Relative Growth of Series in Systems of Functions and Laplace-Stieltjes-Type Integrals

Myroslav Sheremeta (D)

Citation: Sheremeta, M. Relative Growth of Series in Systems of Functions and Laplace-Stieltjes-Type Integrals. Axioms 2021, 10, 43. https:/ /dx.doi.org/10.3390/ axioms10020043

Academic Editor: Andriy Bandura

Received: 10 March 2021
Accepted: 24 March 2021
Published: 25 March 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, 79000 Lviv, Ukraine; m.m.sheremeta@gmail.com

Abstract

For a regularly converging-in- \mathbb{C} series $A(z)=\sum_{n=1}^{\infty} a_{n} f\left(\lambda_{n} z\right)$, where f is an entire transcendental function, the asymptotic behavior of the function $M_{f}^{-1}\left(M_{A}(r)\right)$, where $M_{f}(r)=\max \{|f(z)|$: $|z|=r\}$, is investigated. It is proven that, under certain conditions on the functions f, α, and the coefficients a_{n}, the equality $\lim _{r \rightarrow+\infty} \frac{\alpha\left(M_{f}^{-1}\left(M_{A}(r)\right)\right)}{\alpha(r)}=1$ is correct. A similar result is obtained for the Laplace-Stiltjes-type integral $I(r)=\int_{0}^{\infty} a(x) f(r x) d F(x)$. Unresolved problems are formulated.

Keywords: relative growth; entire function; regularly converging series; Mittag-Leffler function
MSC: 30B50; 30D10; 30D20

1. Introduction

Let

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} f_{k} z^{k} \tag{1}
\end{equation*}
$$

be an entire function, $M_{f}(r)=\max \{|f(z)|:|z|=r\}$, and $\Phi_{f}(r)=\ln M_{f}(r)$. For an entire function g with Taylor coefficients g_{n}, the study of growth of the function $\Phi_{f}^{-1}\left(\ln M_{g}(r)\right)$ in terms of the exponential type was initiated in papers [1,2] and was continued in [3]. As a result, it is proven that, if $\left|f_{k-1} / f_{k}\right| \nearrow+\infty$ as $k \rightarrow \infty$, then

$$
\varlimsup_{r \rightarrow+\infty} \frac{\Phi_{f}^{-1}\left(\ln M_{g}(r)\right)}{r}=\varlimsup_{k \rightarrow \infty}\left(\frac{\left|g_{n}\right|}{\left|f_{n}\right|}\right)^{1 / n}
$$

We remark that $\Phi_{f}^{-1}(x)=M_{f}^{-1}\left(e^{x}\right)$ and, thus, $\Phi_{f}^{-1}\left(\ln M_{g}(r)\right)=M_{f}^{-1}\left(M_{g}(r)\right)$. The order $\rho[g]_{g}=\varlimsup_{\lim _{r \rightarrow+\infty}} \frac{\ln M_{f}^{-1}\left(M_{g}(r)\right)}{\ln r}$ and the lower-order $\lambda[g]_{f}=\underline{\lim }_{r \rightarrow+\infty} \frac{\ln M_{f}^{-1}\left(M_{g}(r)\right)}{\ln r}$ of the function f with respect to the function g are used in Reference [4]. Research on the relative growth of entire functions was continued by many mathematicians (an incomplete bibliography is given in [5]).

Let $\left(\lambda_{n}\right)$ be a sequence of positive numbers increasing to $+\infty$. Suppose that the series

$$
\begin{equation*}
A(z)=\sum_{n=1}^{\infty} a_{n} f\left(\lambda_{n} z\right) \tag{2}
\end{equation*}
$$

in the system $f\left(\lambda_{n} z\right)$ is regularly convergent in \mathbb{C}, i.e., $\sum_{n=1}^{\infty}\left|a_{n}\right| M_{f}\left(r \lambda_{n}\right)<+\infty$ for all $r \in[0,+\infty)$. Many authors have studied the representation of analytic functions by series in the system $f\left(\lambda_{n} z\right)$ and the growth of such functions. Here, we specify only the monographs of A.F. Leont'ev [6] and B.V. Vinnitskyi [3], which are references to other papers on this topic.

Since series (2) is regularly convergent in \mathbb{C} and the function A is an entire function, a natural question arises about the asymptotic behavior of the function $M_{f}^{-1}\left(M_{A}(r)\right)$.

We suppose that the function F is nonnegative, nondecreasing, unbounded, and continuous on the right on $[0,+\infty)$; that f is positive, increasing, and continuous on $[0,+\infty)$; and that a positive-on- $[0,+\infty)$ function a is such that the Laplace-Stietjes-type integral

$$
\begin{equation*}
I(r)=\int_{0}^{\infty} a(x) f(r x) d F(x) \tag{3}
\end{equation*}
$$

exists for every $r \in[0,+\infty)$. The asymptotic behavior of such integrals in the case $f(x)=e^{x}$ is studied in the monograph [7]. A question arises again about the asymptotic behavior of the function $f^{-1}(I(r))$. Here, we present some results that indicate the possibility of solving these problems.

2. Relative Growth of Series in Systems of Functions

As in [8], by L, we denote a class of continuous nonnegative-on- $(-\infty,+\infty)$ functions α such that $\alpha(x)=\alpha\left(x_{0}\right) \geq 0$ for $x \leq x_{0}$ and $\alpha(x) \uparrow+\infty$ as $x_{0} \leq x \rightarrow+\infty$. We say that $\alpha \in L^{0}$, if $\alpha \in L$ and $\alpha((1+o(1)) x)=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$. Finally, $\alpha \in L_{s i}$, if $\alpha \in L$ and $\alpha(c x)=(1+o(1)) \alpha(x)$ as $x \rightarrow+\infty$ for each $c \in(0,+\infty)$, i.e., α is a slowly increasing function. Clearly, $L_{s i} \subset L^{0}$. We need the following lemma [9].

Lemma 1. If $\beta \in L$ and $B(\delta)=\varlimsup_{x \rightarrow+\infty} \frac{\beta((1+\delta) x)}{\beta(x)}, \delta>0$, then in order for $\beta \in L^{0}$, it is necessary and sufficient that $B(\delta) \rightarrow 1$ as $\delta \rightarrow+0$.

We need also some well-known (see, for example, [10]) properties of the function $\ln M_{f}(r)$.

Lemma 2. If a function f is transcendental, then the function $\ln M_{f}(r)$ is logarithmically convex and, thus,

$$
\Gamma_{f}(r):=\frac{d \ln M_{f}(r)}{d \ln r} \nearrow+\infty, r \rightarrow+\infty
$$

(at the points where the derivative does not exist, where $\frac{d \ln M_{f}(r)}{d \ln r}$ means the right-hand derivative).
For $\alpha \in L, \beta \in L$, and entire functions f and g, we define the generalized (α, β)-order $\rho_{\alpha, \beta}[g]_{f}$ and the generalized lower (α, β)-order $\lambda_{\alpha, \beta}[g]_{f}$ of g with respect to f as follows:

$$
\rho_{\alpha, \beta}[g]_{f}=\varlimsup_{r \rightarrow+\infty} \frac{\alpha\left(M_{f}^{-1}\left(M_{g}(r)\right)\right)}{\beta(r)}, \lambda_{\alpha, \beta}[g]_{f}=\lim _{r \rightarrow+\infty} \frac{\alpha\left(M_{f}^{-1}\left(M_{g}(r)\right)\right)}{\beta(r)} .
$$

Suppose that $a_{n} \geq 0$ for all $n \geq 1$. Since

$$
A(z)=\sum_{n=1}^{\infty} a_{n} \sum_{k=0}^{\infty} f_{k}\left(z \lambda_{n}\right)^{k}=\sum_{k=0}^{\infty} f_{k}\left(\sum_{n=1}^{\infty} a_{n} \lambda_{n}^{k}\right) z^{k}
$$

in view of the Cauchy inequality, we have

$$
\begin{equation*}
M_{A}(r) \geq\left|f_{k}\right|\left(\sum_{n=1}^{\infty} a_{n} \lambda_{n}^{k}\right) r^{k} \geq a_{n}\left|f_{k}\right|\left(\lambda_{n} r\right)^{k} \tag{4}
\end{equation*}
$$

for all $n \geq 1, k \geq 0$ and $r \in[0,+\infty)$. We also remark that, if $\mu_{f}(r)=\max \left\{\left|f_{k}\right| r^{k}: k \geq 0\right\}$ is the maximal term of series (1), then

$$
\begin{equation*}
M_{f}(r) \leq \sum_{k=0}^{\infty}\left|f_{k}\right| r^{k}=\sum_{k=0}^{\infty}\left|f_{k}\right|(2 r)^{k} 2^{-k} \leq 2 \mu_{f}(2 r) \tag{5}
\end{equation*}
$$

We choose $n_{0} \geq 1$ such that $a_{n_{0}}>0$ and $\lambda_{n_{0}} \geq 2$. Then, from (4) and (5), we get

$$
M_{A}(r) \geq \max \left\{a_{n_{0}}\left|f_{k}\right|\left(\lambda_{n_{0}} r\right)^{k}: k \geq 0\right\} \geq a_{n_{0}} \mu_{f}(2 r) \geq \frac{a_{n_{0}}}{2} M_{f}(r)
$$

where $M_{f}^{-1}\left(\frac{2}{d_{n_{0}}} M_{A}(r)\right) \geq r$. By Lemma 2, $\frac{d \ln M_{f}^{-1}(x)}{d \ln x} \searrow 0$ as $x \rightarrow+\infty$ and, thus, for every $c>1$

$$
\ln M_{f}^{-1}(c x)-\ln M_{f}^{-1}(x)=\int_{x}^{c x} \frac{d \ln M_{f}^{-1}(t)}{d \ln t} d \ln t \leq \frac{d \ln M_{f}^{-1}(x)}{d \ln x} \rightarrow 0, x \rightarrow+\infty,
$$ i.e., the function M_{f}^{-1} is slowly increasing. Therefore,

$$
\begin{equation*}
M_{f}^{-1}\left(M_{A}(r)\right) \geq(1+o(1)) r, r \rightarrow+\infty \tag{6}
\end{equation*}
$$

On the other hand, since series (2) is regularly convergent in \mathbb{C}, for each $r \in[0,+\infty)$, there exists $\mu_{A}(r)=\max \left\{|a n| M_{f}\left(r \lambda_{n}\right): n \geq 1\right\}$ and, for every $r \in[0,+\infty)$ and $\tau>0$, we have

$$
\begin{equation*}
M_{A}(r) \leq \sum_{n=1}^{\infty}\left|a_{n}\right| M_{f}\left(r \lambda_{n}\right) \leq \mu_{F}((1+\tau) r) \sum_{n=1}^{\infty} \frac{M_{f}\left(r \lambda_{n}\right)}{M_{f}\left((1+\tau) r \lambda_{n}\right)} \tag{7}
\end{equation*}
$$

Then, by Lemma 2, for $r \geq 1$, we have

$$
\begin{gathered}
\ln M_{f}\left((1+\tau) r \lambda_{n}\right)-\ln M_{f}\left(r \lambda_{n}\right)=\int_{r \lambda_{n}}^{(1+\tau) r \lambda_{n}} \frac{d \ln M_{f}(x)}{d \ln x} d \ln x=\int_{r \lambda_{n}}^{(1+\tau) r \lambda_{n}} \Gamma_{f}(x) d \ln x \geq \\
\geq \Gamma_{f}\left(r \lambda_{n}\right) \ln (1+\tau) \geq \Gamma_{f}\left(\lambda_{n}\right) \ln (1+\tau)
\end{gathered}
$$

Therefore, if $\ln n \leq q \Gamma_{f}\left(\lambda_{n}\right)$ for all $n \geq n_{0}$ and $\ln (1+\tau)>q$, then
$\sum_{n=n_{0}}^{\infty} \frac{M_{f}\left(r \lambda_{n}\right)}{M_{f}\left((1+\tau) r \lambda_{n}\right)} \leq \sum_{n=n_{0}}^{\infty} \exp \left\{-\Gamma_{f}\left(\lambda_{n}\right) \ln (1+\tau)\right\} \leq \sum_{n=n_{0}}^{\infty} \exp \left\{-\frac{\ln (1+\tau)}{q} \ln n\right\}<+\infty$ and (7) implies, for $r \geq 1$,

$$
\begin{equation*}
M_{A}(r) \leq T \mu_{A}((1+\tau) r), T=\text { const }>0 . \tag{8}
\end{equation*}
$$

Additionally, we have

$$
\begin{align*}
& \mu_{A}(r) \leq \max \left\{\left|a_{n}\right| \sum_{k=0}^{\infty}\left|f_{k}\right|\left(r \lambda_{n}\right)^{k}: n \geq 1\right\} \leq \\
\leq & \sum_{k=0}^{\infty} \max \left\{\left|a_{n}\right| \lambda_{n}^{k}: n \geq 1\right\}\left|f_{k}\right| r^{k}=\sum_{k=0}^{\infty} \mu_{D}(k)\left|f_{k}\right| r^{k}, \tag{9}
\end{align*}
$$

where $\mu_{D}(\sigma)=\max \left\{\left|a_{n}\right| \exp \left\{\sigma \ln \lambda_{n}\right\}: n \geq 1\right\}$ is the maximal term of Dirichlet series

$$
D(\sigma)=\sum_{n=1}^{\infty}\left|a_{n}\right| \exp \left\{\sigma \ln \lambda_{n}\right\}
$$

Using estimates (6), (8), and (9), we prove the following theorem.
Theorem 1. Let f be an entire transcendental function, $a_{n} \geq 0$ for all $n \geq 1$, and series (2) be regularly convergent in \mathbb{C}. Suppose that $\ln n \leq q \Gamma_{f}\left(\lambda_{n}\right)$ for some $q>0$ and all $n \geq n_{0}$ and that $\varlimsup_{\sigma \rightarrow+\infty} \frac{\ln \mu_{D}(\sigma)}{\sigma \ln M_{f}^{-1}\left(e^{\sigma}\right)}=\gamma$.

If $\gamma<1$, then $\lambda_{\alpha, \alpha}[F]_{f}=\rho_{\alpha, \alpha}[F]_{f}=1$ for every function α such that $\alpha\left(e^{x}\right) \in L_{s i}$. If $\gamma=0$, then $\lambda_{\alpha, \alpha}[F]_{f}=\rho_{\alpha, \alpha}[F]_{f}=1$ for every function α such that $\alpha\left(e^{x}\right) \in L^{0}$.

Proof. Since $\alpha \in L^{0}$, from (6), we get

$$
\lambda_{\alpha, \alpha}[F]_{f}=\lim _{r \rightarrow+\infty} \frac{\alpha\left(M_{f}^{-1}\left(M_{F}(r)\right)\right)}{\alpha(r)} \geq \lim _{r \rightarrow+\infty} \frac{\alpha((1+o(1)) r)}{\alpha(r)}=1 .
$$

On the other hand, in view of the Cauchy inequality, we have $\ln \left|f_{k}\right| \leq \ln M_{f}(r)-$ $k \ln r$ for all r and k. We choose $r=r_{k}=M_{f}^{-1}\left(e^{k}\right)$. Then, $\ln \left|f_{k}\right| \leq k-k \ln M_{f}^{-1}\left(e^{k}\right)$, i.e., $-\ln \left|f_{k}\right| \geq k\left(\ln M_{f}^{-1}\left(e^{k}\right)-1\right)$. Therefore,

$$
\begin{equation*}
\varlimsup_{k \rightarrow \infty} \frac{\ln \mu_{D}(k)}{-\ln f_{k}} \leq \varlimsup_{k \rightarrow \infty} \frac{\ln \mu_{D}(k)}{k\left(\ln M_{f}^{-1}\left(e^{k}\right)-1\right)} \leq \varlimsup_{\sigma \rightarrow+\infty} \frac{\ln \mu_{D}(\sigma)}{\sigma \ln M_{f}^{-1}\left(e^{\sigma}\right)}=\sigma \tag{10}
\end{equation*}
$$

If $\gamma<1$, then in view of (10), $\frac{\ln \mu_{D}(k)}{-\ln \left|f_{k}\right|} \leq p$ for each $p \in(\gamma, 1)$ and all $k \geq k_{0}$ and, thus, $\mu_{D}(k) \leq\left|f_{k}\right|^{-p}$ for all $k \geq k_{0}$. Therefore, in view of (9) and (5),

$$
\begin{align*}
& \mu_{A}(r) \leq\left(\sum_{k=0}^{k_{0}-1}+\sum_{k=k_{0}}^{\infty}\right) \mu_{D}(k)\left|f_{k}\right| r^{k} \leq O\left(r^{k_{0}-1}\right)+\sum_{k=k_{0}}^{\infty}\left|f_{k}\right|^{1-p_{r}} \leq \\
& \quad \leq O\left(r^{k_{0}-1}\right)+2 \max \left\{f_{k}^{1-p}(2 r)^{k}: k \geq 0\right\}= \\
& =O\left(r^{k_{0}-1}\right)+2 \max \left\{\left(\left|f_{k}\right|(2 r)^{k /(1-p)}\right)^{1-p}: k \geq 0\right\}= \\
& =O\left(r^{k_{0}-1}\right)+2\left(\mu_{f}\left((2 r)^{1 /(1-p)}\right)\right)^{1-p} \leq \mu_{f}\left((2 r)^{1 /(1-p)}\right), r \geq r_{0} \tag{11}
\end{align*}
$$

because $\ln r=o\left(\ln \mu_{f}(r)\right)$ as $r \rightarrow+\infty$ for every entire transcendental function f and $1-p<1$. Therefore, from (8) and (11), we get

$$
M_{A}(r) \leq T \mu_{A}((1+\tau) r) \leq T \mu_{f}\left((2(1+\tau) r)^{1 /(1-p)}\right) \leq T M_{f}\left((2(1+\tau) r)^{1 /(1-p)}\right)
$$

and, thus, $M_{f}^{-1}\left(M_{A}(r)\right) \leq(1+o(1))(2(1+\tau) r)^{1 /(1-p)}$ as $r \rightarrow+\infty$. If $\alpha \in L_{s i}$, then we obtain

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\alpha\left(M_{f}^{-1}\left(M_{A}(r)\right)\right)}{\alpha\left(r^{1 /(1-p)}\right)} \leq 1 \tag{12}
\end{equation*}
$$

Suppose that $\alpha\left(e^{x}\right) \in L_{s i}$. Then,

$$
\alpha\left(r^{1 /(1-p)}\right)=\alpha\left(\exp \left\{\frac{1}{1-p} \ln r\right\}\right)=(1+o(1)) \alpha(\exp \{\ln r\})=(1+o(1)) \alpha(r)
$$

as $r \rightarrow+\infty$. Therefore, (12) implies the inequality $\rho_{\alpha, \alpha}[A]_{f} \leq 1$, where in view of the inequality $\lambda_{\alpha, \alpha}[A]_{f} \geq 1$, we get $\lambda_{\alpha, \alpha}[A]_{f}=\rho_{\alpha, \alpha}[A]_{f}=1$.

If $\gamma=0$, then (12) holds for every $p \in(0,1)$ and all $r \geq r_{0}(p)$. If we put $\frac{1}{1-p}=1+\delta$, then $\delta \rightarrow+0$ as $p \rightarrow+0$, and in view of the condition $\alpha\left(e^{x}\right) \in L^{0}$, by Lemma 1 , we have

$$
\varlimsup_{r \rightarrow+\infty} \frac{\alpha\left(r^{1 /(1-p)}\right)}{\alpha(r)}=\varlimsup_{r \rightarrow+\infty} \frac{\alpha(\exp \{(1+\delta) \ln r\})}{\alpha(\exp \{\ln r\})}=B(\delta) \rightarrow 1, \delta \rightarrow 1 .
$$

Therefore,

$$
\begin{gathered}
1 \geq \varlimsup_{r \rightarrow+\infty} \frac{\alpha\left(M_{f}^{-1}\left(M_{A}(r)\right)\right)}{\alpha\left(r^{1 /(1-p)}\right)}=\varlimsup_{r \rightarrow+\infty}\left(\frac{\alpha\left(M_{f}^{-1}\left(M_{A}(r)\right)\right)}{\alpha(r)} \cdot \frac{\alpha(r)}{\alpha\left(r^{1+\delta}\right)}\right) \geq \\
\geq \varlimsup_{r \rightarrow+\infty} \frac{\alpha\left(M_{f}^{-1}\left(M_{A}(r)\right)\right)}{\alpha(r)} \varlimsup_{r \rightarrow+\infty} \frac{\alpha(r)}{\alpha\left(r^{1+\delta}\right)}=\frac{\rho_{\alpha, \alpha}[F]_{f}}{B(\delta)} .
\end{gathered}
$$

In view of the arbitrariness of δ, we get $\rho_{\alpha, \alpha}[A]_{f} \leq 1$, and again, $\lambda_{\alpha, \alpha}[A]_{f}=\rho_{\alpha, \alpha}[A]_{f}=$ 1. Theorem 1 is proven.

We remark that, if $f_{k} \geq 0$ for all $k \geq 0$, then $M_{f}(r)=f(r)$. Therefore, from Theorem 1, we obtain the following statement.

Corollary 1. Let f be an entire transcendental function, $f_{k} \geq 0$ for all $k \geq 0, a_{n} \geq 0$ for all $n \geq 1$, and series (2) be regularly convergent in \mathbb{C}. Suppose that $f^{\prime}(r) / f(r) \geq h>0$ for all $r \geq r_{0}$, $\ln n=O\left(\lambda_{n}\right)$ as $n \rightarrow \infty$ and $\overline{\lim }_{\sigma \rightarrow+\infty} \frac{\ln \mu_{D}(\sigma)}{\sigma \ln f^{-1}\left(e^{\sigma}\right)}=\gamma$.

If $\gamma<1$, then $\lambda_{\alpha, \alpha}[A]_{f}=\rho_{\alpha, \alpha}[A] f=1$ for every function α such that $\alpha\left(e^{x}\right) \in L_{s i}$.
If $\gamma=0$, then $\lambda_{\alpha, \alpha}[A]_{f}=\rho_{\alpha, \alpha}[A]_{f}=1$ for every function α such that $\alpha\left(e^{x}\right) \in L^{0}$.

3. Relative Growth of Laplace-Stieltjes-Type Integrals

Suppose again that f is an entire transcendental functio, $\mathrm{n} f_{k} \geq 0$ for all $k \geq 0$, and $x_{0}>1$ is such that $\int_{1}^{x_{0}} a(x) d F(x) \geq>0$. Then,

$$
I(r) \geq \int_{1}^{x_{0}} a(x) f(r x) d F(x) \geq f(r) c
$$

i.e., as above, $f^{-1}(I(r)) \geq(1+o(1)) r$ as $r \rightarrow+\infty$, where for $\alpha \in L^{0}$,

$$
\lambda_{\alpha, \alpha}[I]_{f}=\lim _{r \rightarrow+\infty} \frac{\alpha\left(f^{-1}(I(r))\right)}{\alpha(r)} \geq 1 .
$$

On the other hand, if $\tau \geq e-1$, then as above, for $r \geq 1$, we have

$$
\begin{aligned}
\ln f((1+\tau) r x)-\ln f(r x)= & \int_{r x}^{(1+\tau) r x} \frac{d \ln f(x)}{d \ln x} d \ln x=\int_{r x}^{(1+\tau) r x} \Gamma_{f}(x) d \ln x \geq \\
& \geq \Gamma_{f}(x) \ln (1+x),
\end{aligned}
$$

i.e., $\frac{f(r x)}{f((1+\tau) r x)} \leq e^{-\Gamma_{f}(x) \ln (1+\tau)}$. Therefore, if $\mu_{I}(r)=\max \{a(x) f(r x): x \geq 0\}$ is the maximum of the integrand and $\ln F(x) \leq q \Gamma_{f}(x)$ for some $q>0$ and all $x \geq x_{0}$, then for $\ln (1+\tau)>q$ (for simplicity assuming $x_{0}=0$), we get

$$
\begin{gather*}
I(r)=\int_{0}^{\infty} a(x) f((1+\tau) r x) \frac{f(r x)}{f((1+\tau) r x)} d F(x) \leq \mu_{I}((1+\tau) r) \int_{0}^{\infty} \frac{f(r x)}{f((1+\tau) r x)} d F(x) \leq \\
\leq \mu_{I}((1+\tau) r) \int_{0}^{\infty} e^{-\Gamma_{f}(x) \ln (1+\tau)} d F(x \leq \\
\leq \mu_{I}((1+\tau) r) \ln (1+\tau) \int_{0}^{\infty} e^{-\Gamma_{f}(x) \ln (1+\tau)+\ln F(x)} d \Gamma_{f}(x) \leq \\
\leq \mu_{I}((1+\tau) r) \ln (1+\tau) \int_{0}^{\infty} e^{-\Gamma_{f}(x)(\ln (1+\tau)-q)} d \Gamma_{f}(x)=\mu_{I}((1+\tau) r) \frac{\ln (1+\tau)}{\ln (1+\tau)-q}= \\
=T \mu_{I}((1+\tau) r) . \tag{13}
\end{gather*}
$$

Additionally, as above, we have

$$
\begin{align*}
& \mu_{I}(r)=\max \left\{a(x) \sum_{k=0}^{\infty} f_{k}(x r)^{k}: x \geq 0\right\} \leq \\
\leq & \sum_{k=0}^{\infty} \max \left\{a(x) x^{k}: x \geq 0\right\} f_{k} r^{k}=\sum_{k=0}^{\infty} \mu_{J}(k) f_{k} r^{k}, \tag{14}
\end{align*}
$$

where $\mu_{J}(\sigma)=\max \left\{a(x) e^{\sigma \ln x}: x \geq 0\right\}=\max \left\{a(x) x^{\ln x}: x \geq 0\right\}$ is the maximum of the integrand for the Laplace integral

$$
J(\sigma)=\int_{0}^{\infty} a(x) e^{\sigma \ln x} d F(x)
$$

Using estimates (13) and (14), and $\lambda_{\alpha, \alpha}[I]_{f} \geq 1$, we prove the following analog of Theorem 1.

Theorem 2. Let $\ln F(x) \leq q \Gamma_{f}(x)$ for some $q>0$ and all $x \geq x_{0}$, and $\overline{\lim }_{\sigma \rightarrow+\infty} \frac{\ln \mu_{J}(\sigma)}{\gamma \ln f^{-1}\left(e^{\sigma}\right)}=\gamma$.
If $\gamma<1$, then $\lambda_{\alpha, \alpha}[I]_{f}=\rho_{\alpha, \alpha}[I]_{f}=1$ for every function α such that $\alpha\left(e^{x}\right) \in L_{s i}$.
If $\gamma=0$, then $\lambda_{\alpha, \alpha}[I]_{f}=\rho_{\alpha, \alpha}[I]_{f}=1$ for every function α such that $\alpha\left(e^{x}\right) \in L^{0}$.
Proof. As in the proof of Theorem 1, we obtain $-\ln \left|f_{k}\right| \geq k\left(\ln f^{-1}\left(e^{k}\right)-1\right)$ and $\overline{\lim }_{k \rightarrow \infty} \frac{\ln \mu_{J}(k)}{-\ln f_{k}} \leq \gamma$. Therefore, if $\gamma<1$, then $\mu_{D}(k) \leq\left|f_{k}\right|^{-p}$ for each $p \in(\gamma, 1)$ and all $k \geq k_{0}$, and in view of (14) and (5), as in the proof of Theorem 1, we get $\mu_{I}(r) \leq$ $\mu_{f}\left((2 r)^{1 /(1-p)}\right)$ for $r \geq r_{0}$. Therefore, in view of (13), we get

$$
I(r) \leq T \mu_{I}((1+\tau) r) \leq T f\left((2(1+\tau) r)^{1 /(1-p)}\right)
$$

where $f^{-1}(I(r)) \leq(1+o(1))(2(1+\tau) r)^{1 /(1-p)}$ as $r \rightarrow+\infty$. If $\alpha \in L_{s i}$, then we obtain

$$
\varliminf_{r \rightarrow+\infty} \frac{\alpha\left(f^{-1}(I(r))\right)}{\alpha\left(r^{1 /(1-p)}\right)} \leq 1
$$

Further proof of Theorem 2 is the same as that of Theorem 1.
Theorem 2 implies the following statement.
Corollary 2. Let $f^{\prime}(x) / f(x) \geq h, h>0, \ln F(x) \leq q x$ for some $q>0$ and all $x \geq 0$, and $\varlimsup_{r \rightarrow+\infty} \frac{\ln \mu_{J}(\sigma)}{\sigma f^{-1}\left(e^{\sigma}\right)}=\gamma$.

If $\gamma<1$, then $\lambda_{\alpha, \alpha}[I]_{f}=\rho_{\alpha, \alpha}[I]_{f}=1$ for every function α such that $\alpha\left(e^{x}\right) \in L_{s i}$.
If $\gamma=0$, then $\lambda_{\alpha, \alpha}[I]_{f}=\rho_{\alpha, \alpha}[I]_{f}=1$ for every function α such that $\alpha\left(e^{x}\right) \in L^{0}$.

4. Examples

Here, we consider the case when $f(z)=E_{\rho}(z)$, where

$$
E_{\rho}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma\left(1+\frac{k}{\rho}\right)}, 0<\rho<+\infty,
$$

is the Mittag-Leffler function. The properties of this function have been used in many problems in the theory of entire functions. We only need the following property of the Mittag-Leffler function: if $0<\rho<+\infty$, then ([11] p. 85)

$$
\begin{equation*}
M_{E_{\rho}}(r)=E_{\rho}(r)=(1+o(1)) \rho e^{r^{\rho}}, r \rightarrow+\infty \tag{15}
\end{equation*}
$$

and, if $1 / 2<\rho<+\infty$, then [12]

$$
\begin{equation*}
E_{\rho}^{\prime}(r) / E_{\rho}(r)=\rho r^{\rho-1}+O\left(r^{\rho-2} e^{-r^{\rho}}\right), r \rightarrow+\infty \tag{16}
\end{equation*}
$$

From (15), it follows that $E_{\rho}^{-1}(x)=(1+o(1)) \ln ^{1 / \rho} x$ as $x \rightarrow+\infty$. Therefore, for $f(x)=E_{\rho}(x)$, we have $\sigma \ln f^{-1}\left(e^{\sigma}\right)=\frac{1+o(1)}{\rho} \sigma \ln \sigma$ as $\sigma \rightarrow+\infty$. Since in (16), $\Gamma_{E_{\rho}}(r)=$ $\rho r^{\rho}+o(1)$ as $r \rightarrow+\infty$, then if $\ln F(x) \leq q \rho x^{\rho}$ for some $q>0$ and all $x \geq x_{0}$, and

$$
\begin{equation*}
\varlimsup_{\sigma \rightarrow+\infty} \frac{\ln \mu_{J}(\sigma)}{\sigma \ln \sigma}=0 \tag{17}
\end{equation*}
$$

then for $\alpha(x)=\ln x(x \geq e)$, by Theorem 2 , we get

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\ln E_{\rho}^{-1}\left(I_{\rho}(r)\right)}{\ln r}=1, \quad I_{\rho}(r)=\int_{0}^{\infty} a(x) E_{\rho}(r x) d F(x) . \tag{18}
\end{equation*}
$$

Let us now find out under what conditions (17) holds on $a(x)$. For this, as in ([7] p. 29), by Ω, we denote a class of positive unbounded functions Φ on $(-\infty,+\infty)$ such that the derivative Φ_{0} is positive, continuously differentiable, and increasing to $+\infty$ on $(-\infty,+\infty)$. For $\Phi \in \Omega$, let φ be the inverse function to Φ^{\prime} and $\Psi(\sigma)=\sigma-\frac{\Phi(\sigma)}{\Phi^{\prime}(\sigma)}$ be the function associated with Φ in the sense of Newton.

By Theorem 2.2.1 from ([7] p. 30), $\ln \max \left\{a(x) e^{\sigma x}: x \geq 0\right\} \leq \Phi(\sigma) \in \Omega$ for all $\sigma \geq \sigma_{0}$ if and only if $\ln a(x) \leq-x \Psi(\varphi(x))$ for all $x \geq x_{0}$. Choosing $\Phi(\sigma)=\epsilon \sigma \ln \sigma$ for $\sigma \geq \sigma_{0}$, we obtain $\Phi^{\prime}(\sigma)=\epsilon(\ln \sigma+1), \varphi(x)=\exp \{x / \epsilon-1\}$ and $x \Psi(\varphi(x))=x \varphi(x)-\Phi(\varphi(x))=$ $\epsilon \exp \{x / \epsilon-1\}$ for $x \geq x_{0}$. Therefore, $\ln \mu_{J}(\sigma) \leq \varepsilon \sigma \ln \sigma$ for all $\sigma \geq \sigma_{0}$ if and only if $\ln a(x) \leq-\varepsilon \exp \{\ln x / \varepsilon-1\}$ for $x \geq x_{0}$. Hence, it follows that, if $\ln x=o(\ln \ln (1 / a(x)))$ as $x \rightarrow+\infty$, then (17) holds. Thus, the following statement is true.

Proposition 1. If $\rho>1 / 2, \ln F(x)=O\left(x^{\rho}\right)$ and $\ln x=o(\ln \ln (1 / a(x)))$ as $x \rightarrow+\infty$, then (18) holds.

Remark 1. If $\rho=1$, then $E_{\rho}(r)=E_{1}(r)=e^{r}$, and we have a usual Laplace-Stieltjes integral $I_{1}(r)=\int_{0}^{\infty} a(x) e^{r x} d F(x)$. Therefore, if $\ln F(x)=O(x)$ and $\ln x=o(\ln \ln (1 / a(x)))$ as $x \rightarrow$ $+\infty$, then $p_{R}\left[I_{1}\right]:=\lim _{r \rightarrow+\infty} \frac{\ln \ln I_{1}(r)}{\ln r}=1$. On the other hand, the quantity $p_{R}\left[I_{1}\right]$ is called the logarithmic R-order of I_{1}, and in ([7] p. 83), it is proven that, if $\ln F(x)=O(x)$ as $x \rightarrow+\infty$, then $p_{R}\left[I_{1}\right]=\varlimsup_{x \rightarrow+\infty} \frac{\ln x}{\ln \left(\frac{1}{x} \ln \frac{1}{a(x)}\right)}=1$, i.e., if $\ln F(x)=O(x)$ and $\ln x=o(\ln \ln (1 / a(x)))$ as $x \rightarrow+\infty$, then $p_{R}\left[I_{1}\right]=1$.

Similarly, we can prove the following statement.
Proposition 2. Let $\rho \geq 1 / 2, \ln n=O\left(\lambda_{n}^{\rho}\right)$ as $n \rightarrow \infty, a_{n} \geq 0$ for all $n \geq 1$ and series $A_{\rho}(z)=\sum_{n=1}^{\infty} a_{n} E_{\rho}\left(\lambda_{n} z\right)$ be regularly convergent in \mathbb{C}. If $\ln n=o\left(\ln \ln \left(1 / a_{n}\right)\right)$ as $n \rightarrow \infty$, then $\lim _{r \rightarrow+\infty} \frac{\ln E_{\rho}^{-1}\left(M_{A_{\rho}}(r)\right)}{\ln r}=1$.

Remark 2. If $\rho=1$, then we have a Dirichlet series $A_{1}(z)=\sum_{n=1}^{\infty} a_{n} e^{\lambda_{n} z}$. Therefore, if this Dirichlet series is absolutely convergent in \mathbb{C}, $a_{n} \geq 0$ for all $n \geq 1, \ln n=O\left(\lambda_{n}\right)$, and $\ln n=$ $o\left(\ln \ln \left(1 / a_{n}\right)\right)$ as $n \rightarrow \infty$, then $p_{R}\left[A_{1}\right]:=\lim _{r \rightarrow+\infty} \frac{\ln \ln M_{A_{1}}(r)}{\ln r}=1$. On the other hand, the quantity $p_{R}\left[A_{1}\right]$ is called the logarithmic R-order of A_{1} and $p_{R}\left[A_{1}\right]=\varlimsup_{n \rightarrow+\infty} \frac{\ln \lambda_{n}}{\ln \left(\frac{1}{\lambda_{n}} \ln \frac{1}{a_{n}}\right)}=1$ provided $\ln n=O\left(\lambda_{n}\right)$ as $n \rightarrow \infty$ [13], i.e., if $\ln n=O\left(\lambda_{n}\right)$ and $\ln \lambda_{n}=o\left(\ln \ln \left(1 / a_{n}\right)\right)$ as $n \rightarrow \infty$, then $p_{R}\left[A_{1}\right]=1$.

5. Discussion Open Problems

1. The natural problem studied was the relative growth when the domain of regular convergence of series (2) is the disk $D_{R}=\{z:|z|<R<+\infty\}$ and the function f is either entire or analytic in D_{R}.
2. It is well known that the study of the growth of entire functions of many complex variables involves many options. The following problem is the simplest.

Let f be an entire function and the series $A(z, w)=\sum_{m=1, n=1}^{\infty} a_{m, n} f\left(\lambda_{m} z+\mu_{n} w\right)$ be regularly convergent in \mathbb{C}^{2}. A question arises about the asymptotic behavior of the function $M_{f}^{-1}\left(M_{A}(r, \rho)\right)$, where $M_{A}(r, \rho)=\max \{|A(z, w)|:|z| \leq r,|w| \leq \rho\}$.
3. The condition $\rho \geq 1 / 2$ in Propositions 1 and 2 arose in connection to the application of Equation (16). Probably, it is superfluous in the above statements.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: This research did not report any data.
Conflicts of Interest: The author declares no conflicts of interest.

References

1. Nachbin, L. An extension of the notion of integral function of the finite exponential type. An. Acad. Brasil Sci. 1944, 16, 143-147.
2. Boas, R.P.; Buck, R.C. Polynomial Expansions of Analytic Functions; Springer: Berlin, Germany, 1958.
3. Vinnitsky, B.V. Some Approximation Properties of Generalized Systems of Exponentials; Dep. in UkrNIINTI 25 February 1991; Drogobych Pedagogical Institute: Drogobych, Ukraine, 1991. (in Russian)
4. Roy, C. On the relative order and lower order of an entire function. Bull. Soc. Cal. Math. Soc. 2010, 102, 17-26.
5. Mulyava, O.M.; Sheremeta, M.M. Relative growth of Dirichlet series with different abscissas of absolute convergence. Ukr. Math. J. 2020, 72, 1535-1543.
6. Leont'ev, A.F. Generalizations of Exponential Series; Nauka: Moscow, Russia, 1981. (in Russian)
7. Sheremeta M.M. Asymptotical Behavior of Laplace-Stietjes Integrals; VNTL Publishers: Lviv, Ukraine, 2010.
8. Sheremeta, M.N. Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion. Izv. Vyssh. Uchebn. Zaved. Mat. 1967, 2, 100-108. (in Russian)
9. Sheremeta, M.M. On two classes of positive functions and the belonging to them of main characteristics of entire functions. Mat. Stud. 2003, 19, 75-82.
10. Pólya, G.; Szegő, G. Aufgaben und Lehrsatze aus der Analysis. II; Springer: Berlin, Germany, 1964.
11. Gol'dberg, A.A.; Ostrovskii, I.V. Value Distribution of Meromorphic Functions; AMS: Providence, RI, USA, 2008. (Translated from Russian ed. Nauka: Moscow, USSR, 1970).
12. Gol'dberg, A.A. An estimate of modulus of logarithmic derivative of Mittag-Leffler function with applications. Mat. Stud. 1995, 5, 21-30.
13. Reddy, A.R. On entire Dirichlet series of zero order. Tohoku Math. J. 1966, 18, 144-155.
