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Abstract: Under the ravages of COVID-19, global supply chains have encountered unprecedented
disruptions. Past experiences cannot fully explain the situations nor provide any suitable re-
sponses to these fatal shocks on supply chain management (SCM), especially in todays’ highly
intertwined/globalized business environment. This research thus revisits and rechecks the crucial
components for global SCM during such special periods, and the basic essence of such manage-
ment covers numerous perspectives that can be categorized into a multiple criteria decision making
(MCDM) approach. To handle this complex issue appropriately, one can introduce a fusion intelligent
system that involves data envelopment analysis (DEA), rough set theory (RST), and MCDM to
understand the reality of the analyzed problem in a faster and better manner. Based on the empirical
results, we rank the priorities in order as cash management and information (D), raw material supply
(B), global management strategy (C), and productivity and logistics (A) for improvement in SCM.
This finding is confirmed by companies now undergoing a downsizing strategy in order to survive
in this harsh business environment.

Keywords: COVID-19; supply chain management; data envelopment analysis; rough set theory;
multiple criteria decision making

MSC: 62C86; 68U35; 90B50

1. Introduction

Over the last year, the unimaginable destructiveness of COVID-19 has had a devas-
tating effect on global supply chains, which were woefully unprepared to face this huge
challenge. In particular, known as the factory of the world, China has encountered a serious
epidemic and has continued to shut down production activities, leading to the interruption
of flow from raw materials to finished products all over the world. While nearly all coun-
tries are trying to suppress the spread of the virus and reduce potential losses, there is still
an ongoing crisis, because supply and demand have drastically fallen down, resulting from
mass production stoppages [1]. As such, the risk awareness of supply chain management
(SCM) has been more heightened and valued, and deliberate considerations are being
implemented [2].

Global SCM is one of the key components of sustainability development of enterprises
in a competitive market [3]. A blueprint of SCM is important since enterprise operation
performance involves a series of activities from manufacturing to sale of products [4,5]. To
improve the sustainable benefits and competitiveness, entities must reduce obstacles from
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the external environment (e.g., SCM). According to the research by Dueby et al. [6], sus-
tainable theory and SCM exhibit a close relationship. Mehdikhani and Valmohammadi [7]
showed that an effective implementation of global SCM supports the development of
economic and social performances [8]. Global SCM is considered as a long-term strategic
weapon based on Valmohammadi [9], as it not only decreases business risk, but also leads
to stable development of corporate operations [10]. As stakeholders’ value creation can be
implemented for promoting responsible global SCM, organizations must satisfy the various
needs of their stakeholders [11]. Responding to stakeholders’ demand for SCM is crucial
for organizations, as corporate performance is closely associated with their suggestions
and engagement [12,13].

After the global pandemic of COVID-19 was announced by the World Health Organi-
zation in early 2020, unintentional shortages of workforce/labor, resources, and facilities
soon resulted in supply chain disruptions and had tremendous negative ramifications
on both short- and long-term operational performances [3]. The global supply chain has
risen dramatically over time as globalization has taken root, but the COVID-19 pandemic
contributed to great concerns and reconsiderations regarding the supply chain issue of
globalization [14]. Such a social atmosphere poses a new conundrum for corporate survival,
as firms must navigate these unprecedented challenges and find alternatives for innova-
tion [15]. From this recent epidemic, the world is moving towards a clearer view of the need
for building a flexible supply chain model, because disruption is always inevitable [16–19].

Despite the main contribution of extant research on SCM, it is still worth revisiting this
issue under the raging COVID-19 pandemic, given the worldwide economic context. How-
ever, to provide a proper analytical procedure for firms, we have to realize the dimensions
and criteria and how their complex interactions exist within supply chains, so as to enhance
a firm’s operation quality as well as prevent the occurrence of future supply chain failures.
The motivation for this study is thus to explore more in-depth the critical dimensions and
criteria in regards to global supply chain strategies by firms under a Coronavirus-driven
recession and to premeditate the problems of dependence and feedback among multiple
criteria/attributes [20–22]. As for the complex and influential relationship under the adop-
tion of global SCM, we introduce herein a fusion decision architecture that consists of data
envelopment analysis (DEA), rough set theory (RST) with fish swarm optimization (FSO),
and decision-making trial and evaluation laboratory (DEMATEL).

DEA is a data-driven technique that has demonstrated its usefulness in handling
complex decision-making tasks when multiple indicators are involved. It also can present
a company’s strengths and weaknesses and provide a specific direction for users to make
continuous improvement by yielding a performance rank. However, the performance rank
derived from this technique requires a decision on which inputs and outputs to employ—
that is, the rank is affected by the inclusion or exclusion of an input or an output [22,23]. The
usual balance between parsimony and information overload is adopted when it comes to
DEA application [24]. On one hand, we would like to have an intuitive decision framework
that contains all relevant messages in the system under investigation, but we are worried
about the potential exclusion of relevant messages. On the other hand, we do not want
to take irrelevant messages into consideration so as to prevent the problem of over-fitting.
Lu et al. [25] stated that the influence of a specific input or output on the outcome can
be measured by estimating the rank without such a variable. By doing so, we are able to
realize which variable contributes the most to the outcome.

For an unfamiliar domain, users tend to gather as much information as possible to
depict the whole picture of the situation they are facing. However, too much information
will confuse and mislead the users’ decision making. To combat this, one can consider data
exploration that assists in understanding the investigated reality in an efficient and effective
manner. Rough set theory (RST), one such data exploration technique, not only handles
data full of uncertainties, vagueness, and impreciseness, but also reduces dimensionality
with minimal information loss as well as speeds up the calculation process. RST has
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numerous merits in data exploration, but it still comes with some challenges, such as
minimal reduct generation (that is, the best minimal subset).

Minimal reduct generation is a NP-hard task, and the calculation time of generating
all the reducts is exponential [26,27]. Prior studies typically employed a hill-climbing
algorithm to determine the minimal reduct for RST, but this algorithm cannot guarantee
an optimal solution. To combat this, the fish swarm optimization (FSO) algorithm, one
type of swarm intelligence (SI) algorithm, is inspired by the natural schooling behaviors of
fish by employing a wide search domain and having strong ability to escape from local
minimums. By joint utilization of DEA and RST with FSO, we can filter out redundant and
irrelevant information (i.e., it can be viewed as a data pre-processer) in order to improve
the decision quality and to facilitate the decision process of users. To gain much deeper
insights and realize the complex structure of assessing criterion, the analyzed data (i.e., the
best minimal subset) are then injected into DEMATEL to represent the mutual relationships
among them and prioritize which one is the most essential part users need to target. By
utilizing this fusion decision architecture, they can initiate some treatments/strategies
to prevent the situation from getting worse and to provide appropriate reactions and
improvement strategies to a highly fluctuating economic environment so as to reach the
goal of sustainable development.

The current research aims to fill the following gaps in the literature. First, it contributes
to existing global SCM during a time of the COVID-19 crisis by exploring the key influence
factors of a firm. Second, we link DEA with RST-FSO for decision makers to deal with the
best reduct determination task as well as to eliminate any computational burden. Third, we
add to the stream of decision-making studies that concentrate on SCM. Compared to other
studies (i.e., identification of key successful factors in information systems/ERP adoption),
works on critical factor identification for global SCM are quite scarce. Fourth, the key
factors are purified via DEA-RST, and the results are then fed into DEMATEL to depict the
cause-and-effect relations among criteria and dimensions as well as realize their effect on
the final decision. Finally, we adopt an interactive influential network relationship map
(IINRM) derived from DEMATEL as a guideline to indicate which part of global SCM has
to be corrected/improved first so as to reach the best solution under the global pandemic
of COVID-19.

The remainder of the paper is organized as follows. Section 2 reviews the relevant
literature on the evaluation of global SCM factors. Section 3 develops a fusion deci-
sion architecture that consists of DEA, RST, FSO, and DEMATEL for key factor selection.
Section 4 conducts a questionnaire design and data collection and analyzes empirical re-
sults. Section 5 presents a discussion and implications. Finally, Section 6 draws conclusions
and future research directions.

2. Global Supply Chain Management Sustainability Factors

Organizations need to regularly and quickly review and update their supply chain
practices and build a functional global supply chain management framework in order
to better predict and manage disruptions in response to abrupt environmental shocks.
However, an integral part of corporate sustainable development is how to construct a
robust global supply chain management framework to provide a mechanism for effec-
tively and immediately identifying potential disruption risk. Following past literature,
we look to pose practical requirements and suggestions for a comprehensive global sup-
ply chain management framework of the manufacturing industry under the outbreak
of COVID-19. According to the global supply chain framework proposed by a Deloitte
research survey [28] as well as relevant research on supply chain management and supply
chain characteristics in Chinese manufacturing, this study divides global supply chain
management factors into four dimensions as the evaluation framework: “Productivity and
logistics”, “Raw material supply”, “Global management strategy”, and “Cash management
and information”. We provide a brief introduction of the four proposed dimensions.
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2.1. Productivity and Logistics

The United Nations Global Compact has issued a guide indicating that labor is one of
the four key areas advancing the sustainability of global supply chains [29]. There is a need
to maintain the normal availability of the workforce to support ongoing manufacturing
operations even during overall economic downturns [30]. However, restrictions in a
quarantine area under an epidemic mean that many facilities cannot ramp back up to
normal operations, and labor planning should be initiated at any time in response to worker
shortages when a factory is operating. Under an epidemic situation, factory closures can
be mandated, and so a company should formulate a re-routing production plan for finding
an alternative factory. Lim et al. [31] demonstrated that a multi-factory/multi-sourced
system is preferable to a single chain, as it has a high value of flexibility given supply chain
disruptions [32]. Alternative logistical solutions are often considered a key element of the
global supply chain, especially in extraordinary times. Therefore, in some cases, companies
need to ensure the capabilities of their logistics partners and find other channels when
necessary, such as alternative logistics [33].

2.2. Raw Material Supply

Facts have proven in today’s severe domestic and foreign contexts that there is a
need for closer upstream relationships. It is now essential to understand the competencies
of the critical supplier (called key direct supplier or original supplier) to meet supply
requirements and what position a firm is in under an allocation perspective for the case
of raw material shortages [34]. In an uncontrolled environment, suppliers may fail to
live up to promises to deliver at the right time to a plant, thus holding back production
and consequently regular operations [35]. In addition, manufacturers are constricted
under emergency situations and thus should introduce an alternative source for their
sustainability in supply chain management [36]. Thomas and Mahanty [37] also suggested
that emergency backup sources should be constructed and adopted fundamentally when
the original supply is disrupted due to many causes. Deliveries can be expected to show
widespread declines from the original supplier during an epidemic around the globe.
Thus, creating better visibility on the inventory of raw materials can help predict potential
supplier shortages and allow a firm to prepare accordingly [38,39].

2.3. Global Management Strategy

Companies must determine an optimum inventory buffer to maintain operations
under supply disruptions, in order to decrease the risks of supply shortages and ensure
customer service [40]. Dynamic inventory policies can effectively inflate inventory positions
for manufacturing plants, leading to the optimization of global inventory management,
and help respond to potential supplier and demand variability [41]. When a stock-out
crisis occurs due to fluctuations in the inventory market, refining production schedules and
dynamic demand substitutions will thus delineate new considerations for corporates [42].
An agile production schedule can allow a firm to properly position inventory control so as
to adjust to changing demand in the upstream and downstream and make for more feasible
decision-making [43]. Kalir and Grosbard [44] demonstrated that operating smoothly and
reducing barriers involve leveraging the global layout of the supply chain to enable the
issuance of insufficient and excess raw materials for manufacturing plants [45].

2.4. Cash Management and Information

Cash flow is a decisive component of the backing for flow of goods, and thus un-
derstanding the relationship between cash flow management and supply chain can help
formulate appropriate operations and management decisions [46]. Companies should
reduce the influence of cash flow risks under tight cash flow constraints, especially in
such remarkable times as COVID-19, and keep a certain amount of cash in reserve at any
time [47]. In order to respond to an increasingly fluctuating, complex, and uncertain global
environment, enterprises must seek a suitable IT evaluation system for the production
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activities of their supply chain [48]. Villegas and Pedregal [49] also stated that an auto-
matic evaluation technique has become an indispensable part of the whole supply chain
and can demonstrate an early warning effect. In addition, by collecting valuable and
complete information on upstream suppliers and downstream customers, manufacturing
firms can build a stable supply chain in a turbulent, competitive economy [50]. Given
asymmetric information, better management of market knowledge and information across
countries should be incorporated into the whole supply chain, as argued by Cragg and
McNamara [51].

2.5. Fusion Intelligent Model

The seminal work on enterprise risk management was done by Fitzpartrick [52] who
implemented a univariate statistical model to form his final conclusion. After that, stud-
ies on risk management started to proliferate and enter an advanced structure; i.e., the
multivariate model. However, the aforementioned structures belong to statistical-based
models that have to obey strict statistical assumptions—that is, in practical applications, the
requirement of the model adoption is very hard to satisfy. With the advance of information
technology, artificial intelligence (AI) models without satisfying pre-determined assump-
tions were introduced. Odam and Sharda [53] introduced the neural network (NN) model
to deal with the risk management task, and the model’s performance was better than that
of statistical-based models. Hu et al. [54] and Liu et al. [55] applied rough set theory with
advanced probability consideration to solve the decision-making task. Karagoz et al. [56]
and Yi et al. [57] used support vector machine (SVM) to solve bankruptcy prediction prob-
lems. Gu et al. [58] and Feng et al. [59] employed a deep learning architecture to construct
the forecasting mechanism, and the results stated that their model performs a satisfactory
job. However, these models belong to a class of “single best” forecasting models, and none
of them outperform all the other models under all assessing criteria. Inspired by a fusion
mechanism, combining multiple dissimilar models’ outcomes and transforming them into
a consensus conclusion turn out to be an efficient and effective way to improve the model’s
forecasting quality. The basic idea of the fusion model is to complement the error made by
a singular model. This idea is echoed by Huotari et al. [60] and Lin [61] who indicated that
even a fraction of improvement in forecasting accuracy can translate into a tremendous
amount of future profits. Thus, the present study is grounded on this concept to develop a
fusion intelligent model for SCM to reach an unbiased and reliable judgment under the
global pandemic of COVID-19.

3. Methodologies
3.1. A Fusion Intelligent Decision Support System

Because a tremendous amount of production processes have been postponed and
companies have shut down due to COVID-19, it is an urgent requirement to refine and
rethink how to appropriately implement SCM and provide suitable directions for users
to follow and to form a reliable judgment so as to survive in this extremely unordinary
situation. The solution to this complicated problem undoubtedly involves numerous
perspectives and belongs to a MCDM task. To capture the nature of SCM and understand
the reliability of business operations, a fusion decision architecture (see Figure 1) that
involves DEA, RST with FSO, and DEMATEL is considered.

For an unknown domain, users prefer to collect as much information as possible to
understand the real situation of business operations. However, too much information
will confuse and disturb the decision-making processes of users [62,63]. To overcome
this task, feature selection, which aims at preserving the original meanings of a criterion
after reduction, turns out to be an inevitable procedure [64]. DEA has demonstrated
its usefulness in performance analysis without pre-determined assumptions and also
has the ability to handle multiple inputs and outputs simultaneously. However, the
problem of DEA is that the inputs and outputs have to be decided before the performance
rank is generated. It is widely recognized that different inputs or outputs will lead to
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dissimilar outcomes. To combat this and look beyond any single DEA specification, one
can use multiple DEA specifications that combine inputs and outputs in several dissimilar
manners. For example, we collect 18 criteria in the beginning and then exclude one criterion
each time so as to generate different DEA specification (i.e., a leave-one-out strategy).
Finally, 18 different DEA specifications are generated. By extending a singular DEA
specification to multiple DEA specifications, users can capture the multi-dimensional nature
of performance analysis and present an overarching reflection of business operations.
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Most of the collected information (i.e., 18 DEA specifications) derives from financial
documents or questionnaires, which may be contaminated by some errors (i.e., different
accounting principles, human judgement, and estimation bias). RST has the advantage
of handling vague, uncertain, imprecise information and is used to cope with the afore-
mentioned task and determine the most essential attribute subset. How to determine the
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minimal subset (i.e., the most essential attribute subset) for RST is a NP-hard task. With
considerable searching ability, FSO performs a satisfactory job in the optimization task. By
joint utilization of DEA and RST-FSO, we can filter out redundant information, eliminate
the computational burden as well as increase the quality of decision making. In other
words, this combined model (DEA + RST-FSO) can be taken as a data pre-processer which
places an essential role in decision making field.

The analyzed attributes are then inserted into DEMATEL to address the relationships
of dependence and feedback among criterion (i.e., the cause-and-effect relations) and to
find out the most essential core factors [65]. By realizing the priority of assessing factors,
users can allocate suitable resources to the right place, strengthen company’s risk absorbing
ability as well as solidify the development of the capital market. Even a little improvement
in decision quality can translate into considerable financial savings.

3.2. Data Envelopment Analysis (DEA)

DEA is a mathematical algorithm that can be used to cope with multiple inputs and
outputs simultaneously without pre-determined production functions in order to assess the
relative performance of decision-making units (DMUs). Each DMU’s relative performance
is decided as the ratio of the weighted sum of outputs to the weighted sum of inputs.
A performance score ranges from 0 (inefficiency) to 1 (efficiency). Assuming that each
unit contains d input to generate e output, the basic mathematical formulation of DEA is
represented in Equation (1).

MAX_EFj =
∑e

r=1 uryrj

∑d
i=1 vixij

s.t.
∑e

r=1 uryrj

∑d
i=1 vixij

≤ 1, j = 1, . . . , n

ur ≥ 0, r = 1, . . . , e
vi ≥ 0, r = 1, . . . , d

(1)

here, yrj and xij denote the rth input and output of the jth DMU, respectively; ur represents
the weight given to output r, and vi expresses the weight given to input i. The aim of
DEA is to identify the optimal input and output weights for each DMU separately so as to
reach the goal of maximal efficiency. By performing this method, we can realize the relative
performance of each DMU.

3.3. Rough Set Theory with Fish Swarm Optimization (RST-FSO)

RST is a relatively new mathematical algorithm that requires no additional knowledge
to handle data full of uncertainties, vagueness, and imprecisions and gains numerous ad-
vantages in real-life applications. A brief description of RST is presented as follows [66,67].
Assume I = (G, B) is an information system, where G denotes the universe, B expresses a
non-empty finite set of attributes, and ∀b ∈ B determines the function Fb : G → Vb , where
Vb denotes the set of value b. If U ⊆ B, then the associated equivalence relation can be
expressed in Equation (2).

IND(U) = {(x, y) ∈ G× G|∀b ∈ U, Fb(x) = Fb(y)} (2)

We note that G/U indicates the partition G divided by IND(U). If (x, y) ∈ IND(U),
then x and y cannot be separated by utilizing the attributes from U. Moreover, [x]U depicts
the equivalence classes of the U-indiscernibility relation that is the key element of RST.
Letting X ⊆ G, the U-lower approximation and U-upper approximation can be represented
in Equations (3) and (4).

UX = {x ∈ G|[x]U ⊆ X } (3)

UX = {x ∈ G|[x]U ∩ X 6= φ} (4)
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Assume U, Q ⊆ B is an equivalence relation over G, and then positive, negative, and
boundary regions can be illustrated as follows:

POSU(Q) = ∪
X∈G/Q

UX (5)

NEGU(Q) = G− ∪
X∈G/Q

UX (6)

BNDU(Q) = ∪
X∈G/Q

UX− ∪
X∈G/Q

UX (7)

The main issue in data analysis is identifying the dependencies between attributes.
For U, Q ⊆ B, U depends entirely on Q, if and only if IND(U) ⊆ IND(Q). It means that
the partition made by U performs better than the partition made by Q. Here, U ⇒ kQ
denotes that Q depends on U by the degree k (0 ≤ k ≤ 1), if:

k = αU(Q) =
|POSU(Q)|
|G| (8)

Any decision system contains two different attributes: condition attribute C and deci-
sion attribute D. The degree of dependency between condition and decision attributes can
be represented as αC(D), which indicates the quality of approximation of classification [67].

The fundamental concept of feature selection is to reduce dimensionality and preserve
the original semantics of the data. A reduct is deemed as a reduced subset R of the original
condition attribute C, and the mathematical formulation can be indicated in Equation (9).

αR(D) = αC(D) (9)

In RST, the minimal reduct (REDmin ⊆ RED) is identified when it reaches the minimal
cardinality value.

REDmin =
{

R ∈ RED
∣∣∨R′ ∈ RED, |R| ≤

∣∣R′∣∣} (10)

The core represents the intersection of all reducts.

CORE(C) = ∩RED (11)

FSO is an emerging population-based optimization algorithm inspired by the natural
feeding behaviors of fish. By updating their searching behavior, swarming behavior, and
following behavior, we can calculate the value of the fitness function so as to determine the
goodness of each feature subset.

Fitness = ω ∗ αR(D) + (1−ω) ∗ |C| − |R||R| (12)

here, αR(D) denotes the classification quality, and |C| and |R| individually represent the
number of all features and the number of reduced features.

3.4. DEMATEL Method

DEMATEL is utilized to analyze complex intertwined issues and has been widely
accepted as one of the best tools for cause-and-effect among dimensions and criteria [68,69].
The procedures are demonstrated as follows [70,71].

Step 1: Calculation of initial average-relation matrix D. Each decision maker is invited
to give an evaluation of any two components through a pairwise comparison and given an
integer score within [0,4] (0 = no influence and 4 = strong influence) to develop a direct
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influence matrix. An initial average-relation matrix D can therefore be constructed from
the opinions of 30 respondents as shown in Equation (13).

D =



d11 · · · d1j · · · d1n
...

...
...

di1 · · · dij · · · din
...

...
...

dn1 · · · dnj · · · dnn


(13)

here, dij is the average score of each criterion for each decision-maker.
Step 2: Computation of initial direct influence matrix M. The initial direct influence

matrix X = [xij]n×n of DEMATEL can be achieved through Equations (14) and (15), and
the values of the diagonal matrix are zero (i.e., zero matrix, dii = 0).

M = τ × D, (14)

where

τ = min

{
1

max1≤i≤n∑n
j=1 dij

,
1

max1≤j≤n∑n
i=1 dij

}
(15)

Step 3: Creation of direct/indirect relation matrix M. The total-influence relation matrix
involves direct and indirect effects and is accomplished from the following expression:

T = M + M2 + M3 + . . . + Ml = M(I−M)−1, when lim
h→∞

Mh = [0]n×n, (16)

where T = [tij]n×n for i,j = 1,2, . . . ,n, and I is an identity matrix.
Step 4: Delineation of IINRM cause-and-effect. Each row vector r and column vector s

of matrix T can be denoted as follows:

r = (ri)n×1(

[
n

∑
j=1

tij

]
n×1

= (r1 . . . , ri . . . , rn)
′) (17)

s = (sj)n×1 (

[
n

∑
i=1

tij

]′
1×n = (s1 . . . , sj . . . , sn)

′) (18)

The cause-and-effect diagram of the interactive influential network relationship among
dimensions/criteria of systems can be visualized by mapping the values of (ri + si, ri − si),
or called IINRM (interactive influential network relationship map). If ri is the sum of the
ith row in matrix T, then ri indicates the summation of direct and indirect casual effects
of component i on the other components. Similarly, if sj is the sum of the jth column in
matrix T, then sj indicates the summation of direct and indirect casual effects of component
j on the other components. Furthermore, (ri + si) shows the measure of the central role
that component “i” plays in the entire system, whereas (ri − si) indicates the degree of net
effect that component “i” devotes to the whole system.

4. Empirical Results

This section describes the process of the questionnaire design and data collection and
conducts the empirical analysis by performing a fusion decision architecture based on
respondents’ opinions on the global supply chain layout under the COVID-19 pandemic.

4.1. Questionnaire Design and Data Collection

Based on the review of relevant literature and professional judgement of domain
experts, we arrive at 18 criteria distributed into 4 dimensions (see Table 1). Satty [72]
stated that each dimension consisting of too many criteria will impede users’ decision
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quality—that is, the finite criteria in each dimension will lead to a consistent outcome of
pairwise comparison. To reach this goal, the original 18 criteria need to be narrowed down.

Table 1. Criteria of global supply chain management for the pre-test questionnaire.

Dimensions Criteria

Productivity and logistics

A1: Labor/workforce plan
A2: Alternate plant

A3: Alternative workforce
A4: Alternative logistics

Raw material supply

B1: Key supplier
B2: Second supplier

B3: Alternative sources of supply
B4: Materials visibility

B5: Relationship with suppliers

Global management strategy

C1: Inventory policy
C2: Production scheduling

C3: Global planning
C4: Local and national policies

Cash management and information

D1: Cash flow management
D2: Supplier information

D3: Home country regulation of cooperative manufacturers
D4: IT evaluation system

D5: Information of competitors

A pre-test questionnaire survey (i.e., containing 18 criteria distributed into 4 dimen-
sions) was sent to 17 work-domain experts (1 CEO, 6 general managers, and 10 factory
directors) from publicly listed companies and 3 academic researchers in supply chain
management. Each respondent was invited to score the criteria of the pre-test questionnaire
on a 0–10 scale for supply chain operations, which represents the importance from low to
high. Because the experts have different working experience and knowledge, they must
have different focuses on SCM—that is, not all experts focus on the same criterion and
dimension. To prevent the problem of users’ bias/subjective, this study utilizes DEA
(as a data-driven technique) to summarize all the information. Apart from prior studies
that merely focused on a singular DEA specification, this study extends it to multiple
DEA specifications (i.e., it takes all combinations into consideration) to gain much deeper
insights. A leave-one-out combination strategy is considered.

Figure 2 shows the results. Because we have 18 criteria, we have 18 DEA specifications
and each result deletes one criterion each time. For example, DEA specification 1 means the
derived result excludes criterion 1. We can see that each scenario has a different outcome.
This finding is echoed by Lu et al. [25] who stated that not all experts have the same focus of
attention. To prevent the problem of over-fitting, RST is considered for picking up the most
essential criteria so as to reach a robust outcome. Identifying the most essential criteria for
RST is a classical optimization task. Prior studies implemented hill-climbing to solve it,
but it cannot guarantee an optimal solution. To combat this, FSO, one type of SI algorithm
with superior search ability, is conducted. However, RST is categorized as a supervised
learning technique, and the decision attributes have to be decided beforehand.

In line with the work by Hu et al. [23], we apply the K-means algorithm to determine
the decision attributes. The main purpose of K-means is to partition all observations into K
clusters in which each observation belongs to the cluster with the nearest mean (that is, it
minimizes the within-cluster sum of squared errors), serving as a prototype of the cluster.
The essential topic is how to decide the appropriate number of clusters (i.e., K). Thus, a
trial-and-error strategy is implemented. Here, K is set from 1 to 5, and the summation of
preciseness and rule coverage (SPRC) is viewed as an assessment measure.

Table 2 lists the results. We can see that K set to 3 reaches the highest SPRC. Thus,
the number of clusters of this study is set to 3. The selected criteria/features are shown in
Table 3. Based on the criteria shown in Table 4, we can formulate the finalized questionnaire
survey (that is, the aforementioned hybrid technique can be viewed as a data pre-processor
to delete a criterion’s lack of information contained).
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K = 4 a1, a3, a4, b2, b4, c3, c4, d1, d4 0.82 0.85 1.67

K = 5 a1, a2, a4, b1, b3, c1, c2, d1, d3, d5 0.81 0.84 1.65

K = 6 a2 a3, b1, b4, b5, c3, c4, d2, d4, d5 0.78 0.86 1.64

K = 7 a1, a2, b2, b4, c1, c2, c4, d1, d3, d5 0.75 0.84 1.59

K = 8 a1, a2 a4, b2, b3, c1, c3, c4, d2, d4 0.71 0.82 1.53

K = 9 a1, a3, b1, b4, b5, c2, d1, d3, d5 0.68 0.81 1.49
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SPRC: The summation of preciseness and rule coverage (SPRC).

The finalized questionnaire survey was sent to 6 CEOs, 12 general managers, and
12 factory directors of publicly listed companies in first-tier cities of China. The respondents
are familiar with supply chain operations and have at least 10 years’ work experience in
a relevant workplace. The questionnaires were administered through video interviews
of 60 to 90 min between March and May 2020. To determine the reliability of the sample
collection, the consensus level is calculated and the consensus ratio is 99.31% (more than
the 95% confidence level). Considering the responses of respondents, the assessment of the
direct influence between any two criteria using pairwise comparison was generated using
five-point rating scales of 0 (“absolutely no influence”) to 4 (“very high influence”). Finally,
30 valid questionnaires were imported into the DEMATEL model pictured herein to serve
as a basis for empirical analysis.
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Table 3. Global supply chain management factor assessment architecture.

Dimensions/Criteria Definitions Sources

Productivity and logistics (A)

Labor/workforce plan (a1) Labor demand to maintain production. Hsu et al. [29]; Mönch et al. [30]

Alternate plant (a2) Preparation for alternative factories when the
legacy factory cannot engage in production. Lim et al. [31]; Karimi et al. [32]

Alternative logistics (a3) Alternative transportation projects from
interruption of the original logistics system. Trappey et al. [33]

Raw material supply (B)

Key supplier (b1) Main suppliers of raw materials. Uluskan and Godfrey [34]

Alternative sources of supply (b2) Alternative sources of supply for other
available raw materials.

Luomaranta and Martinsuo [36]; Thomas
and Mahanty [37]

Materials visibility (b3) Ability to fully and effectively grasp the status
of raw materials engaged in production. Aryal et al. [38]; Bag et al. [39]

Global management strategy (C)

Inventory policy (c1) Flexible dynamic inventory strategy. Alimardani et al. [41]; Huo et al. [40]

Production scheduling (c2) Agile production scheduling strategy. Kobayashi et al. [42]; Madhani [43]

Global planning (c3) Multi-channel global production planning. Bay et al. [45]; Kalir and Grosbard [44]

Cash management and information (D)

Cash flow management (d1) Maintain a certain cash flow at any time. Tsai [46]; Zhao et al. [47]

Supplier information (d2) Fully grasp the information of upstream and
downstream suppliers. Cragg and McNamara [51];

IT evaluation system (d3) IT system to evaluate supply chain
production activities. Hmida et al. [48]; Villegas and Pedregal [49]

Table 4. Total (direct and indirect) influence relation matrix.

Criterion a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

a1 0.472 0.559 0.554 0.546 0.526 0.489 0.572 0.554 0.514 0.508 0.538 0.540
a2 0.424 0.372 0.438 0.425 0.409 0.364 0.422 0.417 0.394 0.396 0.420 0.421
a3 0.442 0.452 0.381 0.432 0.413 0.378 0.446 0.432 0.419 0.405 0.432 0.439
b1 0.481 0.492 0.488 0.404 0.464 0.429 0.491 0.463 0.440 0.439 0.473 0.460
b2 0.452 0.463 0.456 0.440 0.364 0.390 0.462 0.440 0.421 0.415 0.437 0.435
b3 0.657 0.669 0.669 0.653 0.619 0.489 0.677 0.659 0.611 0.604 0.644 0.633
c1 0.450 0.462 0.453 0.437 0.423 0.379 0.392 0.432 0.423 0.420 0.437 0.438
c2 0.458 0.461 0.459 0.440 0.428 0.400 0.476 0.387 0.437 0.434 0.454 0.449
c3 0.560 0.589 0.568 0.571 0.534 0.496 0.580 0.557 0.450 0.523 0.549 0.546
d1 0.694 0.712 0.709 0.694 0.665 0.615 0.725 0.684 0.645 0.550 0.677 0.674
d2 0.494 0.505 0.503 0.480 0.470 0.437 0.512 0.491 0.457 0.453 0.413 0.478
d3 0.464 0.472 0.468 0.454 0.436 0.408 0.482 0.462 0.434 0.436 0.459 0.388

Average gap (%)= 1
n×(n−1) ∑n

i=1 ∑n
j=1 (

∣∣∣b30
ij − b

29
ij

∣∣∣/b
30
ij )× 100% = 0.25% < 1%. The result indicates that the domain expert achieved

consensus on 99.75%, where b
30
ij and b

29
ij denote the average scores from the respondents for 30 and 29, correspondingly; n represents the

number of selected criteria; n = 12; and n × n matrix.

4.2. Key Criteria Acquisition Using the DEMATEL Technique

The total influence relation matrix T is presented in Table 4, and expert consensus is
measured (see notes) in this study. Following the DEMATEL technique, the (ri + si) values
and (ri − si) values are calculated as shown in Table 5. Out of the four dimensions and
based on the values of calculations (ri + si), the priorities of the most important dimensions
are D: Cash management and information (4.057); B: Raw material supply (3.921); C: Global
management strategy (3.866); and A: Productivity and logistics (3.861) (D > B > C > A). The
(ri − si) values for each component are calculated either to be a driver (positive value) or a
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receiver (negative value), indicating a determinant is confirmed to have influence on or
is influenced by the other components, respectively. Of the four dimensions, dimension
D (cash management and information) is the largest influential factor, which indicates
that it has the greatest impact and its improvement will beget improvement in other
dimensions. Cash management and information (D) (ri − si = 0.187) and raw material
supply (B) (ri − si = 0.142) are positive, which means they exert a direct effect on other
dimensions as drivers. On the other hand, the values of global management strategy (C)
(ri − si = −0.101) and productivity and logistics (A) (ri − si = −0.228) are negative, which
means these dimensions are influenced by other dimensions as receivers. Compared to the
twelve criteria, criterion d1 (cash flow management) shows the largest value of (ri − si) at
0.462, which means that this criterion has the most significant impact on the other criteria.
Criterion d3 (IT evaluation system) has the lowest score (ri − si = −0.257), representing
that this indicator is most easily influenced by other criteria.

Table 5. Causal effect (ri − si ) and strength of influences (ri + si ) for the factors.

Dimensions/Criteria Row Sum (ri) Column Sum (si) ri + si ri − si

Productivity and logistics (A) 1.816 2.045 3.861 −0.228
Labor/workforce plan (a1) 1.584 1.338 2.922 0.247

Alternate plant (a2) 1.235 1.383 2.618 −0.148
Alternative logistics (a3) 1.275 1.374 2.649 −0.098
Raw material supply (B) 2.032 1.889 3.921 0.142

Key supplier (b1) 1.296 1.497 2.794 −0.201
Alternative sources of supply (b2) 1.194 1.447 2.641 −0.253

Materials visibility (b3) 1.762 1.447 3.209 0.314
Global management strategy (C) 1.883 1.983 3.866 −0.101

Inventory policy (c1) 1.236 1.449 2.685 −0.212
Production scheduling (c2) 1.300 1.376 2.676 −0.075

Global planning (c3) 1.587 1.376 2.963 0.211
Cash management and information (D) 2.122 1.935 4.057 0.187

Cash flow management (d1) 1.901 1.439 3.340 0.462
Supplier information (d2) 1.345 1.549 2.894 −0.205
IT evaluation system (d3) 1.283 1.540 2.823 −0.257

According to Figure 3, IINRM is constructed by measuring the degree of interaction
in the implementation of global supply chain management practices using the DEMATEL
method. IINRM is plotted based on the data described in Table 4. There are four sub-
systems: productivity and logistics (A), raw material supply (B), global management
strategy (C), and cash management and information (D). The longitude axis (ri + si) and
the latitude axis (ri − si) indicate the degree of centrality among components and the
degree of influential impact among determinants in the map, respectively. The arrow
direction triggers a cause effect, whereby the indicator affects another indicator. For
example, dimension D (cash management and information) affirms that it has an immediate
influence on other dimensions, such as dimension B (raw material supply), and also
has a central influence on dimension C (global management strategy) and dimension A
(productivity and logistics). Consequently, IINRM provides a clearer landscape on the
interdependence of various criteria in the global supply chain management practices under
the COVID-19 outbreak.
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5. Discussion and Implication

This study provides a practical framework of global supply chain management under
the outbreak of COVID-19 for manufacturing companies based on a set of conflicting criteria
using a fusion decision architecture. From the causal diagram (Figure 2), an aspiration
level of China’s manufacturing sectors can be immediately and directly activated via
the preferential use of the crucial parts of multiple considerations. Therefore, it can be
clearly identified based on Figure 2 that the improvement priority runs as follows: cash
management and information (D), raw material supply (B), global management strategy
(C), and productivity and logistics (A). In other words, “cash management and information”
is the first-driver determinant, and if a company favors it as the priority of improvement,
then it will return a multiplication effect on global supply chain management under
the COVID-19 pandemic. García-Alcaraz [73] suggested that the cash management and
information of manufacturing sectors are critical components of supply chain management,
assuring not only the risk assessment of financial leakage, but also self-sustainability. This
finding can help current companies worldwide that are applying a downsizing strategy to
survive in this harsh situation [74].

It is noteworthy when one confronts an abnormal event from a global catastrophe that
opening a sustainable global supply chain model is not easy, because it greatly changes
normal operating ecosystems. A series of large-scale events has the potential to create
many unprecedented dilemmas like how to fight the crisis, and thus construction of an
effective model seems indispensable. Criteria such as labor/workforce plan (a2), materials
visibility (b1), global planning (c1), and cash flow management (d3) receive the same
maximal network influence within each dimension. The decision-maker of a global supply
chain management framework for manufacturing corporates should therefore improve
these four components, because they are the main drivers on separate dimensions.

From the 12 selected components, “cash flow management” is the top driver criterion
based on its interactive relationships among mutual influences, and it has the greatest score
of (ri − si), indicating a powerful tendency to affect others. The finding is not only echoed
by current companies undergoing a downsizing strategy as their first order to survive
this harsh business environment, but also yields a justifiable and consensus direction for
users to coordinate the resources distributed to each criterion appropriately. Since firms
operating under a supply chain with insufficient financial resources may not be able to
maintain production optimization, cash constraints will impede their development and
cause customer churn [75]. This phenomenon is also consistent with the recent closure
of large-scale enterprises in China. Kulchania and Thomas [76] pointed out that the
stable development of supply chain management is associated with precautionary cash
holdings, which can help support the quality of customer relationships. In the current
raging epidemic of COVID-19, proper supply chain management provides flexibility for
production scheduling, but the complexity and criticality of fund flow are also highlighted
due to the numbers of factories, equipment, and human resources [77].

Materials visibility across the entire supply chain can be the second driver criterion
based on Table 5. This type of global visibility refers to upstream and downstream suppliers,
distributors, logistics, customers, etc., which provide manufacturers with agility based on
market changes [78]. Eckstein et al. [79] analyzed the importance of materials visibility at
achieving a supply chain flexibility model. The increasing visibility not only helps minimize
possible threats, but also avoids potential disruptions and facilitates a prompt response to
these changes [80]. A global supply chain contingency plan can be implemented quickly
and effectively at any time to improve safe capacity if materials visibility is enhanced. The
higher demand visibility built by manufacturing companies and the ability at forging close
relationships with customers and suppliers significantly influence their competitiveness. A
resilience model design for a global supply chain management in the time of COVID-19 is
thus compulsory for avoiding failures and decreasing losses.

According to the above empirical analysis, executives should focus on the capital-
constrained scheduling problem or a certain level of cash retention to maintain a sustainable
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supply chain. This situation can even explain that in an atmosphere of global economic
turmoil and severe recession, insufficient working capital will lead to the domino effect of
supply chain vulnerability. In addition, to ensure that raw materials are not scarce in the
production process, the business manager should always pay attention to the upstream
raw material source and whether there is enough inventory to meet the production needs.
The factory should make appropriate production configurations based on the downstream
manufacturers’ dynamic production decisions. Compared to past experiences, companies
should have a new thinking about SCM in the globalization of the COVID-19 pandemic,
since the pandemic may continue for a period of time. This research can be used as a
useful reference.

6. Conclusions and Future Directions

Even after COVID-19 is mitigated, the resulting global supply chain shocks will exert
a long-term impact on the global economy. This is why it is important for executives to
understand the global market status and provide countermeasures, such as what to do
now and how to meet future challenges. There is thus an imperative demand to establish a
global SCM framework during the COVID-19 outbreak in the China context. This research
proposes a comprehensive and practical improvement strategy that can serve as a basis
when manufacturing entities revise their global supply chain management architecture. A
promising theoretical foundation with a practical verification model is developed herein
for joint fusion using DEA, RST with FSO technique, and DEMATEL method, so as to
address the complex interactions among factors and to delineate IINRM.

A combination of multiple DEA specifications and RST with FSO is an efficient al-
gorithm for data exploration and knowledge discovery. It not only can deal with data
uncertainty and vagueness, but also can prevent loss of information encountered by RST,
assign users the best professional judgement, and help firms move towards an arena of
real-world application. The selected important factors by DEA-RST-FSO are submitted to
DEMATEL to construct IINRM, which can be utilized to forge an improvement direction
for corporates’ specific global supply chain strategies. The ranking priority of improvement
among dimensions is based on expert opinions by using the DEMATEL method and runs
as follows: cash management and information, raw material supply, global management
strategy, and productivity and logistics. The criterion of cash flow management is con-
firmed as having the maximum influence on the other criteria, meaning it should be the
first improvement objective among criteria. Materials visibility is also a key influence factor
for achieving a comprehensive SCM. Diversified financing channels will be a powerful
guarantee for effective SCM of enterprises. An early warning system of global raw material
could be the best guarantee for companies to promote safe capacity and continuous produc-
tion. Empirical findings consequently not only provide a new direction for manufacturing
sectors, but these observations can also help at raising problem-solving competencies and
providing a useful operating model in turbulent economic times.

To expand the present direction analysis of this paper, some interesting views are
worth further exploration in the future. The assessment framework adopted herein is based
on the inherent characteristics of the global supply chain, and so one can aim to append
some considerations of special circumstances, such as supplier quality [81,82], IT evaluation
system [83,84] business counterparts’ culture and customs among countries [55,85,86].
Multiple comparisons among other data screening models [87,88] can be one way to capture
how the model herein transcends other methods and also help assess the appropriateness
of the global supply chain issue in such extraordinary times.



Axioms 2021, 10, 61 17 of 20

Author Contributions: Conceptualization, K.-H.H. and F.-H.C.; methodology, M.-F.H.; software, K.-
H.H. and F.-H.C.; validation, K.-H.H. and F.-H.C.; formal analysis, K.-H.H. and F.-H.C.; investigation,
K.-H.H. and F.-H.C.; resources, K.-H.H. and F.-H.C.; data curation, K.-H.H., S.Y., M.-C.H. and F.-H.C.;
writing—original draft preparation, K.-H.H. and F.-H.C.; writing—review and editing, K.-H.H., S.Y.,
M.-C.H. and F.-H.C.; visualization, K.-H.H. and F.-H.C.; supervision, M.-F.H.; project administration,
K.-H.H. and F.-H.C.; funding acquisition, K.-H.H., M.-F.H. and F.-H.C. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors would like to thank the Ministry of Science and Technology, Taiwan, R.O.C. for
financially supporting this work under contract No. 108-2410-H-034-050-MY2, No. 108-2410-H-034-
056-MY2, 13th five-year plan of philosophy and social sciences of Guangdong Province (GD18CLJ02),
and Department of education of Guangdong Province, China (No. 2020WTSCX139).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data collected from interviewing and questionnaires collection.

Conflicts of Interest: We have no conflict of interest to declare in this article.

References
1. Harbour, L. The Coronavirus Impact on The Global Automotive Supply Chains. Available online: https://www.forbes.com/

sites/laurieharbour1/2020/03/13/the-coronavirus-impact-on-the-global-automotive-supply-chain/185153c8444e (accessed on
10 April 2020).

2. Keogh, J.G. COVID-19. To Ensure the Supply of Food and Consumer Goods, We Must Change the Rules of the Game. Available
online: www.foodincanada.com (accessed on 22 April 2020).

3. Hong, J.; Zhang, Y.; Ding, M. Sustainable supply chain management practices, supply chain dynamic capabilities, and enterprise
performance. J. Clean. Prod. 2018, 172, 3508–3519. [CrossRef]
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