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Abstract: Many mathematical models have explored the dynamics of cholera but none have been used
to predict the optimal strategies of the three control interventions (the use of hygiene promotion and
social mobilization; the use of treatment by drug/oral re-hydration solution; and the use of safe water,
hygiene, and sanitation). The goal here is to develop (deterministic and stochastic) mathematical
models of cholera transmission and control dynamics, with the aim of investigating the effect of the
three control interventions against cholera transmission in order to find optimal control strategies.
The reproduction number Rp was obtained through the next generation matrix method and sensitivity
and elasticity analysis were performed. The global stability of the equilibrium was obtained using
the Lyapunov functional. Optimal control theory was applied to investigate the optimal control
strategies for controlling the spread of cholera using the combination of control interventions. The
Pontryagin’s maximum principle was used to characterize the optimal levels of combined control
interventions. The models were validated using numerical experiments and sensitivity analysis was
done. Optimal control theory showed that the combinations of the control intervention influenced
disease progression. The characterisation of the optimal levels of the multiple control interventions
showed the means for minimizing cholera transmission, mortality, and morbidity in finite time.
The numerical experiments showed that there are fluctuations and noise due to its dependence
on the corresponding population size and that the optimal control strategies to effectively control
cholera transmission, mortality, and morbidity was through the combinations of all three control
interventions. The developed models achieved the reduction, control, and/or elimination of cholera
through incorporating multiple control interventions.

Keywords: optimal control; computational simulations; disease free equilibrium; pontryagin’s
maximum principle; stability theory

1. Introduction

Cholera is a life threatening but easily preventable and treatable infection, which is
known as an acute diarrhoeal infection caused by the intake of food or water contaminated
with the bacterium Vibrio cholerae, which can kill within a short range of time if left un-
treated [1–4]. It remains a global threat to public health [5]. Cholera is a major economic
and social problem that slows down the growth of the African economy yearly [2]. There
are roughly 1.3 to 4.0 million cases and 21,000 to 143,000 deaths worldwide due to cholera
every year [1]. The number of cholera cases reported to WHO (World Heath Organization)
has continued to increase over the last few years [1,5]. In 2015, about 172,454 cases were
reported from 42 countries including 1304 deaths [1,5]. Symptoms of cholera ranges from
mild or moderate symptoms, while many develop acute watery diarrhoea with severe
dehydration, which may lead to death if left untreated [1,5]. Other studies revealed that it
takes between 12 h and 5 days for someone to show symptoms after ingesting contaminated
food or water [1,6].
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Cholera is generally transmitted through water or food that has been contaminated
with faeces from an infected individual [7–10]. Its transmission is closely related to inade-
quate access to clean water and sanitation facilities [1]. Transmission occurs in a vulnerable
or susceptible person when in contact with an infected person, which is called direct trans-
mission, or by ingesting food contaminated with vibrio cholerae, which is called indirect
transmission [8,9,11–13].

Cholera is known as an endemic or epidemic disease but there are control interventions
recommended by WHO to control its morbidity and reduce death due to cholera [1,2]. It has
been recommended by the WHO that a multifaceted approach be used to control morbidity
and reduce mortality due to the disease through a combination of surveillance, water
sanitation and hygiene, social mobilization, treatment, and oral cholera vaccines [1,2,14].

Mathematical modeling has been a useful tool in answering questions and making
effective decisions for policies in epidemiology, public health, and biological sciences [3,15].
There are a number of mathematical models for cholera that have been developed over
the years, yet they are still scant [3,15–20]. Codeco in [21] proposed a basic model for the
dynamics of cholera. His model was extended by Hartley et al. [22] in order to explain the
role played by hyper infectious. Capasso and Paveri-Fontana [17] proposed a mathematical
model for cholera epidemics occurring in the European Meditteranean region in 1973.
In Capasso’s version, two equations describe the dynamics of infected people in the
community and the dynamics of the aquatic population of pathogenic bacteria. After that,
several cholera models were formulated and analyzed.

In 2001, Codeco extended the cholera model of [17], he presented a basic model for the
dynamics of cholera with the inclusion of susceptible individuals in the host population
and explored the role of the aquatic reservoir on the persistence of endemic cholera. In
2006, Hartley et al. [22] extended Codeco’s work with an addition of the hyper infectious
vibrios. Liao and Wang [10] explored and presented the dynamical analysis that is the
stability of equilibria of the system of the deterministic cholera model.

The work in [23] investigated a cholera model with vaccination, and analyzed the local
and global asymptotic stability of the disease-free and endemic equilibria of their system.
In 2010, [24] presented a water-borne disease model which includes the duel transmission
pathways, with bilinear incidence rates employed for both the environmental-to-human
and human-to-human infection routes. The did not consider the effect of saturation in
their work.

The work of [25] proposed a mathematical model to study how lytic bacteriophage
specific for Vibrio cholerae affects cholera outbreaks. Their model explored the vibrios (V),
the phage (P), the infection (I−) solely caused by Vibrio cholerae, and the infection (I+)
caused by both Vibrio cholerae and phage.

The work of [26] also proposed a model to estimate the reproductive number for
the 2008–2009 cholera outbreak in Zimbabwe, their model includes both environmental-
to-human and human-to-human transmission pathways. Ref. [23] presented a cholera
epidemic model with a periodic transmission rate. They defined the reproductive number
and showed that the disease-free-equilibrium is globally asymptotically stable and the
cholera eventually disappears if the basic reproduction number is greater than one, there
exits a positive periodic solution which is globally asymptotically stable. They finally
provided numerical simulation to illustrate their analytic results. Ref. [27] presented a
cholera transmission dynamic model for public health practitioners. In their work, it was
discussed that a basic model (ordinary differential equation models of cholera transmis-
sion dynamics) adapted from Codeco (2001) and how it can be modified to incorporate
different hypotheses, including the importance of asymptomatic or in apparent infections,
and hyper infectious Vibrio cholerae and human-to-human transmission. He highlighted
three important challenges of cholera models: (1) Model mis-specification and parameter
uncertainty; (2) modeling the impact of water, sanitation, and hygiene intervention; and (3)
model structure. He also emphasized that the choice of models should be dictated by the
research questions in mind. Fiser et al. [28] developed an age-structured cholera model
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with optimal control of vaccination using both partial differential equations (PDEs) and
ordinary differential equations (ODEs). They carried out the existence of a solution to their
non-linear state system using the method of characteristic and a fixed point argument.
Numerical results indicate a clear dependence on age in the number of individuals vac-
cinated, and suggest less vaccination for individuals in young and middle-aged adults,
which is expected from the choices of our rates depending on age. Ref. [29] carried out a
mathematical modeling study on the impact evaluation of vaccination programs.

Data analysis to forecast the global cholera burden has been carried out. It was
found that the impact of vaccination will likely vary depending on local epidemiological
conditions including age distribution of cases and the relative contribution of different
transmission routes. Sun et al. [30] proposed a mathematical model to describe the transmis-
sion of cholera in China. It was found that it may be reasonable to increase the immigration
coverage rate and make efforts to improve environmental management, especially for
drinking water in order to stop the progress of cholera in China. Hailemariam et al. [31]
carried out an analysis on cholera epidemic control using mathematical modeling. They
presented a mathematical model for the transmission dynamics of cholera and its preven-
tive measure as a cohort of individuals, along with the Susceptible-Infected-Recovered
(SIR) class of individual with Vibrio cholerae concentration. Their results showed that the
disease dies out in areas with adequate preventive measures but spreads more and has
increased mortality in areas with inadequate preventive measures. Other literatures on the
recent development within the framework of biological modeling can be found in ([32–35]).

The model considered in this paper differs from previous work done and from the
work done by [23], in that time dependent control interventions and constant control
interventions are incorporated and asymptotic transmission is involved. The aim of this
work is to gain insight into how the various control interventions can control the morbidity
of cholera and reduce its mortality in the presence of asymptotic transmission in order
to guide public health officials to make proper decisions on the control strategies that
should be put in place to stop the progression of the spread of cholera and reduce its
prevalence in the community. In this paper, a cholera disease transmission mathematical
model with asymptotic transmission is formulated using ordinary differential equation
and stochastic differential equations and their analysis was also performed. The stochastic
differential equation was developed to determine errors in measurement, variability in
the population, and other factors that introduce uncertainties. Stability properties and
qualitative analysis of the optimal control theory of the cholera model were carried out.
The necessary conditions for optimal control of the disease using Pontryagin’s Maximum
Principle in order to determine optimal strategies for controlling the spread of the disease
and existence of optimal control and state variables are performed. Numerical simulations
to illustrate the analytical findings are carried out. The developed model predicted the
reduction of cholera in the presence of various scenarios on the choice of the control
interventions.The rest of this work is organized as follows. In the next section, the cholera
model formulation and its analysis is presented. In Section 3, we present the sensitivity and
elasticity analysis, while in Section 4, the stochastic model of the transmission dynamics of
cholera is presented. The optimal control problem is formulated and analyzed in Section 5.
In Section 6, we discuss the numerical simulations to validate our analytical findings. In
Section 7, the numerical simulation of the stochastic model is discussed. The paper ends
with discussions of the results and findings in the conclusion in Section 8.

2. Derivation of the Models and Their Analysis
2.1. Deterministic Model of the Transmission Dynamics of the Cholera Model and Its Biological
Description

The standard model of the type SIRS (Susceptible-Infected-Recovered-Susceptible)
will be used in line with [4,23]. We had earlier discussed in [4] the impact of constant control
on cholera transmission. We have in this paper discussed the effect of some time-dependent
control intervention in the presence of asymptotic transmission. These time-dependent
controls are:
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(i) The use of hygiene promotion and social mobilization, u1;
(ii) The use of treatment by drug/oral re-hydration solution (ORS), u2;
(iii) The use of safe water, hygiene, and sanitation, u3.

In our previous work [4], we developed the model of cholera dynamics with constant
control intervention but we present below a time-dependent based on some assumption
(and we assumed here that (i) the population is a variable one, (ii) people recovered can
return to the susceptible group, (iii) people can die due to the disease, (iv) the use of hygiene
promotion and social mobilization can be applied to the vulnerable group to hamper the
transmission, (v) that both u1 and u2 can be used to prevent the disease, and (vi) that
treatment u2 can be used to reduce the number of infected: Thus the time-dependent model
is given by:

dS
dt = A− β1(1−u3(t))SB

K+B − β2SI(1− u3(t))− µS + αR + σI − u1(t)S,
dI
dt = β1(1−u3(t))SB

K+B + β2SI(1− u3(t))− (r + µ + d + σ + u2(t))I,
dR
dt = rI − αR− µR + u1(t)S + u2(t)I,
dB
dt = ζ I − δB.

(1)

subject to the initial conditions:

S(0) = S0 , I(0) = I0 , R(0) = R0, B(0) = B0.

We described the associated model variables and parameters in Table 1 and 2.

Table 1. Table showing the variables in the model.

Variables Description

S Susceptible Human
I Infected Human
R Recovered Human
B Vibrio Cholerae

Table 2. Descriptions of cholera control model parameters.

Parameter Symbol

Recruitment rate of susceptible population A
Contribution of infected individuals to

the population of Vibrio cholerae ζ
Natural death rate of human µ

Net death rate of Vibrio cholerae δ
Acquired temporary immunity r

Disease-induced death rate d
Concentration of Vibrio cholerae in water K

Human spontaneous recovery rate σ
Use of hygiene promotion and social mobilization u1

Use of treatment by drug/oral re-hydration solution (ORS) u2
Use of safe water, hygiene, and sanitation u3

Rates of ingesting vibrios from the contaminated environment β1
Rates of ingesting vibrios through human-to-human interaction β2

loss of immunity α

2.2. WHO Recommendation of the Current Cholera Control Interventions Used in the Model

In line with the WHO recommendation for the control and reduction of cholera mor-
tality and morbidity in an endemic and epidemic area, it was advised that a multifaceted
approach should be put in place to mitigate cholera transmission [1]. In this work, we
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present three different control interventions to control and reduce cholera death and mor-
bidity. The three different control interventions introduced here are the use of hygiene
promotion and social mobilization, u1, the use of treatment by drug/oral re-hydration
solution (ORS), u2, and the use of safe water, hygiene, and sanitation, u3, which are all
time-dependent control interventions. Hence, we applied the principle of optimal control
theory to obtain its optimal control strategies.

The cholera control model (1) is analyzed in a biologically feasible region for both
human and pathogen populations. Hence, for it to be mathematically well posed, it is
important to prove that all its state variables are non-negative for all time t > 0.

2.3. Positivity of the Solution for the Deterministic Model

Theorem 1. Suppose that the initial data S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, and B(0) ≥ 0 then the
solutions (S(t), I(t), R(t), B(t)) of the cholera control model (1) are non-negative for all t > 0.

For the proof (see [4]).

2.4. Boundedness of the Solution for the Deterministic Model

Theorem 2. All solutions (S(t), I(t), R(t), B(t)) of the cholera control model (1) are bounded that
is ∃ a Q > 0, and T > 0 such that (S(t), I(t), R(t), B(t)) ≤ Q for t ≤ T.

For the proof (see [4]).

2.5. The Invariant Region for the Deterministic Model

The model system Equation (1) will be analyzed in the feasible region and all state
variables and parameters are assumed to be positive since the model has to do with
population. We obtain the invariant region by Theorem 3.

Theorem 3. The solutions of the model Equation (1) are contained in the region ∆ ∈ R4
+ and

∆ = ∆h ∪ ∆b ⊂ R3
+ ×R+.

For the proof (see [4]).

2.6. Existence of Disease Free Equilibrium Point (DFE)

The disease-free equilibrium point of the cholera control model (1) is obtained in our
paper [4].

The disease-free equilibrium is obtained in 4 by setting the LHS (left hand side) of the
model (1) to zero and then we obtained the solution of the variables in the model.

Remark 1. Obtaining the equilibrium solution implies that the long-term behavior of the cholera
control model (1) is determined by the existence of the equilibrium solution of the cholera control
model (1) since A

µ > 0 and ζA
µδ > 0.

2.7. The Effective Reproduction Number

The effective reproduction number Rp is obtained using the next generation matrix
method (see [4]).

Theorem 4. The effective reproduction number Rp is given as Rp = A(1−u3)(α+µ)(β2Kδ+β1ζ)
Kδµ(µ+α+u1)(r+µ+d+ω+u2)

.

For the proof (see [4]).

2.8. Global Stability of Disease Free Equilibrium Point (DFE)

Theorem 5. If Rp ≤ 1 then the disease free equilibrium (DFE) Ω0 is globally asymptotically stable
on ∆.
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Proof. Suppose Rp ≤ 1, then ∃ only DFE:

Ω0 = (S∗, I∗, B∗, R∗) = ( A(α+µ)
µ(µ+α+u1)

, 0, 0, u1 A
µ(µ+α+u1)

).

We consider the Lyapunov function V(S, I, B, R) : <+ −→ <+, V(S, I, B, R) = PI
where P > 0 and: dV

dt = P dI
dt . Let P = β2Kδ+β1ζ

Kδµ and

dV
dt

=
β1(1− u3)S∗B∗

K + B
+ β2S∗ I∗(1− u3)− (r + µ + d + ω + u2)I∗

⇒ dV
dt

= P
[
(β1(1− u3)A(α + µ))

µ(µ + α + u1)
+

{
β2 A(α + µ)(1− u3)

µ(µ + α + u1)
− (r + µ + d + ω + u2)

}
I∗
]

⇒ dV
dt

= (r + µ + d + ω + u2)

[
P

β1(1− u3)A(α + µ)B∗

(K + B)µ(µ + α + u1)
+ (Rp − 1)I∗

]
,

where dV
dt ≤ 0. Hence R0 ≤ 1 which implies that dV

dt = 0, whenever I∗ = 0.

Therefore the maximum invariant set in
{
(S, I, B, R) ∈ ∆| dV

dt ≤ 0
}

is the singleton
set{Ω0}. Therefore, the global stability of Ω0 follows from the LaSalle’s invariant principle
when Rp ≤ 1 [31].

Remark 2. This epidemiological implication of this is that cholera can be eliminated from the
community if Rp < 1. If Rp < 1 then the average of an infected individual produces less than one
new infected individual/mosquito over the cause of its infectious period and the infection dies out.
This also implies that the stability of the equilibrium of the cholera control model (1) is not just for
those initial conditions that are close to it but for almost all initial conditions.

2.9. Global Stability of the Endemic Equilibrium Point

Theorem 6. Suppose Rp > 1, then ∃ an epidemic equilibrium Ω1 that is globally stable.

Proof. Suppose Rp > 1, then ∃ the endemic equilibrium point. We consider the Lya-
punov function:

V(S, I, B, R) =
1
2
(S− S∗)2 +

1
2
(I − I∗)2 +

1
2
(B− B∗)2 1

2
(R− R∗)2 (2)

dV
dt

= Z−Y,

where:

Z = A(S− S∗) + β1(S−S∗)(1−u3)SB∗
K+B−B∗ + β1(S−S∗)(1−u3)S∗B

K+B−B∗ +
β2(1− u3)(S− S∗)SI + β2(1− u3)(S− S∗)S∗ I+
µ(S− S∗)S∗ + α(S− S∗)R + δ(S− S∗)I + u1(S− S∗)S + β1(I−I∗)(1−u3)SB

K+B−B∗ +
β1(I−I∗)(1−u3)S∗B∗

K+B−B∗ + β2(I − I∗)(1− u3)SI+
β2(I − I∗)(1− u3)S∗ I∗ + µ(I − I∗) + d(I − I∗)I + ω(I − I∗) + u2(I − I∗)I+
u2(I − I∗)I∗ + I(B− B∗)ζ + δ(B− B∗)B∗ + r(R− R∗)I+
α(R− R∗)R∗ + µ(R− R∗)R∗ + u1(R− R∗)S + u2(R− R∗)I

(3)

and
Y = β1(S−S∗)(1−u3)SB∗

K+B−B∗ + β1(S−S∗)(1−u3)S∗B∗
K+B−B∗ +

β2(1− u3)(S− S∗)SI + β2(1− u3)(S− S∗)S∗ I∗ + µ(S− S∗)S+
α(S− S∗)R∗ + δ(S− S∗)I∗ + u1(S− S∗)S+
β1(I−I∗)(1−u3)SB∗

K+B−B∗ + β1(I−I∗)(1−u3)S∗B
K+B−B∗ +

β2(I − I∗)(1− u3)SI∗ + β2(I − I∗)(1− u3)S∗ I + I(I − I∗)r+
r(I − I∗)I∗ + µ(I − I∗)I∗ + d(I − I∗)I∗ + ω(I − I∗)I∗+
I∗(B− B∗)ζ + δ(B− B∗)B + r(R− R∗)I∗ + α(R− R∗)R+
µ(R− R∗)R + u1(R− R∗)S∗ + u2(R− R∗)I∗.

(4)
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Therefore dV
dt = Z − Y. It follows from the above that dV

dt ≤ 0 if and only if

Z ≤ Y. Thus, the largest compact invariant set in
{
(S, I, B, R) ∈ ∆| dV

dt = 0
}

is a single-

ton {Ω0}when P is the endemic equilibrium system and since dV
dt is a non-positive definite,

the Lyapunov theorem implies that the endemic equilibrium is globally asymptotically
stable in the region.

3. Sensitivity and Elasticity Analysis

The sensitivity and elasticity analysis of model (1) was performed in order to establish
the relation of the model to the model parameters [32]. To understand how to optimally
reduce the transmission of cholera, human morbidity, and mortality due to cholera disease,
it is essential to know the relative importance of the different factors responsible for its
transmission. The numerical sensitivity analysis is carried out to detect parameters with
high impact on Rp and which should be targeted by the control strategies. In order to
qualitatively evaluate the impact of these intervention strategies on the spread of cholera
disease, an analytical sensitivity and elasticity analysis on all parameters which drives the
disease dynamics was carried out with respect to reproduction number Rp. The sensitivity
and elasticity indexes of the reproduction number that measures initial disease transmission
using the approach by [32,33]. Sensitivity and elasticity indices provide the opportunity to
measure the relative change in a state variable when a parameter changes. The normalized
forward sensitivity index of a variable to a parameter is a ratio of the relative change in
the parameter, when a variable is a differentiable function of the parameter the sensitivity
index may be alternatively defined using partial derivatives.

The normalized forward sensitivity index of a variable, u, with respect to differenti-
ating an index on a parameter, y is defined as : Vu

y = ∂u
∂y ×

y
u . The implicit expression for

Rp is been derived analytical for the sensitivity of Rp as V
Rp
y =

∂Rp
∂y ×

y
Rp

to each param-
eter involved in Rp. The following result establishes the sensitivity and elasticity of the
reproduction number.

Theorem 7. The sensitivity and elasticity of the quantity Rp with respect to the parameter β2, is

such that V
Rp
β2

=
∂Rp
∂β2
× β2

Rp
to each parameter involved in Rp.

Proof. The normalized forward sensitivity index of a variable, b, that depends differen-
tiably on index on a parameter, z is defined as: Vb

z = ∂b
∂z ×

z
b . Given the implicit expression

for Rp then the analysis for the sensitivity of Rp is derived as V
Rp
z =

∂Rp
∂z ×

z
Rp

to each
parameter involved in Rp.

Important indices are given thus: V
Rp
β1

, V
Rp
β2

, V
Rp
A ,V

Rp
r , V

Rp
d , V

Rp
δ ,V

Rp
σ , V

Rp
µ ,V

Rp
K ,V

Rp
ζ .

They are given in Table 3:

Table 3. Table showing numerical values of sensitivity indices for the cholera model.

Parameter Parameter Values Sensitivity to Rp

ζ 100 +0.24511
β1 0.2143 +0.24511
β2 0.000002 +0.755
A 15 +0.9999
d 0.015 −0.2174
δ 0.033 −0.24511
µ 0.0000548 −1.0000
σ 0.05 −0.7245
r 0.004 −0.0579
K 109 −0.24511
α 0.025 −0.24511
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This completes the proof.

Interpretation of Sensitivity Indices

The most sensitive parameter is the rate of recruitment of a susceptible population,
A. This is followed by the rate of ingesting vibrios through human-to-human interactions,
β2 and then followed by β1 and ζ which are the rates of ingesting vibrios from the con-
taminated environment and the contribution of infected individuals to the population of
vibrios cholerae.

4. Stochastic Model of the Transmission Dynamics of the Cholera Model and Its
Biological Description

Here, we considered that the white noise depends on the size of the corresponding
population. In this case, we introduce randomness into model (1) by considering that the
white noise depends on the corresponding population size. More precisely, this amounts
to consider a corresponding population of the form e1S(t)dW(t), where e1 denotes the
intensity of the random perturbation and (W(t))t≥0 is a one-dimensional Brownian motion
defined on a complete probability space (Ω,F, (Ft)t≥0P). Therefore, we obtain a stochastic
model of cholera described by stochastic differential equations (SDE):

dS =
(

A− β1(1−u3(t))SB
K+B − β2SI(1− u3(t))− µS + αR + σI − u1(t)S

)
dt + e1S(t)dW(t),

dI =
(

β1(1−u3(t))SB
K+B + β2SI(1− u3(t))− (r + µ + d + σ + u2(t))I

)
dt + e2 I(t)dW(t),

dR = (rI − αR− µR + u1(t)S + u2(t)I)dt + e3R(t)dW(t),
dB = (ζ I − δB)dt + e4B(t)dW(t).

(5)

Let X(t) =


S(t)
I(t)
R(t)
B(t)

, system (5) can be re-written in the form of a single stochas-

tic differential equations of the form dX(t) = F(X(t), t)dt + G(X(t), t)dW(t), where the
function F : R2

+ ×R2
+ → R2 is defined by:

F =


A− β1(1−u3(t))SB

K+B − β2SI(1− u3(t))− µS + αR + σI − u1(t)S
β1(1−u3(t))SB

K+B + β2SI(1− u3(t))− (r + µ + d + σ + u2(t))I
rI − αR− µR + u1(t)S + u2(t)I

ζ I − δB

,

and the function G : R2
+ ×R2

+ → R2 is given by:

G =


e1S(t)
e2 I(t)
e3R(t)
e4B(t)

.

Positivity of the Solution for the SDE Model

Lemma 1. Suppose (S0, I0, R0, B0) ∈ Ω, then model (5) permits a unique solution (S∗, I∗, R∗, B∗)
on t ≥ 0 and this solution remains in Ω with probability 1.

Proof. If (S0, I0, R0, B0) ∈ Ω then the total population shows the equation:

dN∗h
dt

= A− µN∗h − dI∗,

and
dB∗

dt
=

ζ A
µ
− δB∗.
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Suppose (S∗, I∗, R∗, B∗) ∈ R4
+ for all 0 ≤ t ≤ T, then we almost surely obtain:

dN∗h ≤ (A− µN∗h )dq,

dB∗ ≤ (
ζ A
µ
− δB∗)dq.

Therefore, by the comparison theorem, we obtain:

N∗h ≤
A
µ
+ (N∗h (0)−

A
µ
)e−µt <

A
µ

almost surely for all t ∈ [0, T].

B∗ ≤ ζ A
µδ

+ (B∗(0)− ζ A
µδ

)e−µt <
ζ A
µδ

a.s. ∀ t ∈ [0, T].
Then, N∗h ≤

A
µ & B∗ ≤ ζA

µδ , so we have (S∗, I∗, R∗, B∗) ∈ Ω a.s. ∀ t ∈ [0, T].

5. Optimal Control Analysis

In this section we examine the optimal level of effort that will be required to control
the cholera disease. We define an objective functional J, which is meant to minimize the
number of infective humans I(t), the number of pathogens population at time t, B(t), and
the cost of applying the controls u1, u2, u3:

J(u1, u2, u3) =
∫ t f

0
v1 I(t) + v2B(t) +

v3

2
u2

1 +
v4

2
u2

2 +
v5

2
u2

3 dt, (6)

where v1, v2, v3, v4, and v5 are positive weights.
Subjected to the model Equation (9):

dS
dt = A− β1(1−u3)SB

K+B − β2SI(1− u3)− µS + αR + σI − u1S
dI
dt = β1(1−u3)SB

K+B + β2SI(1− u3)− (r + µ + d + ω + u2)I
dR
dt = rI − αR− µR + u1S + u2 I
dB
dt = ζ I − δB

(7)

with initial conditions S(0) > 0, I(0) > 0, R(0) > 0, B(0) > 0.
We choose a quadratic cost on the controls because this is similar to what is in the

literature on epidemic controls [34–38]. With the given objective functional J(u1, u2, u3), our
goal is to minimize the total number of infected humans, the total number of pathogen
population at time (t), while minimizing the cost of control u1(t), u2(t), and u3(t). Hence ,
we seek an optimal control u∗1 , u∗2 , and u∗3 such that:

J(u∗1 , u∗2 , u∗3) = min{J(u1, u2, u3)|u1, u2, u3 ∈ U, } (8)

where U = (u1, u2, u3) such that u1, u2, u3 are measurable with 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 and
0 ≤ u3 ≤ 1 for t ∈ [0, t f ] in the control set. In the next section, we discuss the existence of
optimal control in the control system.

Existence of Optimal Control

Existence of the control system (7) such that S(t), I(t), R(t), and B(t) denote the
state variables with the control variables with u1, u2, and u3 as control variables. We
consider a control system (7) with initial conditions for existence. Then we rewrite (7) in
the following form in line with [39] :

F(x(t), u(t)) = Cx(t) + u1,2(t)x(t) + u3(t)Z(x(t)) + H(x(t))
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where,

x(t) =


S(t)
I(t)
R(t)
B(t)

, C =


−µ 0 u1 0
0 −(r + µ + d + ω) 0 0
0 r −(α + µ) 0
0 ζ 0 −δ

,

u1,2(t) =


−u1(t) 0 0 0

0 −u2(t) 0 0
u1(t) u2(t) 0 0

0 0 0 0

, u3(t) =


u3(t) u1(t) 0 0
−u3(t) −u3(t) 0 0

0 0 0 0
0 0 0 0

,

H(x(t)) =


A− β1SB

K+B − β2SI
β1SB
K+B + β2SI

0
0

, Z(x(t)) =


β1SB
K+B + β2SI
− β1SB

K+B − β2SI
0
0

.

Theorem 8. Suppose the control system is uniform Lipschitz continuous, then |F(x, u)− F(x∗, u)|
≤ K|x− x∗| such that K = max{Q, ‖C‖} < ∞.

Proof. Let:
|F(x, u(t))− F(x∗, u(t))|

= |C + u1,2(t)(x(t)− x∗(t)) + u3(t)(Z(x(t))− Z(x∗(t))) + H(x(t))− H(x∗)|

≤ |C + u1,2(t)||(x(t)− x∗(t))|+ u3(t)|(Z(x(t))− Z(x∗(t)))|+ |H(x(t))− H(x∗)|

≤ (‖C‖+ max
0,t f
|u1,2(t)|)|(x(t)− x∗(t))|+ max

0,t f
|u3(t)||x(t)− x∗(t)|+ |x(t)− x∗|

≤ (‖C‖+ max
0,t f
|u1,2(t)|+ max

0,t f
|u3(t)|+ 1)‖x(t)− x∗(t)‖‖F(x, u(t))− F(x∗, u(t))‖

≤ Q‖x(t)− x∗(t)‖,

where,
Q = ‖C‖+ max

0,t f
|u1,2(t)|+ max

0,t f
|u3(t)|+ 1 < ∞.

Therefore, the function F is uniformly Lipschitz continuous.

The necessary condition that an optimal control must satisfy comes from Pontrya-
gin’s Maximum Principle [40]. The principle converts Equations (7)–(8) into a problem of
minimizing pointwise a Hamiltonian H, with respect to u1, u2, and u3:

H = v1 I(t) + v2B(t) + v3
2 u2

1 +
v4
2 u2

2 +
v5
2 u2

3+

λS

{
A− β1(1−u3)SB

K+B − β2SI(1− u3)− µS + αR + σI − u1S
}
+

λI

{
β1(1−u3)SB

K+B + β2SI(1− u3)− (r + µ + d + ω + u2)I
}
+

λR{rI − αR− µR + u1S + u2 I}+
λB{ζ I − δB},

(9)

where λS, λI , λR, and λB are the adjoint variables. When we apply Pontryagin’s Maximum
Principle [40] and the existence result for the optimal control from [11].

Theorem 9. Suppose S∗(t), I∗(t), R∗(t), and B∗(t) are optimal state solutions with associated
optimal control variables u∗1(t), u∗2(t), and u∗3(t) for the optimal control problems (7) and (8). Then
there exists adjoint variables λS(t), λI(t), λR(t), and λB(t) which satisfy:
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−λ́S =
(

β1(1−u3)B
K+B + β2 I(1− u3)

)
(λS − λR) + (µ + u1)λS − u1λR

−λ́I = −v1 − σλS + β2(1− u3)S(λS − λI) + (r + µ + d + σ + u2)λI − (r + u2)λR
−λ́R = (α + µ)λR − αλS

−λ́B = −v2 +
Kβ1(1−u3)S
(K+B)2 (λS − λI) + δλB

(10)

and with transversality conditions:

λS(t f ) = λI(t f ) = λR(t f ) = λB(t f ) = 0. (11)

Furthermore, we obtain the optimal controls u∗1 , u∗2 , and u∗3 :

u∗1 = max
{

0, min
(

1,
(

S(λS−λR)
v3

))}
u∗2 = max

{
0, min

(
1,
(

I(λI+λR)
v4

))}
u∗3 = max

{
0, min

(
1,
(

β1SB(λS−λI)+(K+B)β2SI(λI−λS)
v5(K+B)

))}
.

(12)

Proof. We applied the Hamiltonian Equation (9) to obtain the adjoint equations and
the transversality conditions. We set S(t) = S∗(t), I(t) = I∗(t), R(t) = R∗(t), and
B(t) = B∗(t), differentiating the Hamiltonian Equation (9) with respect to S(t), I(t), R(t),
and B(t), to yield:

−λ́S = − ∂H
∂S =

(
β1(1−u3)B

K+B + β2 I(1− u3)
)
(λS − λR) + (µ + u1)λS − u1λR

−λ́I = − ∂H
∂I = −v1 − σλS + β2(1− u3)S(λS − λI) + (r + µ + d + σ + u2)λI − (r + u2)λR

−λ́R = − ∂H
∂R = (α + µ)λR − αλS

−λ́B = − ∂H
∂B = −v2 +

Kβ1(1−u3)S
(K+B)2 (λS − λI) + δλB.

(13)

By the optimality conditions, we obtain

∂H
∂u1

= v3u1 − λSS + λRS = 0 at u∗1 ,⇒ u∗1 = S(λS−λR)
v3

∂H
∂u2

= v4u2 − λI − λR = 0 at u∗2 ,⇒ u∗2 = (λI−λR)
v4

∂H
∂u3

= v5u3 + λS
β1SB
K+B + λSβ2SI − λI

β1SB
K+B − λI β2SI = 0 at u∗3 ,

⇒ u∗3 = β1SB(λS−λI)+(K+B)β2SI(λI−λS)
v5(K+B) .

u∗1 =



0 i f Z∗1 ≤ 0,

Z∗1 i f 0 < Z∗1 < 1,

1 i f Z∗1 ≥ 1

(14)

where

Z∗1 =
S(λS − λR)

v3

u∗2 =



0 i f Z∗2 ≤ 0,

Z∗2 i f 0 < Z∗2 < 1,

1 i f Z∗2 ≥ 1

(15)

where
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Z∗2 =
(λI + λR)

v4

and

u∗3 =



0 i f Z∗3 ≤ 0,

Z∗3 i f 0 < Z∗3 < 1,

1 i f Z∗3 ≥ 1

(16)

where

Z∗3 =
β1SB(λS − λI) + (K + B)β2SI(λI − λS)

v5(K + B)
.

These can be rewritten in compact form:

u∗1 = max{min{S(λS − λR)

v3
, 1}, 0}, (17)

u∗2 = max{min{ (λI + λR)

v4
, 1}, 0}, (18)

u∗3 = max{min{ β1SB(λS − λI) + (K + B)β2SI(λI − λS)

v5(K + B)
, 1}, 0}. (19)

Therefore, according to Equations (17)–(19) for u∗1 , u∗2 , u∗3 the characterization of the
optimal controls. We obtained the optimal control and states by solving the optimality sys-
tem which includes the state system (7) with boundary conditions, the adjoint system (10),
and the characterization of the optimal control (17)–(19). We used the initial conditions,
transversality conditions alongside the characterization of the optimal controls u∗1 , u∗2 , u∗3
provided in (17)–(19) to solve the optimality system. Furthermore, the second derivative of
the Hamiltonian with respect to u1, u2, and u3 are positive meaning a minimum at u∗1(t),
u∗2(t), and u∗3(t). By substituting the values of u∗1(t), u∗2(t), and u∗3(t) in the control model
Equation (8) and we arrived at the following new system:

dS
dt = A− β1(1−u∗3(t))S

∗(t)B∗(t)
K+B∗(t) − β2S∗(t)I∗(t)(1− u∗3(t))− µS∗(t) + αR∗(t) + σI∗(t)− u∗1(t)S

∗(t)
dI
dt =

β1(1−u∗3(t))S
∗(t)B∗(t)

K+B∗(t) + β2S∗(t)I∗(t)(1− u∗3(t))− (r + µ + d + ω + u∗2(t))I∗(t)
dR
dt = rI∗(t)− αR∗(t)− µR∗(t) + u∗1(t)S

∗(t) + u∗2(t)I∗(t)
dB
dt = ζ I∗(t)− δB∗(t)

(20)

and then together with the Hamiltonian H∗ at (t, S∗, I∗, R∗, B∗, u∗1 , u∗2 , u∗3 , λS, λI , λR, λB):

H∗ = v1 I∗(t) + v2B∗(t) + v3
2 u∗,21 + v4

2 u∗,22 + v5
2 u∗,23 +

λS

{
A− β1(1−u∗3)S

∗B∗

K+B∗ − β2S∗ I∗(1− u∗3)− µS∗ + αR∗ + σI∗ − u∗1S∗
}
+

λI

{
β1(1−u∗3)S

∗B∗

K+B∗ + β2S∗ I∗(1− u∗3)− (r + µ + d + ω + u∗2)I∗
}
+

λR
{

rI∗ − (α + µ)R∗ + u∗1S∗ + u∗2 I∗
}
+

λB{ζ I∗ − δB∗}.

(21)

Therefore, we obtain the optimal control and state system by numerically solving the
system (20) and (21). We applied the parameter values represented in Table 4 to get the
numerical solutions for the optimality system by using numerics.
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Table 4. Table showing numerical values of parameters used in the simulations.

Parameter Symbol Value Source

Recruitment rate of susceptible population A 15/day Assumed
Contribution of infected individuals to
the population of Vibrio cholerae ζ 100 cells/L-per day [5]
Natural death rate of human µ 0.0000548/day [18]
Net death rate of Vibrio cholerae δ 0.033/day [5]
Acquired temporary immunity r 0.004/day [8,26]
Disease-induced death rate d 0.015/day [26]
Concentration of Vibrio cholerae in water K 109 cells/L [26]
Human spontaneous recovery rate σ 0.05 [18]
Use of oral cholera vaccine u1 0.9 Assumed
Use of treatment by ORS u2 0.91 Assumed
Personal hygiene/sanitation u3 0.94 Assumed
Rates of ingesting vibrios from the CO * β1 0.2143 Assumed
Eates of ingesting vibrios through H-H int. * β2 0.000002 Assumed
Loss of immunity α 0.025 Assumed

* contaminated environment = CO; human-to-human interaction = H-H int.

6. Numerical Simulation and Graphical Illustration of the Model

Here, we run some numerical simulations to illustrate the behavior of reproduction
number and the behavior of the model. A numerical simulation of the cholera model (1)
using the original system variables before normalization was conducted using MATLAB’s
ode45. We observe that when an endemic equilibrium is reached the system converges
to a steady state that is asymptotically stable. In order to illustrate some of the numerical
results of the study, numerical simulations of the model (1) are carried out using a set of
reasonable parameter values given in Table 4. Parameters were obtained from different
literature like [31]. Interesting results can be found also in [41–46]. We simulate the model
system by using the ODE solver coded in Matlab programming language. However, it
should be known that the parameters used are theoretical so they may or may not be
biologically realistic. Numerical simulation and graphical illustrations are carried out in
order to verify some of the analytical results. Different initial starts have been used to
perform the computer simulations for different cases and displayed graphically in the
figures below:

1. Strategy A: Employing hygiene promotion and social mobilisation (u1), only.
2. Strategy B: Treatment of the symptomatic individuals with drug/oral re-hydration

solution (ORS) (u2), only.
3. Strategy C: Employing sanitation, hygiene, and safe water (u3), only.
4. Strategy D: Employing the control interventions (u1, u2).
5. Strategy E: Employing the control interventions (u1, u3).
6. Strategy F: Employing the control interventions (u2, u3).
7. Strategy G: Employing all three control interventions (u1, u2, u3).

6.1. Strategy A: Employing Hygiene Promotion and Social Mobilization (u1), Only

Here, we use only the control measure (u1) to optimize the objective functional J,
while the control interventions (u2) and (u3) are kept at zero (i.e., were utilized). It is
observed that when viewing the various figures, it is of note to remember that each of the
individuals with control intervention(s) are marked by undashed lines and those without
control interventions are marked by dotted lines. In Figure 1, we present the plots of
population of susceptible humans, infected humans, and vibrio cholerae alongside their
control profile. It was observed that the solid lines denote the population of susceptible
human, infected human, and vibrio cholerae with control intervention while the dotted
lines denote the population of susceptible human, infected human, and vibrio cholerae
without control intervention(s). By day 120, cholera is completely wiped out in the infected
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population in Figure 1a. The infected human population decreases sharply in the first
80 days while the maximum number of recovered humans would increase within those
days as well. In Figure 1b, the population of vibrio cholerae increased within the first
20 days but dropped very sharply and wiped out completely until the end of 120 days.
It also appeared that the population of vibrio cholerae decreases faster with the control
intervention than without the control intervention, in place. In Figure 1c, it was observed
that the susceptible human population decreases with the control intervention u1 in place
but increases without the control. This shows that the susceptible human population will
continue to increase and more people will become more vulnerable to cholera if this control
intervention is not put in place. The control profile in Figure 1d shows that the control
u1, remained stable from day 1 till the end of the 120 days while the others (u2 and u3)
maintained lower bounds.

(a) (b)

(c) (d)

Figure 1. Simulation showing the population of (a) infected, (b) vibrio cholerae, (c) susceptible and
(d) the control profile with (u1) only, where in Figure 1a, the infected human population decreases
sharply over time. In Figure 1b, the population of vibrio cholerae increased within the first 20 days
but dropped very sharply and wiped out completely until the end of 120 days. In Figure 1c, it was
observed that the susceptible human population decreases with the control intervention u1 in place
but increases without the control. The control profile in Figure 1d shows that the control u1, remained
stable from day 1 till the end of the 120 days while the others (u2 and u3) maintained lower bounds.

6.2. Strategy B: Treatment of the Symptomatic Individuals with Drug/Oral Re-Hydration Solution
(ORS) (u2), Only

Here, we utilized only the control measure (u2) to optimize the objective functional J,
while the control interventions (u1) and (u3) are kept at zero (i.e., were not utilized). In
Figure 2, we present the plots of population of susceptible humans, infected humans, and
vibrio cholerae and their control profile. In Figure 2a, the population of the infected human
decreases sharply and by day 20, the disease is wiped out of the system in the presence of
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the control intervention. Figure 2b showed that the population of vibrio cholerae increases
slightly and then dropped from day 20 until the end of 120 days in the presence of the
intervention. It was observed in Figure 2c that the population of susceptible human with
the control intervention were more than the susceptible human without the control. The
control profile in Figure 2d showed that the control u2, remained constant from day 1 till
the end of the 120 days while the others (u1 and u3) maintained lower bounds.

(a) (b)

(c) (d)

Figure 2. Simulation showing the population of (a) infected, (b) vibrio cholerae, (c) susceptible and
(d) the control profile with (u2), only. In Figure 2a, the population of the infected human decreases
sharply and by day 20. Figure 2b showed that the population of vibrio cholerae increases slightly
and then dropped from day 20 until the end of 120 days in the presence of the intervention. It was
observed in Figure 2c that the population of susceptible human with the control intervention were
more than the susceptible human without the control. The control profile in Figure 2d showed that
the control u2, remained constant from day 1 till the end of the 120 days while the others (u1 and u3)
maintained lower bounds.

6.3. Strategy C: Employing Sanitation, Hygiene, and Safe Water (u3), Only

Here, we use only the control measure (u3) to optimize the objective functional J, while
the control interventions (u2) and (u3) are kept at zero (i.e., were not utilized). In Figure 3a,
it is observed that the population of vibrio cholerae increases slightly and then drops down
completely after 80 days and the disease vanishes within 80–120 days. In Figure 3b the
number of susceptible humans increases faster (with the control intervention) than without
the control intervention. This implies that the control u3(t) does not decrease the number of
susceptible. In Figure 3c, the number of infected human population decreases completely
in day 70 and vanishes by day 120. In Figure 3d, the control profile shows that the control
u3, remained constant from day 1 till the end of the 120 days while the others (u2 and u3)
maintained lower bounds.
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(a) (b)

(c) (d)

Figure 3. Simulation showing the population of (a) infected, (b) vibrio cholerae, (c) susceptible
and (d) the control profile with (u3) only. In Figure 3a, it is observed that the population of vibrio
cholerae increases slightly and then drops down completely after 80 days and the disease vanishes
within 80–120 days. In Figure 3b the number of susceptible humans increases faster (with the control
intervention) than without the control intervention. This implies that the control u3(t) does not
decrease the number of susceptible. In Figure 3c, the number of infected human population decreases
completely in day 70 and vanishes by day 120. In Figure 3d, the control profile shows that the control
u3, remained constant from day 1 till the end of the 120 days while the others (u2 and u3) maintained
lower bounds.

6.4. Strategy D: Employing the Control Interventions (u1, u2)

Here, we used control interventions (u1) and (u2) to optimize the objective functional J,
while the control intervention (u3) is kept at zero (i.e., were not utilized). In Figure 4a, the
population of the infected human decreases drastically within the first 5 days and cholera
was totally wiped out. In Figure 4b, the number of vibrio cholerae increases and then
decreases until it vanishes. In Figure 4c, the number of susceptible humans completely
decreases and vanishes from the system in the presence of the control intervention but
increases without the control interventions. In Figure 4d, the control profile showed that
the control (u1) and (u2) remained constant from day 1 till the end of the 120 days while
(u3) maintained lower bounds.
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(a) (b)

(c) (d)

Figure 4. Simulation showing the population of (a) infected, (b) vibrio cholerae, (c) susceptible and
(d) the control profile with (u1, u2). In Figure 4a, the population of the infected human decreases
drastically within the first 5 days and cholera was totally wiped out. In Figure 4b, the number of
vibrio cholerae increases and then decreases until it vanishes. In Figure 4c, the number of susceptible
humans completely decreases and vanishes from the system in the presence of the control intervention
but increases without the control interventions. In Figure 4d, the control profile showed that the
control (u1) and (u2) remained constant from day 1 till the end of the 120 days while (u3) maintained
lower bounds.

6.5. Strategy E: Employing the Control Interventions (u1, u3)

Here, we used control interventions (u1) and (u3) to optimize the objective functional J,
while the control intervention (u2) is kept at zero (i.e., were not utilized). In Figure 5a,
the population of infected humans decreases essentially after 80 days until the disease
was wiped out completely. Figure 5b reveals that the number of vibrio cholerae increases
slightly and then decreases completely after 80 days and then vanishes completely. In
Figure 5c, the number of susceptible humans completely decreases within 2 days and then
vanishes from the system in the presence of the control interventions within 2–120 days.
In Figure 5d, the control profile showed that the control (u1), and (u3) remained constant
from day 1 till the end of the 120 days while (u2) maintained lower bounds.
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(a) (b)

(c) (d)

Figure 5. Simulation showing the population of (a) infected, (b) vibrio cholerae, (c) susceptible
and (d) the control profile with (u1, u3). In Figure 5a, the population of infected humans decreases
essentially after 80 days until the disease was wiped out completely. Figure 5b reveals that the number
of vibrio cholerae increases slightly and then decreases completely after 80 days and then vanishes
completely. In Figure 5c, the number of susceptible humans completely decreases within 2 days and
then vanishes from the system in the presence of the control interventions within 2–120 days. In
Figure 5d, the control profile showed that the control (u1), and (u3) remained constant from day 1 till
the end of the 120 days while (u2) maintained lower bounds.

6.6. Strategy F: Employing the Control Interventions (u2, u3)

Here, we used control interventions (u2) and (u3) to optimize the objective functional J,
while the control intervention (u1) is kept at zero (i.e., were not utilized). In Figure 6a,
the population of infected humans decreases within the first 2 days and then decreases
until it vanishes completely from the system within 20–120 days. Figure 6b shows that
the population of vibrio cholerae increases within the first 2 days and then decreases until
it vanishes completely from the system within 20–120 days. In Figure 6c, the susceptible
human population inctreases over the time period in the presence of the control intervention
but was much slower within the control intervention. In Figure 6d, the control profile
shows that the control (u2), and (u3) remained constant from day 1 till the end of the
120 days while (u1) maintained lower bounds.
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(a) (b)

(c) (d)

Figure 6. Simulation showing the population of (a) infected, (b) vibrio cholerae, (c) susceptible
and (d) the control profile with (u2, u3). In Figure 6a, the population of infected humans decreases
within the first 2 days and then decreases until it vanishes completely from the system within
20–120 days. Figure 6b shows that the population of vibrio cholerae increases within the first 2 days
and then decreases until it vanishes completely from the system within 20–120 days. In Figure 6c,
the susceptible human population inctreases over the time period in the presence of the control
intervention but was much slower within the control intervention. In Figure 6d, the control profile
shows that the control (u2), and (u3) remained constant from day 1 till the end of the 120 days while
(u1) maintained lower bounds.

6.7. Strategy G: Employing All the Three Control Interventions (u1, u2, u3)

Here, we used al the three control interventions (u1), (u2), and (u3) to optimize the
objective functional J. In Figure 7a, it was observed that the population of the infected
human decreases within the first 2 days and then decreases until it vanishes completely
from the system within 2–120 days in the presence of all the three interventions. In Figure 7b,
the number of vibrio cholerae increases shortly within the first 20 days and then declines
completely until it was wiped out from the system within 20–120 days. In Figure 7c, the
number of susceptible humans begins decreasing within the first 2 days until it vanishes
completely from the system. In Figure 7d, the control profile shows that the control (u1),
(u2), and (u3) remained stable from day 1 till the end of the 120 days.
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(a) (b)

(c) (d)

Figure 7. Simulation showing the population of (a) infected, (b) vibrio cholerae, (c) susceptible and
(d) the control profile with (u1, u2, u3). In Figure 7a, it was observed that the population of the
infected human decreases within the first 2 days and then decreases until it vanishes completely
from the system within 2–120 days in the presence of all the three interventions. In Figure 7b, the
number of vibrio cholerae increases shortly within the first 20 days and then declines completely
until it was wiped out from the system within 20–120 days. In Figure 7c, the number of susceptible
humans begins decreasing within the first 2 days until it vanishes completely from the system. In
Figure 7d, the control profile shows that the control (u1), (u2), and (u3) remained stable from day 1
till the end of the 120 days.

7. Numerical Simulation of the SDE Model

In this section, we simulate our SDE model (5) by using the method of Milstein given
the set of parameters in Table 4. We obtained results of stochastic model (5) for 200 runs,
and presented and compared the mean of 200 runs of the stochastic model simulation with
the results of the corresponding deterministic model as shown in Figures 8 and 9, where
the time series of all the variables of the model were plotted. It is observed from the figures
that the mean of 200 runs of the stochastic simulation are very close to the simulation
results of the deterministic model.
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(a) (b)

Figure 8. Simulation showing the dynamic behavior of susceptible humans, infected humans, recov-
ered humans, and the Vibrio cholerae population and is given for A = 15; β1 = 0.2143; β2 = 0.000002.
(a) revealed that the susceptible population decreases over time while the stochastic simulation are
very close to the simulation results of the deterministic model. (b) also revealed that the vibrio cholerae
population decreases over time while the population of the recovered human increases over time
and their stochastic simulation are very close to the simulation results of the deterministic model.;
d = 0.015; δ = 0.33; ζ = 100; α = 0.025; µ = 0.0000548; r = 0.004; σ = 0.05; K = 109; u1 = 0.9;
u2 = 0.91; u3 = 0.94; e1 = 0.05; e2 = 0.05; e3 = 0.05; and e4 = 0.05.

(a) (b)

Figure 9. Simulation showing the dynamic behavior of (a) susceptible humans, (b) infected humans,
(c) recovered humans, and (d) the Vibrio cholerae population, and is given for A = 1500; β1 = 0.2143;
β2 = 0.000002; d = 0.015; δ = 0.33; ζ = 100; α = 0.025; µ = 0.0000548; r = 0.004; σ = 0.05; K = 109;
u1 = 0.9; u2 = 0.91; u3 = 0.94; e1 = 0.05; e2 = 0.05; e3 = 0.05; and e4 = 0.05. We increased the
recruitment rate of the susceptible population from 15 per day to 1 500 per day. Figure 9a, revealed
that the susceptible population increases and then dropped slightly and the infected remained
lowered and at steady state over time while the stochastic simulation is very close to the simulation
results of the deterministic model but the fluctuation in the susceptible population became much
stronger. Figure 9b, also revealed that the recovered population increases over time while the
population of the vibrio cholerae decreases over time and their stochastic simulation are very close to
the simulation results of the deterministic model.

8. Conclusions

In this article, a nonlinear mathematical model to study the dynamics of the spread of
cholera was developed and analyzed. The existence and global stability of the endemic
equilibrium were discussed and it was shown that the endemic equilibrium is globally
asymptotically stable whenever Rp > 1. Sensitivity and elasticity analysis of the model
were also performed and it was revealed that some parameters had major and significant
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influence on the spread of cholera than others. The deterministic model was converted to
stochastic model to capture some variabilities in the model and the results of the stochastic
model were compared with their corresponding deterministic model. It was observed
that the level of infected human population was the same with the simulation result of
the corresponding deterministic model. It was observed from our work that optimal
control applications revealed that the combinations of the interventions in the model had a
great influence in the control of cholera. The numerical experiments revealed that optimal
strategies to combat effectively the cholera was by the combinations of interventions in
the model. The cholera model predicted the control of the disease by the combination of
the three control interventions. The models developed predicted the decrease, control, and
elimination of cholera morbidity and mortality through incorporating multiple control
interventions into the model. Therefore, it is advised that the use of multiple control
interventions be adopted for cholera in areas where there are sufficient resources. However,
in areas where there are limited or lack of resources, it is advised that treatment of the
symptomatic individuals with drug and/or administration of oral re-hydration solution
(ORS) to the infected should be used. We therefore advise that in a situation where there are
limited resources in the area, strategy B can be applied. The result of our study recommends
that: (i) Hygiene promotion and social mobilization should be organized from time to time
to reduce the transmission of cholera in the community and (ii) rhe fight against cholera
can as well be successful by practising sanitation, hygiene, and drinking safe water. We
recognize that this work will be a useful reference for any further study on monitoring
the effect of multiple control strategies for cholera disease. We also believe that this study
will help society at large to have an understanding of how the disease can be controlled
through multiple control strategies in order to reduce the spread of the disease. Finally,
the study will also help public health officers and environmental health workers organize
seminars, training, and workshops to educate the community on the impact of multiple
control strategies in reducing the spread of cholera disease. In future, we will like to study
the influence of migration and environmental sanitation on the dynamics of transmission
of cholera. The novelty in the work is that we introduced three time-dependent control
interventions based on WHO recommendations into the model in order to predict the
reduction/control of the cholera in the population as the obtained result may present a
good framework for planning and decision making for any national control programs on
cholera especially in communities with little or no resources. We plan to extend this work
in the future by considering the impact of seasonality and climate variabilities. We also
plan to study the influence of host heterogeneities on the transmission of cholera in the
presence of multiple control interventions and it will also be interesting to look into the
aspect of using real time data to parameterize the model developed.
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