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Abstract: For a regularly converging-in-C series A(z) = ∑∞
n=1 an f (λnz), where f is an entire transcen-

dental function, the asymptotic behavior of the function M−1
f (MA(r)), where M f (r) = max{| f (z)| :

|z| = r}, is investigated. It is proven that, under certain conditions on the functions f , α, and the

coefficients an, the equality limr→+∞
α(M−1

f (MA(r)))
α(r) = 1 is correct. A similar result is obtained for the

Laplace–Stiltjes-type integral I(r) =
∫ ∞

0 a(x) f (rx)dF(x). Unresolved problems are formulated.
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1. Introduction

Let

f (z) =
∞

∑
k=0

fkzk (1)

be an entire function, M f (r) = max{| f (z)| : |z| = r}, and Φ f (r) = ln M f (r). For an entire
function g with Taylor coefficients gn, the study of growth of the function Φ−1

f (ln Mg(r))
in terms of the exponential type was initiated in papers [1,2] and was continued in [3]. As
a result, it is proven that, if | fk−1/ fk| ↗ +∞ as k→ ∞, then

lim
r→+∞

Φ−1
f (ln Mg(r))

r
= lim

k→∞

(
|gn|
| fn|

)1/n
.

We remark that Φ−1
f (x) = M−1

f (ex) and, thus, Φ−1
f (ln Mg(r)) = M−1

f (Mg(r)). The

order ρ[g]g = limr→+∞
ln M−1

f (Mg(r))
ln r and the lower-order λ[g] f = limr→+∞

ln M−1
f (Mg(r))

ln r of
the function f with respect to the function g are used in Reference [4]. Research on the
relative growth of entire functions was continued by many mathematicians (an incomplete
bibliography is given in [5]).

Let (λn) be a sequence of positive numbers increasing to +∞. Suppose that the series

A(z) =
∞

∑
n=1

an f (λnz) (2)

in the system f (λnz) is regularly convergent in C, i.e., ∑∞
n=1 |an|M f (rλn) < +∞ for all

r ∈ [0,+∞). Many authors have studied the representation of analytic functions by series in
the system f (λnz) and the growth of such functions. Here, we specify only the monographs
of A.F. Leont’ev [6] and B.V. Vinnitskyi [3], which are references to other papers on this
topic.

Since series (2) is regularly convergent in C and the function A is an entire function, a
natural question arises about the asymptotic behavior of the function M−1

f (MA(r)).
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We suppose that the function F is nonnegative, nondecreasing, unbounded, and
continuous on the right on [0,+∞); that f is positive, increasing, and continuous on
[0,+∞); and that a positive-on-[0,+∞) function a is such that the Laplace–Stietjes-type
integral

I(r) =
∫ ∞

0
a(x) f (rx)dF(x) (3)

exists for every r ∈ [0,+∞). The asymptotic behavior of such integrals in the case f (x) = ex

is studied in the monograph [7]. A question arises again about the asymptotic behavior
of the function f−1(I(r)). Here, we present some results that indicate the possibility of
solving these problems.

2. Relative Growth of Series in Systems of Functions

As in [8], by L, we denote a class of continuous nonnegative-on-(−∞,+∞) functions
α such that α(x) = α(x0) ≥ 0 for x ≤ x0 and α(x) ↑ +∞ as x0 ≤ x → +∞. We say that
α ∈ L0, if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. Finally, α ∈ Lsi, if α ∈ L
and α(cx) = (1 + o(1))α(x) as x → +∞ for each c ∈ (0,+∞), i.e., α is a slowly increasing
function. Clearly, Lsi ⊂ L0. We need the following lemma [9].

Lemma 1. If β ∈ L and B(δ) = limx→+∞
β((1+δ)x)

β(x) , δ > 0, then in order for β ∈ L0, it is
necessary and sufficient that B(δ)→ 1 as δ→ +0.

We need also some well-known (see, for example, [10]) properties of the function
ln M f (r).

Lemma 2. If a function f is transcendental, then the function ln M f (r) is logarithmically convex
and, thus,

Γ f (r) :=
d ln M f (r)

d ln r
↗ +∞, r → +∞,

(at the points where the derivative does not exist, where
d ln M f (r)

d ln r means the right-hand derivative).

For α ∈ L, β ∈ L, and entire functions f and g, we define the generalized (α, β)-order
ρα,β[g] f and the generalized lower (α, β)-order λα,β[g] f of g with respect to f as follows:

ρα,β[g] f = lim
r→+∞

α(M−1
f (Mg(r)))

β(r)
, λα,β[g] f = lim

r→+∞

α(M−1
f (Mg(r)))

β(r)
.

Suppose that an ≥ 0 for all n ≥ 1. Since

A(z) =
∞

∑
n=1

an

∞

∑
k=0

fk(zλn)
k =

∞

∑
k=0

fk

(
∞

∑
n=1

anλk
n

)
zk,

in view of the Cauchy inequality, we have

MA(r) ≥ | fk|
(

∞

∑
n=1

anλk
n

)
rk ≥ an| fk|(λnr)k (4)

for all n ≥ 1, k ≥ 0 and r ∈ [0,+∞). We also remark that, if µ f (r) = max{| fk|rk : k ≥ 0} is
the maximal term of series (1), then

M f (r) ≤
∞

∑
k=0
| fk|rk =

∞

∑
k=0
| fk|(2r)k2−k ≤ 2µ f (2r). (5)
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We choose n0 ≥ 1 such that an0 > 0 and λn0 ≥ 2. Then, from (4) and (5), we get

MA(r) ≥ max{an0 | fk|(λn0 r)k : k ≥ 0} ≥ an0 µ f (2r) ≥ an0

2
M f (r),

where M−1
f

(
2

dn0
MA(r)

)
≥ r. By Lemma 2,

d ln M−1
f (x)

d ln x ↘ 0 as x → +∞ and, thus, for every
c > 1

ln M−1
f (cx)− ln M−1

f (x) =
∫ cx

x

d ln M−1
f (t)

d ln t
d ln t ≤

d ln M−1
f (x)

d ln x
→ 0, x → +∞,

i.e., the function M−1
f is slowly increasing. Therefore,

M−1
f (MA(r)) ≥ (1 + o(1))r, r → +∞. (6)

On the other hand, since series (2) is regularly convergent in C, for each r ∈ [0,+∞),
there exists µA(r) = max{|an|M f (rλn) : n ≥ 1} and, for every r ∈ [0,+∞) and τ > 0,
we have

MA(r) ≤
∞

∑
n=1
|an|M f (rλn) ≤ µF((1 + τ)r)

∞

∑
n=1

M f (rλn)

M f ((1 + τ)rλn)
. (7)

Then, by Lemma 2, for r ≥ 1, we have

ln M f ((1 + τ)rλn)− ln M f (rλn) =
∫ (1+τ)rλn

rλn

d ln M f (x)
d ln x

d ln x=
∫ (1+τ)rλn

rλn
Γ f (x)d ln x≥

≥ Γ f (rλn) ln(1 + τ) ≥ Γ f (λn) ln(1 + τ).

Therefore, if ln n ≤ qΓ f (λn) for all n ≥ n0 and ln(1 + τ) > q, then
∞

∑
n=n0

M f (rλn)

M f ((1 + τ)rλn)
≤

∞

∑
n=n0

exp{−Γ f (λn) ln(1 + τ)}≤
∞

∑
n=n0

exp
{
− ln(1 + τ)

q
ln n

}
<+∞

and (7) implies, for r ≥ 1,

MA(r) ≤ TµA((1 + τ)r), T = const > 0. (8)

Additionally, we have

µA(r) ≤ max

{
|an|

∞

∑
k=0
| fk|(rλn)

k : n ≥ 1

}
≤

≤
∞

∑
k=0

max{|an|λk
n : n ≥ 1}| fk|rk =

∞

∑
k=0

µD(k)| fk|rk, (9)

where µD(σ) = max{|an| exp{σ ln λn} : n ≥ 1} is the maximal term of Dirichlet series

D(σ) =
∞

∑
n=1
|an| exp{σ ln λn}.

Using estimates (6), (8), and (9), we prove the following theorem.

Theorem 1. Let f be an entire transcendental function, an ≥ 0 for all n ≥ 1, and series (2) be
regularly convergent in C. Suppose that ln n ≤ qΓ f (λn) for some q > 0 and all n ≥ n0 and that

limσ→+∞
ln µD(σ)

σ ln M−1
f (eσ)

= γ.

If γ < 1, then λα,α[F] f = ρα,α[F] f = 1 for every function α such that α(ex) ∈ Lsi. If γ = 0,
then λα,α[F] f = ρα,α[F] f = 1 for every function α such that α(ex) ∈ L0.
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Proof. Since α ∈ L0, from (6), we get

λα,α[F] f = lim
r→+∞

α(M−1
f (MF(r)))

α(r)
≥ lim

r→+∞

α((1 + o(1))r)
α(r)

= 1.

On the other hand, in view of the Cauchy inequality, we have ln | fk| ≤ ln M f (r)−
k ln r for all r and k. We choose r = rk = M−1

f (ek). Then, ln | fk| ≤ k − k ln M−1
f (ek), i.e.,

− ln | fk| ≥ k(ln M−1
f (ek)− 1). Therefore,

lim
k→∞

ln µD(k)
− ln fk

≤ lim
k→∞

ln µD(k)
k(ln M−1

f (ek)− 1)
≤ lim

σ→+∞

ln µD(σ)

σ ln M−1
f (eσ)

= σ. (10)

If γ < 1, then in view of (10), ln µD(k)
− ln | fk |

≤ p for each p ∈ (γ, 1) and all k ≥ k0 and, thus,

µD(k) ≤ | fk|−p for all k ≥ k0. Therefore, in view of (9) and (5),

µA(r) ≤
(

k0−1

∑
k=0

+
∞

∑
k=k0

)
µD(k)| fk|rk ≤ O(rk0−1) +

∞

∑
k=k0

| fk|1−prk ≤

≤ O(rk0−1) + 2 max{ f 1−p
k (2r)k : k ≥ 0} =

= O(rk0−1) + 2 max{(| fk|(2r)k/(1−p))1−p : k ≥ 0} =

= O(rk0−1) + 2(µ f ((2r)1/(1−p)))1−p ≤ µ f ((2r)1/(1−p)), r ≥ r0, (11)

because ln r = o(ln µ f (r)) as r → +∞ for every entire transcendental function f and
1− p < 1. Therefore, from (8) and (11), we get

MA(r) ≤ TµA((1 + τ)r) ≤ Tµ f ((2(1 + τ)r)1/(1−p)) ≤ TM f ((2(1 + τ)r)1/(1−p))

and, thus, M−1
f (MA(r)) ≤ (1 + o(1))(2(1 + τ)r)1/(1−p) as r → +∞. If α ∈ Lsi, then we

obtain

lim
r→+∞

α(M−1
f (MA(r)))

α(r1/(1−p))
≤ 1. (12)

Suppose that α(ex) ∈ Lsi. Then,

α(r1/(1−p)) = α(exp
{

1
1− p

ln r
}
) = (1 + o(1))α(exp{ln r}) = (1 + o(1))α(r)

as r → +∞. Therefore, (12) implies the inequality ρα,α[A] f ≤ 1, where in view of the
inequality λα,α[A] f ≥ 1, we get λα,α[A] f = ρα,α[A] f = 1.

If γ = 0, then (12) holds for every p ∈ (0, 1) and all r ≥ r0(p). If we put 1
1−p = 1 + δ,

then δ→ +0 as p→ +0, and in view of the condition α(ex) ∈ L0, by Lemma 1, we have

lim
r→+∞

α(r1/(1−p))

α(r)
= lim

r→+∞

α(exp{(1 + δ) ln r})
α(exp{ln r}) = B(δ)→ 1, δ→ 1.

Therefore,

1 ≥ lim
r→+∞

α(M−1
f (MA(r)))

α(r1/(1−p))
= lim

r→+∞

(
α(M−1

f (MA(r)))

α(r)
· α(r)

α(r1+δ)

)
≥

≥ lim
r→+∞

α(M−1
f (MA(r)))

α(r)
lim

r→+∞

α(r)
α(r1+δ)

=
ρα,α[F] f

B(δ)
.
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In view of the arbitrariness of δ, we get ρα,α[A] f ≤ 1, and again, λα,α[A] f = ρα,α[A] f =
1. Theorem 1 is proven.

We remark that, if fk ≥ 0 for all k ≥ 0, then M f (r) = f (r). Therefore, from Theorem 1,
we obtain the following statement.

Corollary 1. Let f be an entire transcendental function, fk ≥ 0 for all k ≥ 0, an ≥ 0 for all n ≥ 1,
and series (2) be regularly convergent in C. Suppose that f ′(r)/ f (r) ≥ h > 0 for all r ≥ r0,
ln n = O(λn) as n→ ∞ and limσ→+∞

ln µD(σ)
σ ln f−1(eσ)

= γ.

If γ < 1, then λα,α[A] f = ρα,α[A] f = 1 for every function α such that α(ex) ∈ Lsi.
If γ = 0, then λα,α[A] f = ρα,α[A] f = 1 for every function α such that α(ex) ∈ L0.

3. Relative Growth of Laplace–Stieltjes-Type Integrals

Suppose again that f is an entire transcendental functio,n fk ≥ 0 for all k ≥ 0, and
x0 > 1 is such that

∫ x0
1 a(x)dF(x) ≥> 0. Then,

I(r) ≥
∫ x0

1
a(x) f (rx)dF(x) ≥ f (r)c,

i.e., as above, f−1(I(r)) ≥ (1 + o(1))r as r → +∞, where for α ∈ L0,

λα,α[I] f = lim
r→+∞

α( f−1(I(r)))
α(r)

≥ 1.

On the other hand, if τ ≥ e− 1, then as above, for r ≥ 1, we have

ln f ((1 + τ)rx)− ln f (rx) =
∫ (1+τ)rx

rx

d ln f (x)
d ln x

d ln x =
∫ (1+τ)rx

rx
Γ f (x)d ln x ≥

≥ Γ f (x) ln(1 + x),

i.e., f (rx)
f ((1+τ)rx) ≤ e−Γ f (x) ln(1+τ). Therefore, if µI(r) = max{a(x) f (rx) : x ≥ 0} is the

maximum of the integrand and ln F(x) ≤ qΓ f (x) for some q > 0 and all x ≥ x0, then for
ln(1 + τ) > q (for simplicity assuming x0 = 0), we get

I(r)=
∫ ∞

0
a(x) f ((1 + τ)rx)

f (rx)
f ((1 + τ)rx)

dF(x)≤µI((1 + τ)r)
∫ ∞

0

f (rx)
f ((1 + τ)rx)

dF(x)≤

≤ µI((1 + τ)r)
∫ ∞

0
e−Γ f (x) ln(1+τ)dF(x ≤

≤ µI((1 + τ)r) ln(1 + τ)
∫ ∞

0
e−Γ f (x) ln(1+τ)+ln F(x)dΓ f (x) ≤

≤ µI((1 + τ)r) ln(1 + τ)
∫ ∞

0
e−Γ f (x)(ln(1+τ)−q)dΓ f (x) = µI((1 + τ)r)

ln(1 + τ)

ln(1 + τ)− q
=

= TµI((1 + τ)r). (13)

Additionally, as above, we have

µI(r) = max

{
a(x)

∞

∑
k=0

fk(xr)k : x ≥ 0

}
≤

≤
∞

∑
k=0

max{a(x)xk : x ≥ 0} fkrk =
∞

∑
k=0

µJ(k) fkrk, (14)
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where µJ(σ) = max{a(x)eσ ln x : x ≥ 0} = max{a(x)xln x : x ≥ 0} is the maximum of the
integrand for the Laplace integral

J(σ) =
∫ ∞

0
a(x)eσ ln xdF(x).

Using estimates (13) and (14), and λα,α[I] f ≥ 1, we prove the following analog of
Theorem 1.

Theorem 2. Let ln F(x) ≤ qΓ f (x) for some q > 0 and all x ≥ x0, and limσ→+∞
ln µJ(σ)

γ ln f−1(eσ)
= γ.

If γ < 1, then λα,α[I] f = ρα,α[I] f = 1 for every function α such that α(ex) ∈ Lsi.
If γ = 0, then λα,α[I] f = ρα,α[I] f = 1 for every function α such that α(ex) ∈ L0.

Proof. As in the proof of Theorem 1, we obtain − ln | fk| ≥ k(ln f−1(ek) − 1) and

limk→∞
ln µJ(k)
− ln fk

≤ γ. Therefore, if γ < 1, then µD(k) ≤ | fk|−p for each p ∈ (γ, 1) and
all k ≥ k0, and in view of (14) and (5), as in the proof of Theorem 1, we get µI(r) ≤
µ f ((2r)1/(1−p)) for r ≥ r0. Therefore, in view of (13), we get

I(r) ≤ TµI((1 + τ)r) ≤ T f ((2(1 + τ)r)1/(1−p)),

where f−1(I(r)) ≤ (1 + o(1))(2(1 + τ)r)1/(1−p) as r → +∞. If α ∈ Lsi, then we obtain

lim
r→+∞

α( f−1(I(r)))
α(r1/(1−p))

≤ 1.

Further proof of Theorem 2 is the same as that of Theorem 1.

Theorem 2 implies the following statement.

Corollary 2. Let f ′(x)/ f (x) ≥ h, h > 0, ln F(x) ≤ qx for some q > 0 and all x ≥ 0, and

limr→+∞
ln µJ(σ)

σ f−1(eσ)
= γ.

If γ < 1, then λα,α[I] f = ρα,α[I] f = 1 for every function α such that α(ex) ∈ Lsi.
If γ = 0, then λα,α[I] f = ρα,α[I] f = 1 for every function α such that α(ex) ∈ L0.

4. Examples

Here, we consider the case when f (z) = Eρ(z), where

Eρ(z) =
∞

∑
k=0

zk

Γ(1 + k
ρ )

, 0 < ρ < +∞,

is the Mittag–Leffler function. The properties of this function have been used in many
problems in the theory of entire functions. We only need the following property of the
Mittag–Leffler function: if 0 < ρ < +∞, then ([11] p. 85)

MEρ(r) = Eρ(r) = (1 + o(1))ρerρ
, r → +∞ (15)

and, if 1/2 < ρ < +∞, then [12]

E′ρ(r)/Eρ(r) = ρrρ−1 + O(rρ−2e−rρ
), r → +∞. (16)
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From (15), it follows that E−1
ρ (x) = (1 + o(1)) ln1/ρ x as x → +∞. Therefore, for

f (x) = Eρ(x), we have σ ln f−1(eσ) = 1+o(1)
ρ σ ln σ as σ → +∞. Since in (16), ΓEρ(r) =

ρrρ + o(1) as r → +∞, then if ln F(x) ≤ qρxρ for some q > 0 and all x ≥ x0, and

lim
σ→+∞

ln µJ(σ)

σ ln σ
= 0, (17)

then for α(x) = ln x (x ≥ e), by Theorem 2, we get

lim
r→+∞

ln E−1
ρ (Iρ(r))
ln r

= 1, Iρ(r) =
∫ ∞

0
a(x)Eρ(rx)dF(x). (18)

Let us now find out under what conditions (17) holds on a(x). For this, as in ([7] p. 29),
by Ω, we denote a class of positive unbounded functions Φ on (−∞,+∞) such that the
derivative Φ0 is positive, continuously differentiable, and increasing to +∞ on (−∞,+∞).
For Φ ∈ Ω, let ϕ be the inverse function to Φ′ and Ψ(σ) = σ − Φ(σ)

Φ′(σ) be the function
associated with Φ in the sense of Newton.

By Theorem 2.2.1 from ([7] p. 30), ln max{a(x)eσx : x ≥ 0} ≤ Φ(σ) ∈ Ω for all σ ≥ σ0
if and only if ln a(x) ≤ −xΨ(ϕ(x)) for all x ≥ x0. Choosing Φ(σ) = εσ ln σ for σ ≥ σ0, we
obtain Φ′(σ) = ε(ln σ + 1), ϕ(x) = exp{x/ε− 1} and xΨ(ϕ(x)) = xϕ(x)− Φ(ϕ(x)) =
ε exp{x/ε − 1} for x ≥ x0. Therefore, ln µJ(σ) ≤ εσ ln σ for all σ ≥ σ0 if and only if
ln a(x) ≤ −ε exp{ln x/ε− 1} for x ≥ x0. Hence, it follows that, if ln x = o(ln ln(1/a(x)))
as x → +∞, then (17) holds. Thus, the following statement is true.

Proposition 1. If ρ > 1/2, ln F(x) = O(xρ) and ln x = o(ln ln(1/a(x))) as x → +∞,
then (18) holds.

Remark 1. If ρ = 1, then Eρ(r) = E1(r) = er, and we have a usual Laplace–Stieltjes integral
I1(r) =

∫ ∞
0 a(x)erxdF(x). Therefore, if ln F(x) = O(x) and ln x = o(ln ln(1/a(x))) as x →

+∞, then pR[I1] := limr→+∞
ln ln I1(r)

ln r = 1. On the other hand, the quantity pR[I1] is called the
logarithmic R-order of I1, and in ([7] p. 83), it is proven that, if ln F(x) = O(x) as x → +∞,
then pR[I1] = limx→+∞

ln x
ln( 1

x ln 1
a(x) )

= 1, i.e., if ln F(x) = O(x) and ln x = o(ln ln(1/a(x))) as

x → +∞, then pR[I1] = 1.

Similarly, we can prove the following statement.

Proposition 2. Let ρ ≥ 1/2, ln n = O(λ
ρ
n) as n → ∞, an ≥ 0 for all n ≥ 1 and series

Aρ(z) = ∑∞
n=1 anEρ(λnz)be regularly convergent in C. If ln n = o(ln ln(1/an)) as n → ∞,

then limr→+∞
ln E−1

ρ (MAρ (r))
ln r = 1.

Remark 2. If ρ = 1, then we have a Dirichlet series A1(z) = ∑∞
n=1 aneλnz. Therefore, if this

Dirichlet series is absolutely convergent in C, an ≥ 0 for all n ≥ 1, ln n = O(λn), and ln n =

o(ln ln(1/an)) as n → ∞, then pR[A1] := limr→+∞
ln ln MA1

(r)
ln r = 1. On the other hand, the

quantity pR[A1] is called the logarithmic R-order of A1 and pR[A1] = limn→+∞
ln λn

ln( 1
λn ln 1

an )
= 1

provided ln n = O(λn) as n → ∞ [13], i.e., if ln n = O(λn) and ln λn = o(ln ln(1/an)) as
n→ ∞, then pR[A1] = 1.

5. Discussion Open Problems

1. The natural problem studied was the relative growth when the domain of regular
convergence of series (2) is the disk DR = {z : |z| < R < +∞} and the function f is either
entire or analytic in DR.
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2. It is well known that the study of the growth of entire functions of many complex
variables involves many options. The following problem is the simplest.

Let f be an entire function and the series A(z, w) = ∑∞
m=1,n=1 am,n f (λmz + µnw) be

regularly convergent in C2. A question arises about the asymptotic behavior of the function
M−1

f (MA(r, ρ)), where MA(r, ρ) = max{|A(z, w)| : |z| ≤ r, |w| ≤ ρ}.
3. The condition ρ ≥ 1/2 in Propositions 1 and 2 arose in connection to the application

of Equation (16). Probably, it is superfluous in the above statements.
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