, YS) be the subset ofF (Ds, Ys) with each element A satisfying ‖A‖ < ∞.
Each A ∈ Lip(DS, YS) is called a Lipschitz operator mapping from Ds to Ys, and the number ‖A‖ is
called the Lipschitz seminorm of the operator A on Ds.

(i) Right factorization: Let the input space be denoted by U and output space by Y.
In general, these spaces are different extended linear spaces. Let the plant operator
P : U → Y be such that y(t) = P(u(t)) where u(t) ∈ U and y(t) ∈ Y. In addition,
let W be an auxiliary linear space and let the operator N → Y be stable such that
N(w(t)) = y(t), w(t) ∈ W, and let D : W → U be stable and invertible such that
D(w(t)) = u(t). It follows that the plant P has a right factorization determined by N
and D−1

P = ND−1 (3)

(ii) Right coprime factorization: Suppose there is a right factorization operator N, D in
plant P. The Bezout equation is obtained as

AN + BD = M, ∃M ∈ U (W, U) (4)

If a stable operator A and a stable and inversible operator B satisfy the above Bezout
Equation (4), then, A, B, N, and D are the right coprime factorization of plant P (as
shown in Figure 2). At this time, the stability of the control system can be guaranteed.

(iii) Robust right coprime factorization: In general, there are uncertainties that are diffi-
cult to express in a mathematical model in an actual nonlinear control system. Thus,
the nonlinear control system with uncertainties may be unstable. Using robust right
coprime factorization to factorize a plant can guarantee the robust stability of a
nonlinear feedback system with uncertainties. The nonlinear feedback system with
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uncertainties is shown in Figure 3. Plant P without uncertainties is the nominal plant,
and the actual plant with uncertainties ∆P is P̃ = P + ∆P

P̃ = P + ∆P = (N + ∆N)D−1 (5)

A(N + ∆N) + BD = M̃ (6)

A(N + ∆N) + BD = AN + BD = M (7)

‖(A(N + ∆N)− AN)M−1‖Lip < 1 (8)

where M̃ is unimodular. The nonlinear feedback system with uncertainties can be
robust stable if (8) is satisfied.

Figure 3. Nonlinear feedback control system with uncertainties.

4. Nonlinear Control System Design
4.1. Tracking Controller Design of Swing-Up

In this section, we explain the method for determining the target angle and the tracking
controller design scheme in the swing-up control system.

4.1.1. Determining Target Angle

The swing-up control can make the second link track the target angle qd
2 in the direction

in which the energy of the first link is amplified. Therefore, the target angle qd
2 is a time-

varying value that changes depending on the state of each link, and it is necessary to
change the target angle at any time. If the angle of the second link does not become 0 near
the inverted point, it is difficult to stabilize the inverted state. qd

2 is designed as

qd
2 = tan−1((1− cos q1)q̇1) (9)

4.1.2. Tracking Controller Design

In this section, in order to make q2 track qd
2, we design a tracking controller C as shown

in Figure 4. The design method of the tracking controller is as follows.
First, from (1) and (2), the following equation can be obtained.

d2q̈2 + h2 + φ2 = τ (10)

The definitions of d2, h2 and φ2 are shown in Equations (11)–(13).

d2 = d22 − d21d12/d11 (11)

h2 = d21h1/d11 (12)

φ2 = d21φ1/d11 (13)

q̈2 = v2 (14)
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x1 = q2 , x2 = q̇2, so, [
ẋ1
ẋ2

]
=

[
0 1
0 0

][
x1
x2

]
+

[
0
1

]
v2

where v2 can be expressed as

v2 = −kp(q2 − qd
2)− kdq̇2 (15)

As a result, the swing-up control is performed when an input q2 − qd
2 approaches 0.

Here, kp and kd are design parameters.

Figure 4. Feedback system using tracking controller.

4.2. Control System Design Based on Operator Theory and Isomorphism Scheme

Since there are unstable elements in the model equation of the swing-up, the stability
of the control system cannot be guaranteed. In this section, the swing-up controller design
method using operator theory and isomorphism scheme is proposed.

4.2.1. Right Factorization of the Swing-Up

In actual nonlinear control system, it is common that there are uncertainties in swing-
up, which uncertainties are difficult to to be modelled. The uncertainties can be seen
as instability elements, which destabilize the system. Here, the instability elements are
aggregated in D−1. Right factorization of the swing-up is given by

D(ω)(t) =
(

c2 −
(c2 + c3 cos ω(t))2

c1 + c2 + 2c3 cos ω(t)

)
ω̈(t)

+
(c2 + c3 cos ω(t))(−c3ω̇2(t) sin ω(t)−2c3ω̇(t)q̇1sin ω(t))

c1 + c2 + 2c3 cos ω(t)

+
(c2 + c3 cos ω(t))(c4 sin q1 + c5 sin(q1 + ω(t)))

c1 + c2 + 2c3 cos ω(t)
(16)

and (17)

N(ω)(t) = ω(t)

where

c1 = m1l2
c1 + m2l2

1 + I1

c2 = m2l2
c2 + I2

c3 = m2l2lc2

c4 = (m1lc1 + m2l1)g

c5 = m2lc2g

4.2.2. Right Coprime Factorization of Underactuated Robot

When the operators A and B are designed so that M is unimodular, and the Bezout
equation AN + BD = M is satisfied, then the operators D−1 and N form a right coprime
factorization of the plant operator P, and the corresponding nonlinear feedback system is
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shown in Figure 5. Bounded input and bounded output (BIBO) stability are guaranteed.
Operators A and B are designed as follows using a design parameter K

A(y)(t) = (M− KD)(ω)(t) (18)

B(u)(t) = K (19)

The controller C that tracks the target value is designed as follows

τ = −kp(q2 − qd
2)− kdq̇2 (20)

Figure 5. Nonlinear feedback system based on operator theory.

4.2.3. Robust Stability Condition

There are uncertainties in actual controlled objects that are difficult to express in
mathematics. However, even if there are uncertainties, the robust stablity of the feedback
system can be guaranteed if (21) is satisfied. We construct a nonlinear feedback system
considering the uncertainties and robust stability. Figure 6 shows the nonlinear feedback
system of the swing-up with uncertainties. In Figure 6, P + ∆P is the actual controlled
object with uncertainties, where uncertainties are modelled for D as ∆D

||(B(D + ∆D)− BD)M−1||Lip < 1 (21)

Figure 6. Nonlinear feedback system with uncertainties based on operator theory.

4.2.4. Control System Design Based on Operator Theory and Isomorphism Scheme

In this section, a control system design based on operator theory and an isomorphism
scheme is employed for the swing-up. Suppose that the system P+∆P is well-posed, using
an appropriate isomorphism approach, the right coprime factorization of the unstable plant
can be realized. The robust stability of the perturbed nonlinear feedback control systems
can be guaranteed based on isomorphism. Besides, the plant output is able to track the
reference input by the designed tracking controller [21]. The control system based on this
isomorphism scheme can be described as a compensator Q−1 and a feedback loop designed
as shown in Figure 7. It then follows that the operator D̃−1 is stable.

Q−1 =D(D̃− I) (22)

N(ω)(t) =K1ω(t) (23)
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Figure 7. Nonlinear feedback loop based on an isomorphism scheme.

The compensator Q−1 is designed in such a way that it stabilizes D−1 , the operators N
and D̃−1 are equivalent operators, here, K1 and K2 are design parameters. The controllers
Ã and B̃ satisfying the Bezout equation AÑ + B̃D̃ = M are designed as follows. From (26),
it can be confirmed that D̃−1 is stabilized by the compensator Q−1.

Ã(y)(t) =(1− K2

K1
y(t)) (24)

B̃(u0)(t) =K2u0(t) (25)

D̃−1(u0)(t) =K1u0(t) (26)

From the above analysis, we can see that there is a differential function in operator-
based controller (18). However, by using our isomorphism scheme, it is avoided in (24).
As a result, better control performance can be obtained. However, for the control system
in Figure 8, when uncertainties exist, based on the argument in Section 4.2.3, the robust
stability can be ensured.

Figure 8. Nonlinear feedback system without uncertainties based on operator theory and an isomor-
phism scheme.

5. Simulation

In this section, we verify the effectiveness of the control system designed in Section 4
by simulation using MATLAB. Assuming that there are uncertainties in the angle and the
magnitude is a constant with value 0.01 rad. Table 2 shows the mechanical parameters
of simulation.

5.1. Control System Simulation Based on Operator Theory

In this section, we show some simulation results based on operator theory. In sim-
ulation, the control parameters are the following: kp = 200, kd = 20, K = 350, K1 = 1,
K2 = 1200 and the initial states are q1 = −π

2 , q2 = 0, q̇1 = 0.3 and q̇2 = 0. The simulation
results of swing-up control and inverted stabilization control are shown in Figures 9–11.
From Figure 12, the calculation result of the robust stability condition is always less than
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1, and the robust stability of the control system is guaranteed. The simulation results of
the conventional method and the proposed method are compared. The simulation results
converge to q1 = π

2 , q2 = 0, respectively. It can be seen from Figure 11 that the noise
generated in the torque can be reduced when switching to inverted stability. It is clear that
the swing-up control has been improved.

From the above, we are able to confirm the effectiveness of the proposed method.

0 5 10 15 20 25

Time [s]

-3

-2

-1

0

1

2

3

q
1
 [
ra

d
]

Conventional method
Proposed method

Figure 9. First link angle q1 of nonlinear feedback system with uncertainties based on operator theory.

0 5 10 15 20 25

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

q
2
 [
ra

d
]

Conventional method
Proposed method

Figure 10. Second link angle q1 of nonlinear feedback system with uncertainties based on
operator theory.
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Figure 11. Input torque.
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Figure 12. Robust stability assessment of nonlinear feedback system with uncertainties based on
operator theory.

5.2. Control System Simulation Based on Operator Theory and Isomorphism Scheme

In this section, we show the simulation results based on operator theory and an
isomorphism scheme (shown in Figures 12–16). In simulation, K1 = 1, K2 = 1200. Based
on operator theory, in Figures 9 and 10, the response time is about 20 seconds. While
based on operator theory and an isomorphism scheme, in Figures 13 and 14, the response
time is about 8 s. The response time of the swing-up is reduced by 12 s after using our
isomorphism scheme. If compared with [3], where the response time is around 18 s, the
response time by using the proposed method is much shorter.

5.3. Robust Stability of a Control System

In this section, the robust stability of the control system is evaluated by calculating
the Lipschitz norm (21). The simulation results are shown in Figures 12 and 15. In this
simulation, it is assumed that there is uncertainty in the angle and its magnitude is a
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constant with value 0.05 rad. From Figures 12 and 15, the robust stability conditions are
always less than 1 and the robust stabilities of the control system are guaranteed.

0 1 2 3 4 5 6 7 8

Time [s]

-3

-2

-1

0

1

2

3

q
1
 [

ra
d

]

Figure 13. First link angle q1 of nonlinear feedback system with uncertainties based on operator
theory and isomorphism scheme.
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Figure 14. Second link angle q2 of nonlinear control feedback system with uncertainties based on
operator theory and an isomorphism scheme.



Axioms 2021, 10, 62 13 of 15

Figure 15. Robust stability assessment of nonlinear feedback system with uncertainties based on
operator theory and isomorphism scheme.
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1

τ
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Figure 16. Input torque.

6. Conclusions

In this paper, a nonlinear control system of an underactuated robot based on operator
theory and an isomorphism scheme is realized. Performances (robust stability, response time)
of an underactuated robot nonlinear control system are also discussed. The effectiveness of
the proposed method is verified by simulation. Optimizing the control parameters using
some intelligent optimization methods [23,24] and adaptive learning methods [25–27]and
further improving the tracking performance of an underactuated robot will be our future
work. Besides, we will also perform experiments to verify the proposed method in the future.
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