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1. Introduction

Aggregation functions [1–8] find wide applications in almost all branches of engineer-
ing. Typical fields include mathematics and information sciences, especially in decision-
making and the fusion of information problems. The aim of an aggregation function is
to summarize an n-tuple of information by means of a single representative value. The
fundamental axiom of an aggregation function is the non-decreasing monotonicity. An-
other axiomatic constraint of an aggregation function is that the aggregating of minimal or
maximal inputs are, respectively, minimal and maximal outputs.

The prototypical example of aggregation functions is the arithmetic mean, which
is the first modern definition of mean. The concept of arithmetic mean seems to have
been proposed first by Cauchy in 1821 [9]. Since then, a large variety of aggregation
functions have been proposed. The conjunctive, the disjunctive, the internal, and the mixed
aggregation functions are four main classes of aggregation functions based on many-valued
logics connectives [10]. The algebraic and analytical properties of an aggregation function
are proposed and analyzed in the literature [1–8]. Associativity, symmetry, bisymmetry,
idempotency, neutral element, and annihilator element are algebraic properties. Continuity,
Lipschitzian, and additivity are analytical properties. A first review of papers reporting
aggregation function results was undertaken by Xu and Da [8]. More details can be seen
in the excellent reviews on the state of the art by Grabisch et al. [3–5], group decision
making by Mohd and Abdullah [7] and Del Moral et al. [2], and construction methods by
Khameneh and Kilicman [6]. Recently, many papers have been dedicated to an aggregation
function in group decision making [11–13], multi-criteria decision making [14], two-side
matching decision making [15], and others [16,17].

One characterization of the mean is the Chisini′s equation [9], described as follows:
a mean M, with respect to the function F, is that each input of F can be replaced with
M without changing the overall aggregation. When F is considered as the sum and the
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product, the solution of Chisini′s equation is the arithmetic mean and the geometric mean,
respectively. For the analytical properties, an aggregation function, which satisfies the
Lipschitz condition is a continuous one. More details can be found in [1,3]. This paper
analyzes and compares the Lipschitz behaviors between the sum and the arithmetic mean,
and those of the product and the geometric mean. The Lipschitz constants for the sum,
the arithmetic mean, the product, and the geometric mean can be obtained analytically
by the triangular inequality and the Hölder inequality [1,3]. However, the best Lipschitz
constants, which are the greatest lower bound of the Lipschitz constants, may or may not
be attainable. The reason is that the feasible region of constraints for the mathematical
programming model of the best Lipschitz constant is not compact. To the best knowledge of
the authors, such a problem has not been considered in the literature. For the best Lipschitz
constant, a mathematical model with non-Archimedean numbers is proposed. We also
propose a discrete approximation of the mathematical model. We adopt an exhaustive
analysis to empirically find and compare the optimal solutions and the empirical best
Lipschitz constants for the sum and the arithmetic mean, and for the product and the
geometric mean. The multiple optimal solutions and the empirical best Lipschitz constants
are presented explicitly.

The organization of this paper is as follows. Section 2 briefly reviews an aggregation
function. We analyze and compare the optimal solutions and the best Lipschitz constants
between the sum function and the arithmetic mean in Section 3, and between the product
function and the geometric mean in Section 4. Finally, some concluding remarks and future
research are presented.

2. An Aggregation Function

We now recall the definition of an aggregation function [1–4,6,7]. Let I ⊂ R be the
closed unit interval [0,1], and I n = {x = (x1, x2, . . . , xn)|xi ∈ I, i = 1, 2, . . . , n}. Further-
more, x ≤ y if and only if xi ≤ yi, i = 1, 2, . . . , n.

Definition 1. An n-ary aggregation function A (n) : I n → I satisfies:

• A (1) (x) = x, for n = 1 and x ∈ I;
• If x ≤ y, then A (n)(x) ≤ A (n)(y) for x, y ∈ In;
• A (n) (0, 0, . . . , 0) = 0 and A (n) (1, 1, . . . , 1) = 1.

The generalized inputs I of an aggregation function are a subdomain of the extended
real line [−∞, ∞]. They can be any type (open, closed, . . . ) of interval. For simplicity, we
deal with the closed unit interval [0,1]. An extended aggregation function is a mapping
A : ∪ n∈N I n → I whose restriction to I n is the n-ary aggregation function A (n) for any
n ∈ N . When no confusion can arise, we use the convenient notation A to represent A (n).

For xi ∈ I, i = 1, 2, . . . , n, some well-known examples of aggregation functions [1–4,6,7]
are as follows:

1. Median Md defined by Md(x1, x2, . . . , xn) = x ( n+1
2 ) if n is odd and Md(x1, x2, . . . , xn) =

1
2

(
x ( n

2 )
+ x ( n

2 +1)

)
if n is even where x (1) ≤ x (2) ≤ . . . ≤ x (n).

2. Arithmetic mean (AM) AM(x1, x2, . . . , xn) =
1
n ∑n

i=1 xi.
3. Weighted arithmetic mean (WAM) WAM(x1, x2, . . . , xn) =

1
n ∑n

i=1 wixi, where wi ∈ I,
i = 1, 2, . . . , n, ∑n

i=1 wi = 1.
4. Geometric mean (GM) GM(x1, x2, . . . , xn) = (∏n

i = 1 xi)
1/n.

5. Harmonic mean (HM) HM(x1, x2, . . . , xn) =
n

∑n
i=1 1/xi

.

6. Minimum (min) min(x1, x2, . . . , xn) = min n
i=1xi and maximum (max) max(x1, x2, . . . , xn) =

max n
i=1xi.

7. Product function ∏ (x1, x2, . . . , xn) = ∏ n
i=1 xi.

8. Projection function to the kth coordinate Pk(x1, x2, . . . , xn) = xk.
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9. The weakest aggregation function Aw(x1, x2, . . . , xn) ={
1, if (x1, x2, . . . , xn) = (1, 1, . . . , 1)

0, else.
10. The strongest aggregation function As(x1, x2, . . . , xn) ={

0, i f (x1, x2, . . . , xn) = (0, 0, . . . , 0)
1, else.

11. Operator Ac(x1, x2, . . . , xn) = max(0, min(1, c + ∑n
i=1(xi − c)) for c ∈ I.

For all x1, x2, . . . , xn ∈ [0, 1], the relationship between the arithmetic mean, the geo-
metric mean, the harmonic mean, the minimum, the maximum, the product function, the
weakest aggregation function, and the strongest aggregation function is

Aw(x1, x2, . . . , xn) ≤ ∏(x1, x2, . . . , xn) ≤ Min(x1, x2, . . . , xn) ≤ HM(x1, x2, . . . , xn) ≤
GM(x1, x2, . . . , xn) ≤ AM(x1, x2, . . . , xn) ≤ Max(x1, x2, . . . , xn) ≤ As (x1, x2, . . . , xn).

The algebraic and analytical properties of aggregation functions [1–4,6,7] are described
as follows:

Definition 2. An aggregation function A : I n → I is called

• having a neutral element e ∈ I, if for i = 1, 2, . . . , n, we have A(x1, . . . , xi−1, e, xi+1, . . . , xn) =
A (x1, . . . , xi−1, xi+1, . . . , xn).

• having an annihilator element a ∈ I, if for i = 1, 2, . . . , n, we have
A (x1, . . . , xi−1, a, xi+1, . . . , xn) = a.

• additive, if for any x, y, x + y ∈ In, we have A(x + y) = A(x) + A(y).
• associative, if for all (x1, x2, x3) ∈ I3, we have A (A (x1, x2), x3) = A(x1, A(x2, x3)).
• idempotent, if for all x ∈ I, we have A(x, x, . . . , x) = x.
• symmetric, if for all (x1, x2, . . . , xn) ∈ In and for any permutation σ of {1, 2, . . . ,n}, we have

A(x1, x2, . . . , xn) = A
(

xσ (1), xσ (2), . . . , xσ (n)

)
.

• bisymmetric, if for all xij ∈ I, i, j ∈ {1, 2, . . . , n}, we have
A(A(x11, x12, . . . , x1n), . . . , A(xn1, xn2, . . . , xnn)) =
A(A(x11, x21, . . . , xn1), . . . , A(x1n, x2n, . . . , xnn)).

• continuous,∀ε > 0, ∃δ > 0, if |xi − yi| < δ for i ∈ {1, 2, . . . , n}, then
|A(x1, x2, . . . , xn)− A(y1, y2, . . . , yn)| < ε.

• c-Lipschitzian with respect to the norm ‖.‖, if for some constant c ∈ (0,+∞), we have the
Lipschitz condition |A(x1, x2, . . . , xn)− A(y1, y2, . . . , yn)| ≤ c‖(x1, x2, . . . , xn)−
(y1, y2, . . . , yn)‖ for all (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ In and ‖.‖ : R n → [0,+∞) .

The Minkowski norm of order p ∈ [1, ∞), Lp-norm, defined by

‖x‖p =
(
∑n

i = 1|xi| p
)1/p

is a well-known norm. When p = ∞,

‖x‖∞ = max n
i=1|xi|

is called the Chebyshev norm. Since

max n
i=1|xi − yi| ≤

(
∑n

i=1|xi − yi|p+1
) 1

p+1 ≤
(
∑n

i = 1|xi − yi|p
) 1/p

for all xi, yi ∈ I, i ∈ {1, 2, . . . , n} and p ∈ [1, ∞), it follows that each d-Lipschitzian with
respect to L∞-norm implies d-Lipschitzian with respect to Lp-norm, p ∈ [1, ∞). Addition-
ally, each d-Lipschitzian with respect to Lp+1-norm implies d-Lipschitzian with respect to
Lp-norm, p ∈ [1, ∞).

The best Lipschitz constant is the greatest lower bound d of b such that A (x1, x2, . . . , xn)
is d-Lipschitzian but A (x1, x2, . . . , xn) is not b–Lipschitzian for any b ∈ (0, d). Two types of
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best Lipschitz constant are considered: theoretical best Lipschitz constant and empirical
best Lipschitz constant. Theoretical best Lipschitz constant is obtained analytically by the
triangular inequality and the Hölder inequality [1,3,4]. Empirical best Lipschitz constant is
obtained by finding the maximum value of

|A (x1, x2, . . . , xn)− A (y1, y2, . . . , yn)|
‖(x1, x2, . . . , xn)− (y1, y2, . . . , yn)‖

for (x1, x2, . . . , xn) 6= (y1, y2, . . . , yn), xi, yi ≤ 1 and xi, yi ≥ 0, i ∈ {1, 2, . . . , n}. For an aggre-
gation function A(x1, x2, . . . , xn), the mathematical programming model of the empirical
best Lipschitz constant with respect to Lp-norm is

Maximize |A(x1,x2,...,xn)−A(y1,y2,...,yn)|
(∑n

i=1|xi−yi | p) 1/p

subject to
(
∑n

i=1|xi − yi| p) 1/p
> 0

xi, yi ≤ 1, i ∈ {1, 2, . . . , n}
xi, yi ≥ 0, i ∈ {1, 2, . . . , n}

(1)

The feasible region of constraints for the mathematical programming model (1) is not
compact. The denominator of the objective function is required to be greater than a small
positive number ε. Following the data envelopment analysis, this small number ε is called
a non-Archimedean number [18]. The mathematical programming model (1) becomes

Maximize |A(x1,x2,...,xn)−A(y1,y2,...,yn)|
(∑n

i=1|xi−yi | p) 1/p

subject to (∑n
i=1|xi − yi| p) 1/p ≥ ε

xi, yi ≤ 1, i ∈ {1, 2, . . . , n}
xi, yi ≥ 0, i ∈ {1, 2, . . . , n}

(2)

It follows that the largest objective function of the mathematical programming model
(2) is the empirical best Lipschitz constant. If (∑n

i = 1|xi − yi| p) 1/p ≥ ε is a binding
constraint, the value of objective function is dependent of the non-Archimedean number
ε. Since the empirical best Lipschitz constants are the actual best Lipschitz constants, the
analytical behaviors of the aggregation function can be analyzed by the behaviors of the
empirical best Lipschitz constants.

The following definition establishes that a non-idempotent aggregation function can
be transformed into an idempotent one [1,3,4].

Definition 3. Let A : I n → I be an aggregation function such that δA (x) = A (x, x, . . . , x) is
strictly increasing and

{δA (x)|x ∈ I} = {A(x1, x2, . . . , xn)|xi ∈ I, i = 1, . . . , n},

then the idempotent aggregation function is given by AI (x1, x2, . . . , xn) = δ−1
A (A (x1, x2, . . . , xn)),

which is called idempotized A.

To characterize the mean M : I n → I , the first one is Cauchy’s internality prop-
erty [9]. A mean M is an internal function, i.e., Min(x1, x2, . . . , xn) ≤ M(x1, x2, . . . , xn) ≤
Max(x1, x2, . . . , xn). The second is the Chisini′s equation. A mean M with respect to the
function F : I n → I is a number M such that

F(M, M, . . . , M) = F(x1, x2, . . . , xn).

The Chisini′s equation can be rewritten as

δF(M) = F(x1, x2, . . . , xn).
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Under some constraints, the mean that is obtained from the solution of Chisini’s
equation can fulfill Cauchy’s internality property [1,3,4], described as follows:

Definition 4. A function M : I n → I is an average associated with F in I n if there exists a
nondecreasing and idempotizable function F : I n → < satisfying δF(M) = F.

From Definitions 3 and 4, it is implied that M is the idempotized F if and only if M
is an average associated with F. When F is considered as the sum and the product, the
idempotized F is the arithmetic mean and the geometric mean, respectively. The following
sections will analyze and compare the optimal solutions and the best Lipschitz constants
between an aggregation function and associated idempotized aggregation function.

3. The Best Lipschitz Constants of the Sum and Arithmetic Mean Functions

This section deals with the sum function ∑(x1, x2, . . . , xn) = ∑n
i=1 xi and the arith-

metic mean AM(x1, x2, . . . , xn). The arithmetic mean is the idempotized sum function.
Additionally, the arithmetic mean is an average associated with the sum function. The
domain of the arithmetic mean is [0, 1], so the domain of the sum function is [0, ∞). The
arithmetic mean is an aggregation function with minimal Lipschitz constant with respect
to L1-norm, we will show related results for the other Lp-norms. It is evident that the
sum function satisfies additive, associative, symmetric, bisymmetric, continuous, and
Lipschitzian but non-idempotent. The sum function has neutral element e = 0 but no
annihilator element [1,3,4].

A variant of the sum function is the bounded sum ∑L(x1, x2, . . . , xn) = min (∑n
i=1 xi, 1).

The bounded sum preserves some properties of the original sum function, such as the asso-
ciativity, symmetry, bisymmetry, continuity, Lipschitzian, non-idempotency and neutral ele-
ment e = 0. Two different properties exist between ∑(x1, x2, . . . , xn) and ∑L(x1, x2, . . . , xn).
The sum function possesses additivity and no annihilator element, while the bounded sum
function dissatisfies additive and has annihilator element a = 1.

We now present the optimal solutions and the empirical best Lipschitz constant of an
aggregation function empirically. This paper conducts some computational experiments
to empirically study the influence of the number of variables, the Minkowski norm, the
number of steps, and the type of aggregation function on the optimal inputs and the
empirical best Lipschitz constant performance.

The first numerical experiment is conducted to find the forms of optimal solutions
x and y, and the empirical best Lipschitz constant for ∑(x1, x2, . . . , xn). For Lp-norm, the
mathematical programming model is

Maximize |∑(x1,x2,...,xn)−∑ (y1,y2,...,yn)|
(∑n

i = 1|xi − yi | p)
1/p

subject to (∑n
i=1|xi − yi| p) 1/p ≥ ε

xi, yi ≤ 1, i ∈ {1, 2, . . . , n}
xi, yi ≥ 0, i ∈ {1, 2, . . . , n}.

(3)

Since the sum function is a symmetric one, without loss of generality, let ε = 1/m,
m ∈ {1000, 10,000, 100,000}, the mathematical programming model (3) becomes

Maximize |∑ (x1,x2,...,xn)−∑ (y1,y2,...,yn)|
(∑n

i = 1|xi − yi | p)
1/p

subject to yk ≥ xk + ε, for some k ∈ {1, 2, . . . , n}
xi, yi ≤ 1, i ∈ {1, 2, . . . , n}
xi, yi ≥ 0, i ∈ {1, 2, . . . , n}

(4)
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Let m = 1/ε be the number of steps, the discrete approximation of the mathematical
programming model (4) is

Maximize |∑ (x1,x2,...,xn)−∑ (y1,y2,...,yn)|
(∑n

i=1|xi −yi | p) 1/p

subject to xi, yi ∈
{

0, 1
m , 2

m , . . . , 1
}

, i ∈ {1, 2, . . . , n}

(x1, x2, . . . , xn) 6= (y1, y2, . . . , yn)

(5)

For the number of variables n ∈ {2, 3}, Lp-norm, p ∈ {1, 2, 3, ∞} and the number
of steps m ∈ {1000, 10,000, 100,000}, we perform an exhaustive search for all xi, yi ∈{

0, 1
m , 2

m , . . . , 1
}

, i ∈ {1, 2, . . . , n} and (x1, x2, . . . , xn) 6= (y1, y2, . . . , yn) with the objective
function

Maximize
|∑(x1, x2, . . . , xn)−∑(y1, y2, . . . , yn)|

(∑n
i = 1|xi − yi| p) 1/p

For the two-variable ∑(x1, x2) and L1-norm, the optimal value for the objective func-
tion (5) is

|x1 + x2 − (x1 ± α1 + x2 ± α2)|
α1 + α2

= 1

and is attained at the multiple solutions x = (x1, x2) and y = (x1 ± α1, x2 ± α2), xi, αi, xi ±
αi ∈ [0, 1], i = 1, 2. For Lp-norm, p ∈ {2, 3, ∞}, the multiple optimal solutions x = (x1, x2)
and y = (x1 ± α, x2 ± α), xi, α, xi ± α ∈ [0, 1], i = 1, 2 yield the largest objective function

|x1 + x2 − (x1 ± α + x2 ± α)|
(αp + αp) 1/p = 2 1−1/p.

These optimal solutions are verified by applying the popular modelling language
LINGO [19], which utilizes the power of linear and nonlinear optimization to solve math-
ematical problems (4). When the Chebyshev norm L∞, the empirical best Lipschitz con-
stant becomes 2. The empirical best Lipschitz constant 2 1–1/p will increase as the order
p increases.

For the three-variable ∑(x1, x2, x3), the multiple optimal solutions are x = (x1, x2, x3)
and y = (x1 ± α1, x2 ± α2, x3 ± α3), xi, αi, xi ± αi ∈ [0, 1], i = 1, 2, 3 and x = (x1, x2, x3) and
y = (x1 ± α, x2 ± α, x3 ± α), xi, α, xi ± α ∈ [0, 1], i = 1, 2, 3 with the associated empirical
best Lipschitz constant 1 and 31−1/p for p = 1 and p ∈ {2, 3, ∞}, respectively. These optimal
solutions are verified by applying LINGO with ε = 1/m, m ∈ {1000, 10,000, 100,000}. If
p = ∞, we find the empirical best Lipschitz constant 3.

Theoretically, applying the triangular inequality and the Hölder inequality, the result
of a more general n-ary sum function ∑(x1, x2, . . . , xn) is described as follows.

Theorem 1. For the sum function ∑(x1, x2, . . . , xn), the theoretical best Lipschitz constant
is n1−1/p and n for p ∈ [1, ∞) and p = ∞, respectively. The associated optimal solutions
are x = (x1, x2, . . . , xn) and y = (x1 ± α1, x2 ± α2, . . . , xn ± αn), xi, αi, xi ± αi ∈ [0, 1], i =
1, 2, . . . , n and x = (x1, x2, . . . , xn) and y = (x1 ± α, x2 ± α, . . . , xn ± α), xi, α, xi ± α ∈ [0, 1],
i = 1, 2, . . . , n for p = 1 and p ∈ [2, ∞], respectively.

Proof of Theorem 1. From the triangular inequality, we have∣∣∣∑n
i=1 xi −∑n

i=1 yi

∣∣∣ = ∣∣∣∑n
i=1(xi − yi)

∣∣∣ ≤ ‖x− y‖1

for xi, yi ∈ [0, 1], i = 1, 2, . . . , n [2,3,5]. From the Hölder inequality, for 1
p + 1

q = 1, p, q ∈
[1, ∞), we obtain∣∣∣∑n

i=1 xi −∑n
i=1 yi

∣∣∣ ≤ ‖x− y‖1 ≤ (1, 1, . . . , 1)q × x− y1 = n 1−1/p‖x− y‖p
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It follows that the theoretical best Lipschitz constant is n 1−1/p. The theoretical best Lipschitz con-
stants of the solutions x = (x1, x2, . . . , xn) and y = (x1 ± α1, x2 ± α2, . . . , xn ± αn), xi, αi, xi ±
αi ∈ [0, 1], i = 1, 2, . . . , n and x = (x1, x2, . . . , xn) and y = (x1 ± α, x2 ± α, . . . , xn ± α),
xi, α, xi ± α ∈ [0, 1], i = 1, 2, . . . , n, are 1 and n1−1/p for p = 1 and p ∈ [2, ∞], respectively.
Therefore, these solutions are the optimal ones. �

From Theorem 1, it is implied that the theoretical best Lipschitz constants are the same
as those of the empirical best Lipschitz constants. Therefore, the theoretical and empirical
best Lipschitz constant of the sum function is n 1−1/p. The best Lipschitz constant n1−1/p

increases with increases in either the order p, or the number of variables n. Moreover, our
numerical experiment indicates that the optimal solutions are multiple and the theoretical
best Lipschitz constants are attainable.

According to the experiment we perform on a bounded sum function, the empirical
best Lipschitz constants and associated optimal solutions x and y of the sum function and
those of the bounded sum function coincide.

For the arithmetic mean AM(x1, x2, . . . , xn), it is evident that AM fulfills additive,
idempotent, symmetric, bisymmetric, continuous, and Lipschitzian, but non-associative
and has no neutral element and no annihilator element.

We now present the optimal values of x and y and the empirical best Lipschitz constant
of AM(x1, x2, . . . , xn). Since

Maximize
|AM (x1, x2, . . . , xn)− AM (y1, y2, . . . , yn)|

(∑n
i = 1|xi − yi| p) 1/p = Maximize

1
n
|∑(x1, x2, . . . , xn)−∑(y1, y2, . . . , yn)|

(∑n
i = 1|xi − yi| p) 1/p (6)

for (x1, x2, . . . , xn) 6= (y1, y2, . . . , yn), xi, yi ≤ 1 and xi, yi ≥ 0, i ∈ {1, 2, . . . , n}. The
result of AM (x1, x2, . . . , xn) are directly linked to related results of the sum function
described as follows.

For the AM(x1, x2, . . . , xn), the theoretical best Lipschitz constant is n−1/p and 1
for p ∈ [1, ∞) and p = ∞, respectively. The associated multiple optimal solutions
are x = (x1, x2, . . . , xn) and y = (x1 ± α1, x2 ± α2, . . . , xn ± αn), xi, αi, xi ± αi ∈ [0, 1],
i ∈ {1, 2, . . . , n} and x = (x1, x2, . . . , xn) and y = (x1 ± α, x2 ± α, . . . , xn ± α), xi, α, xi ± α ∈
[0, 1], i ∈ {1, 2, . . . , n} for p = 1 and p ∈ [2, ∞], respectively.

It implies that the theoretical best Lipschitz constants, which are the same as those
of the empirical best Lipschitz constants. Therefore, the theoretical and empirical best
Lipschitz constant is n−1/p. The best Lipschitz constant n−1/p increases for either the
number of variables n increasing or the order p increasing. Moreover, the optimal solutions
are multiple and the theoretical best Lipschitz constants are attainable.

We compare the algebraic and analytical properties of ∑(x1, x2, . . . , xn) and AM(x1, x2,
. . . , xn) head to head. The differences of both kinds of aggregation functions exist among
the idempotency, associativity, and neutral element. The sum function satisfies associative
and non-idempotent, and has neutral element e = 0. While the arithmetic mean satisfies
non-associative and idempotent and has no neutral element. For the sum and arithmetic
mean functions, the associated multiple optimal solutions of the empirical best Lipschitz
constants are identical and are x = (x1, x2, . . . , xn) and y = (x1 ± α1, x2 ± α2, . . . , xn ± αn),
xi, αi, xi ± αi ∈ [0, 1], i ∈ {1, 2, . . . , n} and x = (x1, x2, . . . , xn) and y = (x1 ± α, x2 ± α, . . . ,
xn ± α), xi, α, xi ± α ∈ [0, 1], i ∈ {1, 2, . . . , n} for p = 1 and p ∈ [2, ∞], respectively.
For Lp-norm, p ∈ [1, ∞], the empirical best Lipschitz constant is n1−1/p for the sum
function and n −1/p for the arithmetic mean, which are the same as those of analytical
method. The ratio of the best Lipschitz constant of the sum to that of the arithmetic
mean is n, which is independent of p. Moreover, our numerical experiments indicate
that the optimal solutions are multiple, and the theoretical best Lipschitz constants are
attainable. The multiple optimal solutions can be expected, since ∑(x1, x2, . . . , xn) and
AM (x1, x2, . . . , xn) satisfy symmetry. More precisely, if (x1, x2, . . . , xn) and (y1, y2, . . . , yn)

is an optimal solution, then
(

xσ(1), xσ(2), . . . , xσ(n)

)
and

(
yσ(1), yσ(2), . . . , yσ(n)

)
is also an

optimal solution for any permutation σ of {1, 2, . . . ,n}. The AM(x1, x2, . . . , xn) is a kernel
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aggregation function, which is a maximally stable aggregation function with respect to
possible input errors [20]. The theoretical best Lipschitz constants of AM(x1, x2, . . . , xn)
and associated ∑(x1, x2, . . . , xn) are attainable.

4. The Best Lipschitz Constants of the Product and Geometric Mean Functions

This section is devoted to the product function ∏(x1, x2, . . . , xn) and the geometric
mean GM (x1, x2, . . . , xn). The geometric mean is the idempotized product function. Addi-
tionally, the geometric mean is an average associated with the product function. The do-
mains of the product function ∏(x1, x2, . . . , xn) and the geometric mean GM (x1, x2, . . . , xn)
are [0, 1]n. Evidently, the product function satisfies associative, symmetric, bisymmetric,
continuous and Lipschitzian, but non-additive and non-idempotent. The product function
has neutral element e = 1 and annihilator element a = 0.

The second experiment is concerned with an exhaustive search for a product func-
tion ∏(x1, x2, . . . , xn), with the objective of maximizing the empirical Lipschitz constant
performance. For the number of variables n ∈ {2, 3}, Lp-norm, p ∈ {1, 2, 3, ∞} and the
number of steps m ∈ {1000, 10,000, 100,000}, we perform an exhaustive search for all
xi, yi ∈

{
0, 1

m , 2
m , . . . , 1

}
, i ∈ {1, 2, . . . , n} and (x1, x2, . . . , xn) 6= (y1, y2, . . . , yn) to find the

optimal value of the objective function

Maximize
|∏(x1, x2, . . . , xn)−∏(y1, y2, . . . , yn)|(

∑n
i = 1|xi − yi| p) 1/p (7)

Consider the two-variable programming problem. For L1-norm, the optimal value of
the objective function (7) is

|x1 − y1|
|x1 − y1|

= 1

and the associated multiple optimal solutions are x =
(
x1, 1

)
and y = (y1, 1), x1, y1 ∈ [0, 1].

For Lp-norm, p ∈ {2, 3, ∞}, the unique optimal solution x =
(
1− 1

m , 1− 1
m
)

and y = (1, 1),
m ∈ {1000, 10,000, 100,000}, yields the largest objective function∣∣∣(1 − 1

m
)(

1 − 1
m
)
− 1
∣∣∣(( 1

m
) p

+
( 1

m
)p
) 1/p = 2 1−1/p − 2−1/p

m
.

These optimal solutions are verified by adopting LINGO with ε = 1/m, m ∈
{1000, 10,000, 100,000}. The limit of the largest objective function is equal to 2 1−1/p as the

number of steps m approaches ∞. Since 2 1−1/p − 2 −
1
p

m < 2 1−1/p, m ∈ N , the limit of the
empirical best Lipschitz constant 2 1−1/p is unattainable. The value of 2 1−1/p grows with
increases in p. When p = 1, the limit value 1 is the same as that of L1-norm. Furthermore,
if p = ∞, the limit of the empirical best Lipschitz constant becomes 2.

For the three-variable product function ∏(x1, x2, x3), we get the multiple optimal
solutions x = (x1, 1, 1), y = (y1, 1, 1), x1, y1 ∈ [0, 1] and the unique optimal solution
x =

(
1− 1

m , 1− 1
m , 1− 1

m

)
, y = (1, 1, 1), m ∈ {1000, 10,000, 100,000} with the associated

empirical best Lipschitz constant 1 and 3 1−1/p − 3 1− 1
p

m + 3−1/p

m 2 for p = 1 and p ∈ {2, 3, ∞},
respectively. These optimal solutions are verified by adopting LINGO with ε = 1/m,
m ∈ {1000, 10,000, 100,000}. For p ∈ {2, 3, ∞}, we can make the empirical best Lipschitz
constant as close to 3 1−1/p as we please, provided we choose m sufficiently close to ∞.
When p = 1, the limit of the empirical best Lipschitz constant becomes 1, which is the same
as that of L1-norm. Furthermore, if p = ∞, the limit of the empirical best Lipschitz constant
is 3.

By induction on n, the empirical best Lipschitz constant is 1 and n 1−1/p +n −1/p ∑n
i=2

Cn
i

(
− 1

m

)i−1
for p = 1 and p ∈ (1, ∞], respectively. The associated optimal solutions are
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x = (x1, 1, . . . , 1) and y = (y1, 1, . . . , 1), x1, y1 ∈ [0, 1] and x =
(

1− 1
m , 1− 1

m , . . . , 1− 1
m

)
and y = (1, 1, . . . , 1), m ∈ N for p = 1 and p ∈ (1, ∞], respectively. The empirical best
Lipschitz constant of p ∈ (1, ∞] can be made close to n1−1/p by taking m sufficiently close
to ∞.

Theoretically, the result of a more general n-ary product function ∏(x1, x2, . . . , xn) is
presented as follows.

Theorem 2. For an n-ary product function ∏(x1, x2, . . . , xn), the theoretical best Lipschitz
constant is n 1−1/p for p ∈ [1, ∞].

Proof of Theorem 2. From the triangular inequality, the Hölder inequality and xi, yi ∈ [0, 1],
i = 1, 2, . . . , n, we have

|x1x2 . . . xn − y1y2 . . . yn| = |xn(x1x2 . . . xn−1 − y1y2 . . . yn−1) + y1y2 . . . yn−1(xn − yn)|
≤ |x1x2 . . . xn−1 − y1y2 . . . yn−1|+ |xn − yn|

= |xn−1(x1x2 . . . xn−2 − y1y2 . . . yn−2) + y1y2 . . . yn−2(xn−1 − yn−1)|+ |xn − yn|
≤ |x1x2 . . . xn−2 − y1y2 . . . yn−2|+ |xn−1 − yn−1|+ |xn − yn|

≤ ‖x− y‖1 ≤ n 1 −1/p‖x− y‖p.

It follows that the theoretical best Lipschitz constant is n 1−1/p. �

From Theorem 2, the theoretical best Lipschitz constant n 1−1/p increases for either the
number of variables n increasing or the order p increasing. The theoretical best Lipschitz
constant coincides with the limit of the empirical best Lipschitz constant. However, our
numerical experiment indicates that the theoretical best Lipschitz constant n 1−1/p, p ∈

(1, ∞], is unattainable because n 1−1/p + n−1/p ∑n
i=2 Cn

i

(
− 1

m

) i−1
< n 1−1/p for all m ∈ N .

Therefore, the actual best Lipschitz constant of the product function is 1 and n 1−1/p +

n−1/p ∑n
i=2 Cn

i
(
− 1

m
) i−1 for p = 1 and p ∈ (1, ∞], respectively.

The geometric mean GM (x1, x2, . . . , xn) satisfies idempotent, symmetric, bisymmetric,
and continuous, but non-associative, non-additive, and non-Lipschitzian. The geometric
function has annihilator element a = 0 but no neutral element.

The third computational experiment is empirically studying the empirical best Lip-
schitz constant of GM (x1, x2, . . . , xn). For the number of variables n ∈ {2, 3}, Lp-norm,
p ∈ {1, 2, 3, ∞}, and the number of steps m ∈ {1000, 10,000, 100,000}, we perform an
exhaustive search for all xi, yi ∈

{
0, 1

m , 2
m , . . . , 1

}
, i ∈ {1, 2, . . . , n}, and (x1, x2, . . . , xn) 6=

(y1, y2, . . . , yn) with the objective of maximizing the Lipschitz constant

Maximize
|GM(x1, x2, . . . , xn)−GM(y1, y2, . . . , yn)|(

∑n
i = 1|xi − yi|p

) 1/p (8)

For the two-variable GM (x1, x2), the optimal value for the objective function (8) is√
m. For Lp-norm, p ∈ {1, 2, 3}, the associated unique optimal solution is x = (0, 1)

and y =
(

1
m , 1

)
, m ∈ {1000, 10,000, 100,000}. For L∞-norm, the associated multiple

optimal solutions are x = (0, 1), y =
(

1
m , 1

)
and x =

(
0, 1− 1

m

)
, y =

(
1
m , 1

)
, m ∈

{1000, 10,000, 100,000}. These optimal solutions are verified by applying LINGO with
ε = 1/m, m ∈ {1000, 10,000, 100,000}. The empirical best Lipschitz constant

√
m tends

to infinity as m takes on arbitrarily large positive value. Therefore, the two-variable
GM(x1, x2) does not satisfy the Lipschitz condition.

For the three-variable GM(x1, x2, x3), the unique optimal solution x = (0, 1, 1) and
y =

(
1
m , 1, 1

)
, m ∈ {1000, 10,000, 100,000}, has the largest Lipschitz constant m 2/3 for
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Lp-norm, p ∈ {1, 2, 3}. For L∞-norm, the multiple optimal solutions are x = (0, 1, 1),

y =
(

1
m , 1, 1

)
, and x =

(
0, 1− 1

m , 1− 1
m

)
, y =

(
1
m , 1, 1

)
, m ∈ {1000, 10,000, 100,000}with

associated empirical best Lipschitz constant m 2/3. These optimal solutions are verified by
applying LINGO with ε = 1/m, m ∈ {1000, 10,000, 100,000}. For p ∈ {1, 2, 3, ∞}, we can
make the empirical best Lipschitz constant m 2/3 as close to ∞ as we please, provided we
choose m sufficiently close to ∞. It implies that the three-variable GM (x1, x2, x3) does not
fulfill the Lipschitz condition.

By induction on n, the empirical best Lipschitz constant of an n-ary geometric mean
function GM (x1, x2, . . . , xn) is m 1−1/n for all p ∈ [1, ∞]. The associated optimal solutions
are x = (0, 1, . . . , 1), y =

(
1
m , 1, . . . , 1

)
, m ∈ N for p ∈ [1, ∞] and x = (0, 1, . . . , 1),

y =
(

1
m , 1, . . . , 1

)
and x =

(
0, 1− 1

m , . . . , 1− 1
m

)
, y =

(
1
m , 1, . . . , 1

)
, m ∈ N for p = ∞.

For n ≥ 2 and Lp-norm p ∈ [1, ∞], the best Lipschitz constant m 1−1/n approaches plus
infinity as m approaches plus infinity. This can be expected since GM (x1, x2, . . . , xn),
n ≥ 2, is not differentiable at x = (0, 0, . . . , 0). Additionally, GM (x1, x2, . . . , xn), n ≥ 2,
is not uniformly continuous on [0, 1] n. Note that the best Lipschitz constant, m 1−1/n is
independent of order p.

Comparing the algebraic and analytical properties of ∏(x1, x2, . . . , xn) and GM (x1, x2,
. . . , xn), the differences of the adopted properties exist among the associativity, idem-
potency, Lipschitzian, and neutral element. The product function satisfies associative,
non-idempotent, Lipschitzian, and has neutral element e = 1. While the geometric mean
satisfies non-associative, idempotent, non-Lipschitzian, and has no neutral element. The as-
sociated optimal solutions of the product function and those of the geometric mean function
are different. The associated optimal solutions of the product function are x = (x1, 1, . . . , 1),
y = (y1, 1, . . . , 1), x1, y1 ∈ [0, 1] and x =

(
1− 1

m , 1− 1
m , . . . , 1− 1

m

)
, y = (1, 1, . . . , 1),

m ∈ N for p = 1 and p ∈ (1, ∞], respectively. The associated optimal solutions of the geo-
metric mean function are x = (0, 1, . . . , 1), y =

(
1
m , 1, . . . , 1

)
, m ∈ N for p ∈ [1, ∞) and

x = (0, 1, . . . , 1), y =
(

1
m , 1, . . . , 1

)
, and x =

(
0, 1− 1

m , . . . , 1− 1
m

)
, y =

(
1
m , 1, . . . , 1

)
,

m ∈ N for p = ∞. The empirical best Lipschitz constant of the product function is 1 and

n 1−1/p + n−1/p ∑n
i=2 Cn

i

(
− 1

m

) i−1
for p = 1 and p ∈ (1, ∞], respectively. The empirical

best Lipschitz constant of the geometric mean function is m 1−1/n for all p ∈ [1, ∞]. As m
approaches infinity, the empirical best Lipschitz constant approaches n 1−1/p and infinity
for the product function and the geometric mean function, respectively. Moreover, our
numerical experiments indicate that the limits of the empirical best Lipschitz constants of
the product and geometric mean functions are unattainable as m approaches infinity. The
reason is because the non-kernel aggregation functions of the product and geometric mean
functions. Moreover, the product function do not fulfill the Lipschitz condition.

5. Conclusions and Future Research

This paper analyzes and compares the optimal solutions and the theoretical and empir-
ical best Lipschitz constants between an aggregation function and associated idempotized
aggregation function. We conduct some computational experiments to empirically study
the influence of the number of variables, the Minkowski norm, the number of steps and
the type of aggregation function on the optimal solutions and the theoretical and empirical
best Lipschitz constant performance.

For the sum function and the arithmetic mean, the differences of the adopted algebraic
and analytical properties exist among the idempotency, associativity, and neutral element.
Our numerical experiments indicate that for both sum and arithmetic mean functions,
the associated optimal solutions are multiple and identical. For Lp-norm, p ∈ [1, ∞], the
theoretical and empirical best Lipschitz constant is n 1−1/p for the sum function and n −1/p

for the arithmetic mean. These theoretical best Lipschitz constants are attainable. The
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ratio of the best Lipschitz constant of the sum to that of the arithmetic mean is n, which is
independent of p.

For the product function and geometric mean, the differences exist among the associa-
tivity, idempotency, Lipschitzian, and neutral element. Our numerical experiments indicate
that the associated optimal solutions of the product function and those of the geometric
mean are different and dependent of m. The empirical best Lipschitz constant of the product

function is 1 and n 1−1/p + n−1/p ∑n
i=2 Cn

i

(
− 1

m

) i−1
for p = 1 and p ∈ (1, ∞], respectively.

The empirical best Lipschitz constant of the geometric mean function is m 1−1/n for all
p ∈ [1, ∞]. As the number of steps m approaches ∞, the empirical best Lipschitz constant
approaches n 1−1/p and ∞ for the product function and the geometric mean function,
respectively. These limits of the empirical best Lipschitz constants are unattainable.

For an aggregation function and associated idempotized aggregation function, the
differences of the adopted algebraic and analytical properties always exist among the
associativity, idempotency, and neutral element. However, the associated optimal solutions
of the best Lipschitz constant for the product function and those of the geometric mean
are different. It follows that the product function satisfies Lipschitzian, but the geometric
mean do not. While the optimal solutions of the sum and arithmetic mean functions are
multiple and identical. Both sum and arithmetic mean functions satisfy Lipschitzian and
attain the theoretical best Lipschitz constant.

The results of this paper can be considered to apply in group decision making or two-
sided decision making matching problems. For a group decision making problem, a group
of experts are usually required to express preference information over a set of alternatives
according to their knowledge and experience. By adopting the results of this paper, we
aggregate the individual preference information to obtain collective preference information.
Then, a solution is obtained. By considering the leadership and bounded confidence
levels of experts, Zhang et al. [13] proposed a new consensus reaching algorithm for social
network group decision making problems with interval fuzzy preference relations. For a
two-sided matching decision making (TSMDM) problem, people aim to find an appropriate
matching between two sets of objects, such as marriage matching, colleges admissions,
person–job matching, and knowledge service matching. Due to the imprecise knowledge
of matching objects and the different culture of decision makers, TSMDM problems with
different preference structures are proposed. It is natural that matching objects will provide
linguistic assessments. Aggregation of the linguistic assessments is the main process,
especially for the multi-criteria TSMDM problems with multi-granular hesitant fuzzy
linguistic term sets and incomplete criteria weight information [15].

In the future, we will analyze the best Lipschitz constants for all aggregation functions
theoretically and empirically. In particular, the theoretical and empirical analysis can be
extended to the conjunctive, the disjunctive, and the mixed aggregation functions. Thus,
the Lipschitz analysis for the conjunctive, the disjunctive, and the mixed aggregation
functions is a subject of considerable ongoing research.
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