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Abstract: This article is to investigate the existence of entire solutions of several quadratic trinomial
difference equations f (z + c)2 + 2α f (z) f (z + c) + f (z)2 = eg(z), and the partial differential difference

equations f (z + c)2 + 2α f (z + c) ∂ f (z)
∂z1

+
(

∂ f (z)
∂z1

)2
= eg(z), f (z + c)2 + 2α f (z + c)

(
∂ f (z)
∂z1

+
∂ f (z)
∂z2

)
+(

∂ f (z)
∂z1

+
∂ f (z)
∂z2

)2
= eg(z). We establish some theorems about the forms of the finite order transcen-

dental entire solutions of these functional equations. We also list a series of examples to explain
the existence of the finite order transcendental entire solutions of such equations. Meantime, some
examples show that there exists a very significant difference with the previous literature on the
growth order of the finite order transcendental entire solutions. Our results show that some func-
tional equations can admit the transcendental entire solutions with any positive integer order. These
results make a few improvements of the previous theorems given by Xu and Cao, Liu and Yang.

Keywords: Nevanlinna theory; entire solution; partial differential difference equation

MSC: 30D 35; 35M 30; 39A 45

1. Introduction

Let α2( 6= 0, 1), z + c = (z1 + c1, z2 + c2) for z = (z1, z2) and c = (c1, c2). This paper
is devoted to investigating the transcendental entire solutions with finite order of the
quadratic trinomial difference equation

f (z + c)2 + 2α f (z) f (z + c) + f (z)2 = eg(z), (1)

and the quadratic trinomial partial differential difference equations

f (z + c)2 + 2α f (z + c)
∂ f (z)
∂z1

+

(
∂ f (z)
∂z1

)2

= eg(z), (2)

f (z + c)2 + 2α f (z + c)
(

∂ f (z)
∂z1

+
∂ f (z)
∂z2

)
+

(
∂ f (z)
∂z1

+
∂ f (z)
∂z2

)2

= eg(z), (3)

where c1, c2 are constants and g(z) is a polynomial in C2. When α = ±1, Equations (1)–(3)
can be turned to the following equations

f (z)± f (z + c) = ±e
1
2 g(z), (4)

f (z + c)± ∂ f
∂z1

= ±e
1
2 g(z), (5)
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f (z + c)± (
∂ f
∂z1

+
∂ f
∂z2

) = ±e
1
2 g(z), (6)

respectively. In fact, it is easy to get the entire solutions of (4)–(6); for example, f (z) =
ez1+z2 is a finite-order transcendental entire solution of Equation (4), if (1 ± ec1+c2) =
±eb and g(z) = e2(z1+z2)+2, and f (z) = ea1z1+a2z2 is a finite order entire solution of
Equations (5) and (6), if ea1c1+a2c2 ± a1 = ±eb and ea1c1+a2c2 ± (a1 + a2) = ±eb, respec-
tively, where g(z) = e2(a1z1+a2z2)+2b, a1( 6= 0), a2, b are constants. When α = 0 and g(z) = 0,
Equations (1) and (2) become the Fermat type difference equations

f (z + c)2 + f (z)2 = 1 (7)

and

f (z + c)2 +

(
∂ f
∂z1

)2
= 1, (8)

which were discussed by Xu and Cao [1]. They pointed out that the transcendental entire
solution with finite order of Equation (7) must satisfy f (z) = sin(A1z1 + A2z2 + Constant),
where A2

1 = 1 and A1ei(A1c1+A2c2) = 1, if c2 6= 0, and any nonconstant entire solution
with finite order of Equation (7) has the form of f (z) = cos(A1z1 + A2z2 + Constant),
where A1c1 + A2c2 = −π

2 − 2kπ, k ∈ Z. As is known, the study of the Fermat type
functional equation

f 2 + g2 = 1 (9)

can be tracked back to about sixty years ago or even earlier (see [2–4]). In 1966, Gross [2]
discussed the existence of solutions of Equation (9) and showed that the entire solutions
are f = cos a(z), g = sin a(z), where a(z) is an entire function. In recent years, with the
development of Nevanlinna theory and difference Nevanlinns theory of meromorphic
function with one and several variables ([5–11]), there were many references focusing on
the solutions of Fermat type functional equations (readers can refer to [12–19]).

In 1999 and 2004, E. G. Saleeby [20,21] studied the forms of the entire and meromorphic
solutions of some partial differential equations, extended some of the above conclusions to
the case of several complex variables, and obtained the following results.

Theorem 1 (see ([20], Theorem 1)). . If f is an entire solution of(
∂ f (z1, z2)

∂z1

)2

+

(
∂ f (z1, z2)

∂z2

)2

= 1 (10)

in C2, then f (z1, z2) = η1z1 + η2z2 + η where η1, η2, η ∈ C and η2
1 + η2

2 = 1.

Theorem 2 (see ([21], Theorem 1)). The nonconstant entire and meromorphic solutions of equation

f (z1, z2)
2 +

(
∂ f (z1, z2)

∂z1

)2

+

(
∂ f (z1, z2)

∂z2

)2

= 1

are of the form f (z1, z2) = sin(η1z1 + η2z2 + η), where η1, η2, η ∈ C and η2
1 + η2

2 = 1.

In 2005, Li [22] discussed the partial differential equation of Fermat-type(
∂u
∂z1

)2
+

(
∂u
∂z2

)2
= eg, (11)

where g is a polynomial or an entire function in C2 and obtained some results on the forms
of entire solution of Equation (11) as follows:
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Theorem 3 ([22], Theorem 2.1). Let g be a polynomial in C2. Then, u is an entire solution of the
partial differential Equation (11), if and only if:

(i) u = f (c1z1 + c2z2); or
(ii) u = φ1(z1 + iz2) + φ2(z1 − iz2),

where f is an entire function in C satisfying that f ′(c1z1 + c2z2) = ±e
1
2 g(z), c1 and c2 are two

constants satisfying that c2
1 + c2

2 = 1, and φ1 and φ2 are entire functions in C satisfying that
φ′1(z1 + iz2)φ

′
2(z1 − iz2) =

1
4 eg(z).

Later, E. G. Saleeby [23] further investigated the entire and meromorphic solutions for
the quadratic trinomial functional equations

f 2 + 2α f g + g2 = 1, α2 6= 1, α ∈ C, (12)

and obtained

Theorem 4 (see ([23], Theorem 2.1)). The entire and meromorphic solutions of (12) have the
form given in, respectively,

f =
1√
2

(
cos h√
1 + α

+
sin h√
1− α

)
, g =

1√
2

(
cos h√
1 + α

− sin h√
1− α

)
and

f =
α1 − α2β2

(α1 − α2)β
, g =

1− β2

(α1 − α2)β
,

where h is entire and β is meromorphic on Cn.

Theorems 1–4 suggest the following question as an open problem.

Question 1. What would happen to the existence and form of solution of Equation (12) when g is
replaced of some special forms of f , and the right side of those equations 1 is replaced by a function
eϕ in Theorem D, where ϕ is a polynomial?

2. Results and Examples

Motivated by the above question, this article is concerned with the entire solutions
for the difference Equation (1) and the partial differential difference Equations (2) and (3).
The main tools are used in this paper are the Nevanlinna theory and difference Nevanlinna
theory. Our results are obtained to generalize the previous theorems given by Xu and Cao,
Liu, and Yang [1,24]. Here and below, let α2 6= 0, 1, and

A1 =
1

2
√

1 + α
− i

2
√

1− α
, A2 =

1
2
√

1 + α
+

i
2
√

1− α
. (13)

Thus, we have A1 A2 = 4
1−α2 .

The first main theorem is about the existence and the forms of the solutions for the
quadratic trinomial difference Equation (1).

Theorem 5. Let g(z) be a polynomial in C2 and α2 6= 0, 1, c ∈ C2. If the difference Equation (1)
admits a transcendental entire solution f (z) of finite order, then g(z1, z2) must be of the form
g(z1, z2) = L(z1, z2) + H(c2z1 − c1z2), where L(z1, z2) is a linear form of L(z1, z2) = a1z1 +
a2z2, H(s) is a polynomial in s, and a1, a2 ∈ C. Further, f (z1, z2) must satisfy one of the following
cases:

(i)

f (z1, z2) =
1√
2
(A1ξ + A2ξ−1)e

1
2 [L(z1,z2)+H(c2z1−c1z2)],
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where ξ( 6= 0) ∈ C and a1, a2, c1, c2, ξ, A1, A2 satisfying

e
1
2 (a1c1+a2c2) =

A2ξ + A1ξ−1

A1ξ + A2ξ−1 ;

or
(ii)

f (z1, z2) =
1√
2

(
A1eL1(z1,z2)+H1(c2z1−c1z2) + A2eL2(z1,z2)+H2(c2z1−c1z2)

)
,

where L1(z1, z2) = a11z1 + a12z2, L2(z1, z2) = a21z1 + a22z2, Hj(s) are polynomials in s,
aij ∈ C, (i = 1, 2; j = 1, 2) satisfy L1(z1, z2) 6= L2(z1, z2),

g(z1, z2) = L1(z1, z2) + L2(z1, z2) + H1(c2z1 − c1z2) + H2(c2z1 − c1z2) = L(z1, z2) + H(c2z1 − c1z2),

and
ea11c1+a12c2 =

A2

A1
, ea21c1+a22c2 =

A1

A2
, ea1c1+a2c2 = 1.

The following examples show that the forms of solutions are precise to some extent.

Example 1. Let α = 1
2 and ξ = 1. Then, it follows that A1 = 1√

3
( 1

2 −
√

3
2 i), A2 = 1√

3
( 1

2 +
√

3
2 i).

Let
f (z) =

1√
2

ez1+z2+1.

Thus, ρ( f ) = 1 and f (z) is a transcendental entire solution of (1) with g(z) = 2(z1 + z2)+ 2
and (c1, c2) = (πi, 3πi).

Remark 1. Here and below, ρ( f ) is the order of the function f , which is defined by

ρ( f ) = lim sup
r→+∞

log T(r, f )
log r

,

where T(r, f ) is the Nevanlinna characteristic function (see [9]).

Example 2. Let α = 1
2 , a11 = a12 = 1

3 , a21 = a22 = 2
3 and b1 = b2 = 0. Then, it follows that

f (z) =
1√
3

(
e

1
3 (z1+z2)−π2(3z1−z2)

2− 1
3 πi + e

2
3 (z1+z2)+π4(3z1−z2)

4+ 1
3 πi
)

.

Thus, ρ( f ) = 4 and f (z) is a transcendental entire solution of (1) with (c1, c2) = (πi
2 , 3πi

2 )
and

g(z) = (z1 + z2)− π2(3z1 − z2)
2 + π4(3z1 − z2)

4.

When f (z + c) is replaced by ∂ f
∂z1

or ∂ f
∂z1

+ ∂ f
∂z2

in (1), we obtain the second theorem
as follows.

Theorem 6. Let α2 6= 0, 1, α ∈ C and g(z) be a polynomial in C2. If the partial differential equation

f (z)2 + 2α f (z)
∂ f (z)
∂z1

+

(
∂ f (z)
∂z1

)2

= eg(z) (14)

admits a transcendental entire solution f (z) of finite order, then g(z) must be of the form g(z) =
a1z1 + ϕ(z2), where ϕ(z2) is a polynomial in z2 and a1 ∈ C.
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Theorem 7. Let α2 6= 0, 1, α ∈ C and g(z) be a polynomial in C2. If the partial differential equation

f (z)2 + 2α f (z)
(

∂ f (z)
∂z1

+
∂ f (z)
∂z2

)
+

(
∂ f (z)
∂z1

+
∂ f (z)
∂z2

)2

= eg(z) (15)

admits a transcendental entire solution f (z) of finite order, then g(z) must be of the form g(z) =
a1z1 + ϕ(z2 − z1), where ϕ(z2 − z1) is a polynomial in z2 − z1 and a1 ∈ C.

The following examples show that the forms of solutions are precisely to some extent.

Example 3. Let g(z) = −4z1 + z2 + z2
2. Then, it is easy to get that the function

f (z) =
1

2
√

6

[
(1−

√
3)e(−2+

√
3)z1+z2 + (1 +

√
3)e(−2−

√
3)z1+z2

2

]
is a transcendental entire solution of Equation (14) with α = 2.

Example 4. Let g(z) = −6z1 + (z2 − z1)
2 + (z2 − z1)

4. Then, it is easy to get that the function

f (z) =
1

4
√

2

[
(1−

√
2)e(−3−2

√
2)z1+(z2−z1)

2
+ (1 +

√
2)e(2

√
2−3)z1+(z2−z1)

4
]

is a transcendental entire solution of Equation (15) with α = 3.

From Theorem 7, it is easy to get the following corollary.

Corollary 1. Let α2 6= 0, 1, α ∈ C and g(z) be a polynomial in C2 which the degree of z1 is more
than 2. Then, the following partial differential-difference equation

f (z)2 + 2α f (z)
∂ f (z)
∂z1

+

(
∂ f (z)
∂z1

)2

= eg(z) (16)

admits no transcendental entire solution with finite order.

For the partial differential difference counterpart of Theorem 7, we have

Theorem 8. Let α2 6= 0, 1, c2 6= 0 and g(z) be a nonconstant polynomial in C2, and not the form
of φ(z2). If the differential-difference Equation (2) admits a transcendental entire solution f (z)
of finite order, then g(z) must be of the form g(z) = a1z1 + a2z2 + b, where a1( 6= 0), a2, b ∈ C.
Further, f (z) must satisfy one of the following cases:

(i)

f (z) =
√

2
a1

(A1ξ−1 + A2ξ)e
1
2 (a1z1+a2z2+b),

where ξ( 6= 0) ∈ C and a1, a2, b, c1, c2, A1, A2, ξ satisfying

e
1
2 (a1c1+a2c2) =

a1(A1ξ + A2ξ−1)

2(A2ξ + A1ξ−1)
;

or
(ii)

f (z) =
1√
2

(
A2

a11
ea11z1+a12z2+b1 +

A1

a21
ea21z1+a22z2+b2

)
,

where aj( 6= 0), bj ∈ C, (j = 1, 2) satisfy a11z1 + a12z2 6= a21z1 + a22z2,

g(z) = (a11 + a21)z1 + (a12 + a22)z2 + b1 + b2,
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and
ea11c1+a12c2 =

A2

A1
a11, ea21c1+a22c2 =

A1

A2
a21, ea1c1+a2c2 = a11a21.

The following examples explain the existence of transcendental entire solutions with
finite order of (2).

Example 5. Let α = − 1
2 and ξ = −1. Then, it follows that A1 =

√
2√
3

e−
π
6 i and A2 =

√
2√
3

e
π
6 i. Let

f (z) =
√

2
2

e
1
2 (2z1+3z2+b).

Then, f (z) is a transcendental entire solution of Equation (2) with g(z) = 2z1 + 3z2 + b,
(c1, c2) = (−πi

2 , 3πi
2 ) and b ∈ C.

Example 6. Let α = − 1
2 , a11 = a12 = a21 = 1, a22 = −1 and b1 = b2 = 0. Let

f (z) =
1√
3

(
ez1+z2+

π
6 i + ez1−z2− π

6 i
)

,

then ρ( f ) = 1 and f (z) is a transcendental entire solution of Equation (2) with g(z) = 2z1 and
(c1, c2) = (0, π

3 i).

The following example shows that the condition c2 6= 0 in Theorem 5 cannot be removed.

Example 7. Let c2 = 0, α = 3, a11 be a root of equation ex = x(2
√

2− 3), and a21 be a root of
equation ex = −x(3 + 2

√
2). Thus, it follows a11 6= a21. Let

f (z) =
1

4
√

2

(
1 +
√

2
a11

ea11z1+a12z2+z2
2 +

1−
√

2
a21

ea21z1+a22z2+z3
2

)
,

where a12, a22 ∈ C, then ρ( f ) = 3 and f (z) is a transcendental entire solution of Equation (3)
with g(z) = (a11 + a21)z1 + (a12 + a22)z2 + z2

2 + z3
2 and (c1, c2) = (1, 0).

Remark 2. From Example 7, we can see that ρ( f ) = 3 > 1 and g(z) is not a linear form of
z1, z2 when c2 = 0 for Equation (2). These are significant differences with the condition c2 6= 0 in
Theorem 8. Thus, this shows that our results are precise to some extent.

Theorem 9. Let α2 6= 0, 1, c1 6= c2 and g(z) be a nonconstant polynomial in C2, and not the form
of φ(z2 − z1). If f (z) is a finite-order transcendental entire solution of the differential-difference
Equation (3), then f (z), g(z) must satisfy one of the following cases:

(i) g(z) = a1z1 + a2z2 + b and

f (z) =
√

2
a1 + a2

(A2ξ + A1ξ−1)e
1
2 (a1z1+a2z2+b),

where ξ( 6= 0) ∈ C and a1, a2, b, c, A1, A2, ξ satisfying

e
1
2 (a1c1+a2c2) =

1
2

A1ξ + A2ξ−1

A2ξ + A1ξ−1 (a1 + a2);

or
(ii) g(z) = L1(z) + L2(z) + b1 + b2 and

f (z) =
1√
2

(
A2

a11 + a12
eL1(z)+b1 +

A1

a21 + a22
eL2(z)+b2

)
,
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where L1(z) = a11z1 + a12z2, L2(z) = a21z1 + a22z2, and aij, bj ∈ C, (i, j = 1, 2) satisfy
a11 + a12 6= 0, a21 + a22 6= 0, L1(z) 6= L2(z), and

ea11c1+a12c2 = (a11 + a12)
A1

A2
, ea21c1+a22c2 = (a21 + a22)

A2

A1
.

The following examples explain the existence of transcendental entire solutions with
finite order of (3).

Example 8. Let α = 3 and ξ = 1. Then, it follows that A1 = 1
4 −

1
2
√

2
and A2 = 1

4 + 1
2
√

2
. Let

f (z) = −
√

2
4

ez1−2z2+b.

Then, ρ( f ) = 1 and f (z) is a transcendental entire solution of Equation (3) with g(z) =
2z1 − 4z2 + b, (c1, c2) = (3πi, πi) and b ∈ C.

Example 9. Let α = − 1
2 , a11 = 2, a12 = −1, a21 = 2, a22 = −3, and b1 = b2 = 0. Let

f (z) =
1√
3

(
e2z1−z2+

π
6 i − e2z1−3z2− π

6 i
)

.

Then, ρ( f ) = 1 and f (z) is a transcendental entire solution of Equation (3) with g(z) =
4z1 − 4z2 and (c1, c2) = ( π

12 i,−π
6 i).

The following example shows that the condition c1 6= c2 in Theorem 9 cannot
be removed.

Example 10. Let c1 = c2 = 1, α = 2, a11, a12 satisfy equation ea11+a12 = (a11 + a12)(
√

3− 2),
and a21, a22 satisfy equation ea21+a22 = −(a21 + a22)(

√
3 + 2). Thus, it follows that a11 = a21

and a12 = a22 cannot hold at the same time. Let

f (z) =
1

2
√

6

(
1 +
√

3
a11 + a12

ea11z1+a12z2+(z1−z2)
s
+

1−
√

3
a21 + a22

ea21z1+a22z2+(z1−z2)
t

)
,

where s, t ∈ Z+. Then, ρ( f ) = max{s, t} and f (z) is a transcendental entire solution of Equation
(3) with g(z) = (a11 + a21)z1 + (a12 + a22)z2 + (z1 − z2)

s + (z1 − z2)
t and (c1, c2) = (1, 1).

Remark 3. By comparing the conclusions of Theorem 8 and Example 10, we can see that there are
significant differences in the form of solution f (z) and g(z) when c1 6= c2 in (3).

3. Conclusions and Discussion

From Theorems 5 and 8, one can see that our theorems are very good supplements of
the previous results given by Xu and Cao [1] because Equations (1) and (2) are more general
than Equations (7) and (8). Moreover, Examples 2, 7, and 10 show that Equations (1)–(3)
can admit the transcendental entire solutions with any positive integer order. However, Xu
and Cao [1] showed that the order of the transcendental entire solutions of Equations (7)
and (8) must be one. In fact, this is a very significant difference. Besides, by comparing with
the abstract form of solution in Theorem D, we can get a more specific expression of the
solution of Equation (12) when g is replaced by the special forms of f such as g = f (z + c),
g = ∂ f

∂z1
, etc. Finally, one can find that we only focus on the finite-order transcendental

entire solutions of Equations (1)–(3) in this article; thus, the following questions can be
raised naturally:

Question 2. Do the infinite-order transcendental entire solutions of Equations (1)–(3) exist?
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Question 3. How should the meromorphic solutions of Equations (1)–(3) be characterized?

4. Some Lemmas

The following lemmas play the key roles in proving our results.

Lemma 1 ([25], Lemma 3.2). Let f be a non-constant meromorphic function in Cn. Then, for
any I ∈ (Z+)n, T(r, ∂I f ) = O(T(r, f )) for all r except possibly a set of finite Lebesgue measure,
and where I = (i1, . . . , in) ∈ (Z+)n denotes a multiple index with |I| = i1 + · · ·+ in, Z+ =

{0, 1, 2, . . .}, and ∂I f = ∂I f
∂in ζn ···∂i1 ζ1

Lemma 2 ([9,10]). For an entire function F on Cn, F(0) 6= 0 and put ρ(nF) = ρ < ∞. Then,
there exist a canonical function fF and a function gF ∈ Cn such that F(z) = fF(z)egF(z). For the
special case n = 1, fF is the canonical product of Weierstrass.

Remark 4. Here, denote ρ(nF) to be the order of the counting function of zeros of F.

Lemma 3 ([4]). If g and h are entire functions on the complex plane C and g(h) is an entire
function of finite order, then there are only two possible cases:

(a) the internal function h is a polynomial and the external function g is of finite order; or
(b) the internal function h is not a polynomial but a function of finite order, and the external

function g is of zero order.

Lemma 4 ([26], Lemma 3.1). Let f j( 6≡ 0), j = 1, 2, 3, be meromorphic functions on Cm such that
f1 is not constant, f1 + f2 + f3 = 1, and

3

∑
j=1

{
N2(r,

1
f j
) + 2N(r, f j)

}
< λT(r, f1) + O(log+ T(r, f1)),

for all r outside possibly a set with finite logarithmic measure, where λ < 1 is a positive number.
Then, either f2 = 1 or f3 = 1.

Remark 5. Here, N2(r, 1
f ) is the counting function of the zeros of f in |z| ≤ r, where the simple

zero is counted once, and the multiple zero is counted twice.

5. The Proof of Theorem 5

Proof. Assume that f (z) is a transcendental entire solution with finite order of Equation (1).
Set

f (z) =
1√
2
(u + v), f (z + c) =

1√
2
(u− v),

where u, v are entire functions in C2. Thus, Equation (1) can be written as

(1 + α)u2 + (1− α)v2 = eg. (17)

Hence, we can deduce from (17) that(√
1 + αu

e
g(z)

2

)2

+

(√
1− αv

e
g(z)

2

)2

= 1,

which leads to (√
1 + αu

e
g(z)

2

+ i
√

1− αv

e
g(z)

2

)(√
1 + αu

e
g(z)

2

− i
√

1− αv

e
g(z)

2

)
= 1. (18)
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In view of the assumptions, there exists a polynomial p(z) such that
√

1 + αu

e
g(z)

2

+ i
√

1− αv

e
g(z)

2

= ep(z),

√
1 + αu

e
g(z)

2

− i
√

1− αv

e
g(z)

2

= e−p(z).

(19)

Denote

γ1(z) =
g(z)

2
+ p(z), γ2(z) =

g(z)
2
− p(z). (20)

In view of (19), it follows that

√
1 + αu =

eγ1(z) + eγ2(z)

2
,
√

1− αv =
eγ1(z) − eγ2(z)

2i
.

This leads to

f (z) =
1√
2

[
eγ1(z) + eγ2(z)

2
√

1 + α
+

eγ1(z) − eγ2(z)

2
√

1− αi

]

=
1√
2
(A1eγ1(z) + A2eγ2(z)), (21)

f (z + c) =
1√
2

[
eγ1(z) + eγ2(z)

2
√

1 + α
− eγ1(z) − eγ2(z)

2
√

1− αi

]

=
1√
2
(A2eγ1(z) + A1eγ2(z)), (22)

where A1, A2 are defined in (13). Thus, in view of (21) and (22), it follows that

A2

A1
eγ2(z+c)−γ2(z) − A2

A1
eγ1(z)−γ2(z) + eγ1(z+c)−γ2(z) ≡ 1. (23)

We discuss two cases below.
Case 1. Suppose that γ1(z + c)− γ2(z) is a constant. Let γ1(z + c)− γ2(z) = κ, κ ∈ C.

In view of (20), it follows that γ1(z)− γ2(z) = 2p(z). Substituting these into (23), we have

e2p(z) + (1− η)
A1

A2
= e−2p(z+c)η, (24)

where η = eκ . If η 6= 1, by using the Nevanlinna second fundamental theorem, we have

T(r, e2p) ≤ N(r,
1

e2p ) + N(r,
1

e2p − δ
) + S(r, e2p)

≤ N(r,
1

e−2p(z+c)η
) + S(r, e2p) = S(r, e2p),

where δ = −(1− η) A1
A2
6= 0. This means that p(z) is a constant. Set ξ = ep. Substituting

this into (21) and (22), we have

f (z) =
1√
2
(A1ξ + A2ξ−1)e

1
2 g(z), (25)

f (z + c) =
1√
2
(A2ξ + A1ξ−1)e

1
2 g(z). (26)

From (25) and (26), it follows that

(A1ξ + A2ξ−1)e
g(z+c)−g(z)

2 = A2ξ + A1ξ−1. (27)
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In view of α2 6= 1, it follows that A2ξ + A1ξ−1 = 0 and (A1ξ + A2ξ−1) = 0 cannot
hold at the same time. Hence, we have A2ξ + A1ξ−1 6= 0 and (A1ξ + A2ξ−1) 6= 0. Since
g(z) is a polynomial, (27) implies that g(z + c)− g(z) is a constant in C. Otherwise, we
obtain a contradiction from the fact that the left of the above equation is not transcen-
dental but the right is transcendental. Thus, it follows that g(z) = L(z) + H(s), where
L(z) = a1z1 + a2z2 + H(s), a1, a2 are constants, and H(s) is a polynomial in s = c2z1 − c1z2
satisfying

e
1
2 (a1c1+a2c2) =

A2ξ + A1ξ−1

(A1ξ + A2ξ−1)
. (28)

If η = 1, it follows that κ = 2kπi, k ∈ Z, and γ1(z + c)− γ2(z) = 2kπi. In view of
(23), we have γ2(z + c) = γ1(z). By combining with (20), we have g(z + c) = 2kπi + g(z).
Thus, it follows that g(z) = L(z) + H(s), where L(z) = a1z1 + a2z2, H(s) is a polynomial
in s, and a1c1 + a2c2 = 2kπi. Thus, this corresponds to ξ4 = 1 in (28). Thus, from the above
discussion, we have

f (z) =
1√
2
(A1ξ + A2ξ−1)e

1
2 (L(z)+H(s)),

where L(z) = a1z1 + a2z2 and H(s) is a polynomial in s satisfying (28).
Thus, this completes the proof of Theorem 5 (i).
Case 2. Suppose that γ1(z + c) − γ2(z) is not a constant. Since γ1(z), γ2(z) are

polynomials, by applying Lemma 4 for (23), it follows that

−A2

A1
eγ1(z)−γ2(z) ≡ 1, or

A2

A1
eγ2(z+c)−γ2(z) ≡ 1.

If − A2
A1

eγ1(z)−γ2(z) ≡ 1, it follows from (23) that − A1
A2

eγ1(z+c)−γ2(z+c) ≡ 1. Thus, in
view of (20), we have

− A2

A1
e2p(z) ≡ 1,−A1

A2
e2p(z+c) ≡ 1, (29)

which imply that p(z) is a constant and A2
A1

= A1
A2

. This leads to A2
1 = A2

2, which is a
contradiction with α2 6= 0, 1.

If A2
A1

eγ2(z+c)−γ2(z) ≡ 1, then it follows that γ2(z) is of the form γ2(z) = L2(z) + H2(s),
L2(z) = a21z1 + a22z2, H2(s) is a polynomial in s, and a21, a22, c1, c2 are constants satisfying

ea21c1+a22c2 =
A1

A2
.

Moreover, it follows from (23) that A2
A1

eγ1(z)−γ1(z+c) ≡ 1. This means that γ1(z) is of
the form γ1(z) = L1(z) + H1(s), L1(z) = a11z1 + a12z2, H1(s) is a polynomial in s, and
a11, a12, c1, c2 are constants satisfying

ea11c1+a12c2 =
A2

A1
.

Since eγ1(z+c)−γ2(z) is not a constant, it follows that L1(z) 6= L2(z). In view of (20),
we have

eγ1(z+c)+γ2(z+c)−(γ1(z)+γ2(z)) ≡ eg(z+c)−g(z) ≡ 1, (30)

which means that g(z) is of the form g(z) = L(z) + H(s), L(z) = a1z1 + a2z2, and

L(z) = L1(z) + L2(z), H(s) = H1(s) + H2(s), ea1c1+a2c2 = 1.

Substituting these into (21), we have

f (z) =
1√
2
(A1eL1(z)+H1(s) + A2eL2(z)+H2(s)).
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Therefore, this completes the proof of Theorem 5.

6. Proofs of Theorems 6 and 7
6.1. The Proof of Theorem 6

Suppose that f (z) is a transcendental entire solution with finite order of Equation (14).
By using the same argument as in the proof of Theorem 5, we have (21) and

∂ f (z)
∂z1

=
1√
2

[
eγ1(z) + eγ2(z)

2
√

1 + α
− eγ1(z) − eγ2(z)

2
√

1− αi

]

=
1√
2
(A2eγ1(z) + A1eγ2(z)). (31)

Thus, it follows from (21) and (31) that

∂ f (z)
∂z1

=
1√
2

[
A1

∂γ1(z)
∂z1

eγ1(z) + A2
∂γ2(z)

∂z1
eγ2(z)

]
=

1√
2
(A2eγ1(z) + A1eγ2(z)),

which leads to

eγ1(z)
(

A1
∂γ1(z)

∂z1
− A2

)
= eγ2(z)

(
A1 − A2

∂γ2(z)
∂z1

)
. (32)

By combining with (20) and (32), we have

e2p(z)(A1
∂γ1(z)

∂z1
− A2) = A1 − A2

∂γ2(z)
∂z1

. (33)

If p(z) is not a constant, then it follows from (33) that

A1
∂γ1(z)

∂z1
− A2 = 0, A1 − A2

∂γ2(z)
∂z1

= 0.

Otherwise, we have

e2p(z) =
A1

∂γ1
∂z1
− A2

A1 − A2
∂γ2
∂z1

. (34)

Since p(z), g(z) are polynomials, the left of Equation (34) is transcendental, but the
right of Equation (34) is a polynomial. This is a contradiction. Hence, it follows that

γ1(z) =
A2

A1
z1 + ϕ1(z2), γ2(z) =

A1

A2
z1 + ϕ2(z2),

where ϕ1(z2), ϕ2(z2) are polynomials in z2. Thus, we have

g(z) = γ1(z) + γ2(z) =
(

A2

A1
+

A1

A2

)
z1 + ϕ(z) = −2αz1 + ϕ(z2),

where ϕ(z2) = ϕ1(z2) + ϕ2(z2).
If p(z) is a constant, then ∂γ1

∂z1
= ∂γ2

∂z1
= 1

2
∂g
∂z1

. Let ξ = e2p, in view of (33), it follows that

(
1
2

A1
∂g
∂z1
− A2)ξ = (A1 −

1
2

A2
∂g
∂z1

),

which leads to
∂g
∂z1

=
2(A1 + A2ξ)

A1ξ + A2
.
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Thus, we have g(z) = 2(A1+A2ξ)
A1ξ+A2

z1 + ϕ(z2).
Hence, g(z) must be of the form g(z) = a1z1 + ϕ(z2).
Therefore, this completes the proof of Theorem 6.

6.2. The Proof of Theorem 7

Suppose that f (z) is a transcendental entire solution with finite order of Equation (15).
Similar to the argument as in the proof of Theorem 6, we have (21) and

∂ f (z)
∂z1

+
∂ f (z)
∂z2

=
1√
2
(A2eγ1(z) + A1eγ2(z)), (35)

where γ1, γ2 are stated as in (20). Thus, it follows from (21) and (35) that

eγ1(z)
[

A1

(
∂γ1(z)

∂z1
+

∂γ1(z)
∂z2

)
− A2

]
= eγ2(z)

[
A1 − A2

(
∂γ2(z)

∂z1
+

∂γ2(z)
∂z2

)]
. (36)

By combining with (20) and (36), we have

e2p(z)
[

A1

(
∂γ1(z)

∂z1
+

∂γ1(z)
∂z2

)
− A2

]
= A1 − A2

(
∂γ2(z)

∂z1
+

∂γ2(z)
∂z2

)
. (37)

If p(z) is not a constant, similar to the argument as in the proof of Theorem 6, we have

A1

(
∂γ1(z)

∂z1
+

∂γ1(z)
∂z2

)
− A2 = 0, (38)

A1 − A2

(
∂γ2(z)

∂z1
+

∂γ2(z)
∂z2

)
= 0. (39)

The characteristic equations of (38) are

dz1

dt
= 1,

dz2

dt
= 1,

dγ1

dt
=

A2

A1
.

Using the initial conditions z1 = 0, z2 = s, and γ1 = γ1(0, s) := ϕ1(s) with a parameter
s, we obtain the following parametric representation for the solutions of the characteristic
equations: z1 = t, z2 = t + s,

γ1(z) = γ1(t, s) =
∫ t

0

A2

A1
dt + ϕ1(s) =

A2

A1
t + ϕ1(s) =

A2

A1
z1 + ϕ1(z2 − z1), (40)

where ϕ1(s) is a transcendental entire function with finite order in s. Similarly, we have

γ2(z) =
A1

A2
z1 + ϕ2(z2 − z1), (41)

where ϕ2(s) is a transcendental entire function with finite order in s = z2 − z1. In view of
(20), (40), and (41), it follows that

g(z) = γ1(z) + γ2(z) = −2αz1 + ϕ1(z2 − z1) + ϕ2(z2 − z1) = −2αz1 + ϕ(z),

where ϕ(z) = ϕ1(z2 − z1) + ϕ2(z2 − z1).
If p(z) is a constant, then

∂γ1

∂z1
+

∂γ1

∂z2
=

∂γ2

∂z1
+

∂γ2

∂z2
=

1
2

(
∂g
∂z1

+
∂g
∂z1

)
.
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Let ξ = e2p; in view of (37), it follows that[
1
2

A1

(
∂g
∂z1

+
∂g
∂z2

)
− A2

]
ξ = A1 −

1
2

A2

(
∂g
∂z1

+
∂g
∂z2

)
,

which leads to
∂g
∂z1

+
∂g
∂z2

=
2(A1 + A2ξ)

A1ξ + A2
.

Thus, by solving the solutions of the characteristic equations of the above equation,
we have g(z) = 2(A1+A2ξ)

A1ξ+A2
z1 + ϕ(z2 − z1), where ϕ(z2 − z1) is a polynomial in z2 − z1.

Hence, g(z) must be of the form g(z) = a1z1 + ϕ(z2 − z1).
Therefore, this completes the proof of Theorem 7.

7. Proofs of Theorems 8 and 9
7.1. The Proof of Theorem 8

Suppose that f (z) is a transcendental entire solution with finite order of Equation (2).
By using the same argument as in the proof of Theorem 5, we have (31) and

f (z + c) =
1√
2

[
eγ1(z) + eγ2(z)

2
√

1 + α
+

eγ1(z) − eγ2(z)

2
√

1− αi

]

=
1√
2
(A1eγ1(z) + A2eγ2(z)), (42)

where γ1(z), γ2(z) are stated as in (20) and p(z) is a polynomial in C2. In view of (31) and
(42), it follows that

∂ f (z + c)
∂z1

=
1√
2

(
A1

∂γ1(z)
∂z1

eγ1(z) + A2
∂γ2(z)

∂z1
eγ2(z)

)
=

1√
2
(A2eγ1(z+c) + A1eγ2(z+c)).

Thus, we have

A1

A2

∂γ1(z)
∂z1

eγ1(z)−γ1(z+c) +
∂γ2(z)

∂z1
eγ2(z)−γ1(z+c) − A1

A2
eγ2(z+c)−γ1(z+c) ≡ 1. (43)

Now, we discuss two cases below.
Case 1. Suppose that p(z) is a constant; then, it follows that γ1(z + c)− γ2(z + c) =

2p(z + c) is a constant. Denote ξ = ep. In view of (20) and (42), it follows that

f (z + c) =
1√
2
(A1ξ + A2ξ−1)e

1
2 g(z),

∂ f (z)
∂z1

=
1√
2
(A2ξ + A1ξ−1)e

1
2 g(z). (44)

Thus, we can deduce from (44) that

(A2ξ + A1ξ−1)e
1
2 (g(z+c)−g(z)) =

1
2
(A1ξ + A2ξ−1)

∂g(z)
∂z1

. (45)

Since g(z) is a polynomial in C2, and not of the form φ(z2), it follows that ∂g(z)
∂z1
6≡ 0.

If g(z + c)− g(z) is not a constant, we can deduce from (45) that A2ξ + A1ξ−1 = 0 and
A1ξ + A2ξ−1 = 0. Otherwise, we have

e
1
2 (g(z+c)−g(z)) =

1
2

∂g(z)
∂z1

A1ξ + A2ξ−1

A2ξ + A1ξ−1 . (46)
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The left of Equation (46) is transcendental, but the right of Equation (46) is a polyno-
mial. Thus, a contradiction can be obtained from (46). The fact that A2ξ + A1ξ−1 = 0 and
A1ξ + A2ξ−1 = 0 can yield that A2

1 = A2
2, which is a contradiction with α2 = 1.

Thus, it follows that g(z + c)− g(z) is a constant. Then, we have g(z) = L(z) + H(s),
where L(z) is a linear form of L(z) = a1z1 + a2z2, a1, a2 are constants, and H(s) is a
polynomial in s = c2z1 − c1z2. From (46), it follows that

e
1
2 (a1c1+a2c2) =

1
2

A1ξ + A2ξ−1

A2ξ + A1ξ−1 (a1 + c2H′). (47)

In view of c2 6= 0, it yields that H′ is a constant, which means that degs H ≤ 1.
Hence, we can conclude that L(z) + H(s) is a linear form in z1, z2. Let us still denote
g(z) = a1z1 + a2z2 + b, which implies that H′ ≡ 0. Thus, by combining with (44) and (47),
we have

f (z) =
1√
2
(A1ξ + A2ξ−1)e

1
2 (a1z1+a2z2+b)− 1

2 (a1c1+a2c2)

=

√
2

a
(A2ξ + A1ξ−1)e

1
2 (a1z1+a2z2+b). (48)

Thus, in view of (47) and (48), this completes the proof of Theorem 8 (i).
Case 2. Suppose that p(z) is not a constant. Then, we have that ∂γ1

∂z1
and ∂γ2

∂z1
cannot

be equal to 0 at the same time. Otherwise, it yields that γ1(z + c)− γ2(z + c) is a constant,
which is a contradiction. If ∂γ1

∂z1
≡ 0 and ∂γ2

∂z1
6≡ 0, it thus follows from (43) that

∂γ2

∂z1
eγ2(z)−γ1(z+c) − A1

A2
eγ2(z+c)−γ1(z+c) ≡ 1. (49)

Obviously, γ2(z)− γ1(z + c) is not a constant. Otherwise, γ2(z + c)− γ1(z + c) is a
constant because γ1, γ2 are polynomials. By applying the Nevanlinna second fundamental
theorem for eγ2(z+c)−γ1(z+c), we have from (49) that

T(r, eγ2(z+c)−γ1(z+c))

≤N(r,
1

eγ2(z+c)−γ1(z+c)
) + N(r,

1

eγ2(z+c)−γ1(z+c) + A2
A1

) + S(r, eγ2(z+c)−γ1(z+c))

≤N(r,
1

∂γ2
∂z1

eγ2(z)−γ1(z+c)
) + S(r, eγ2(z+c)−γ1(z+c)) = S(r, eγ2(z+c)−γ1(z+c)),

which is a contradiction.
If ∂γ1

∂z1
6≡ 0 and ∂γ2

∂z1
≡ 0, using the same argument as in the above, we can get a

contradiction. Hence, we have ∂γ1
∂z1
6≡ 0 and ∂γ2

∂z1
6≡ 0. By Lemma 4, it follows that

A1

A2

∂γ1

∂z1
eγ1(z)−γ1(z+c) ≡ 1, or

∂γ2

∂z1
eγ2(z)−γ1(z+c) ≡ 1.

Subcase 2.1. If A1
A2

∂γ1
∂z1

eγ1(z)−γ1(z+c) ≡ 1, it yields that γ1(z) − γ1(z + c) is a con-
stant. This implies that γ1(z) is a linear form of γ1(z) = L1(z) + H1(s), where L1(z) =
a11z1 + a12z2, a11, a12 are constants, and H1(s) is a polynomial in s = c2z1 − c1z2. Thus, it
follows that

A1

A2
(a11 + c2H′1)e

−L1(c) ≡ 1,



Axioms 2021, 10, 126 15 of 19

which means that c2H′1 is a constant. In view of c2 6= 0, it yields that degs H1 ≤ 1.
Hence, we can conclude that L1(z) + H1(s) is a linear form in z1, z2. Let us still denote
γ1(z) = L1(z) + b1 = a11z1 + a12z2 + b1, which implies that H′1 ≡ 0. Hence, we have

eL1(c) = ea11c1+a12c2 = a11
A1

A2
. (50)

In addition, in view of (43), it follows

A2

A1

∂γ2

∂z1
eγ2(z)−γ2(z+c) ≡ 1.

Similarly, we have γ2(z) = L2(z) + b2 = a21z1 + a22z2 + b2, where a21, a22, b2 are
constants satisfying

eL2(c) = ea21c1+a22c2 = a21
A2

A1
. (51)

Since γ1(z + c)− γ2(z + c) is not a constant, it follows that L1(z) 6= L2(z). In view of
(20) and (42), it follows that

g(z) = γ1(z) + γ2(z) = (a11 + a21)z1 + (a12 + a22)z2 + b1 + b2 = a1z1 + a2z2 + b,

and

f (z) =
1√
2
(A1eL1(z)+b1−L1(c) + A2eL2(z)+b2−L2(c))

=
1√
2
(A1

A2

a11 A1
ea11z1+a12z2+b1 + A2

A1

a21 A2
ea21z1+a22z2+b2)

=
1√
2
(

A2

a11
ea11z1+a12z2+b1 +

A1

a21
ea21z1+a22z2+b2). (52)

Subcase 2.2. If ∂γ2
∂z1

eγ2(z)−γ1(z+c) ≡ 1, this means that γ2(z)− γ1(z + c) is a constant,
without loss of generalization, denote

γ2(z)− γ1(z + c) = µ1, (53)

where µ1 is a constant. In view of (43), it thus follows that γ1
∂z1

eγ1(z)−γ2(z+c) ≡ 1, this means

γ1(z)− γ2(z + c) ≡ µ2, (54)

where µ2 is a constant. In view of (53) and (54), it yields that

γ1(z)− γ2(z) + γ1(z + c)− γ2(z + c) = µ2 − µ1,

and by combining with (20), we have

p(z) + p(z + c) =
1
2
(µ2 − µ1),

this is a contradiction with the assumption that γ1(z + c)− γ2(z + c) = 2p(z + c) is not a
constant. Thus, we get the conclusions of Theorem 8 (ii) from (50)–(52).

Therefore, this completes the proof of Theorem 8.

7.2. The Proof of Theorem 9

Suppose that f (z) is a transcendental entire solution with finite order of Equation (3).
Similar to the argument as in the proof of Theorem 8, we have (35), (42), and

A1

A2
(

∂γ1

∂z1
+

∂γ1

∂z2
)eγ1(z)−γ1(z+c)+(

∂γ2

∂z1
+

∂γ2

∂z2
)eγ2(z)−γ1(z+c)− A1

A2
eγ2(z+c)−γ1(z+c) ≡ 1, (55)
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where γ1(z), γ2(z) are stated as in (20), and p(z) is a polynomial in C2.
Now, we discuss two cases below.
Case 1. Suppose that p(z) is a constant. In view of γ1(z + c)− γ2(z + c) = 2p(z + c),

it follows that γ1(z + c)− γ2(z + c) is a constant. Denote ξ = ep. In view of (20) and (55),
it follows that

f (z + c) =
1√
2
(A1ξ + A2ξ−1)e

1
2 g(z),

∂ f (z)
∂z1

+
∂ f (z)
∂z2

=
1√
2
(A2ξ + A1ξ−1)e

1
2 g(z). (56)

Thus, we can deduce from (56) that

(A2ξ + A1ξ−1)e
1
2 (g(z+c)−g(z)) =

1
2
(A1ξ + A2ξ−1)

(
∂g(z)
∂z1

+
∂g(z)
∂z2

)
. (57)

If ∂g(z)
∂z1

+ ∂g(z)
∂z2
≡ 0, we have g(z) = φ(z2 − z1) by solving this partial differential

equation, which is a contradiction with the assumption of Theorem 9. Thus, ∂g(z)
∂z1

+ ∂g(z)
∂z2
6≡

0. If g(z + c)− g(z) is not a constant, we can deduce from (57) that A2ξ + A1ξ−1 = 0 and
A1ξ + A2ξ−1 = 0. Otherwise, we have

e
1
2 (g(z+c)−g(z)) =

1
2

(
∂g(z)
∂z1

+
∂g(z)
∂z2

)
A1ξ + A2ξ−1

A2ξ + A1ξ−1 . (58)

The left of Equation (58) is transcendental, but the right of Equation (58) is a polyno-
mial. Thus, a contradiction can be obtained from (58). The fact that A2ξ + A1ξ−1 = 0 and
A1ξ + A2ξ−1 = 0 can yield that A2

1 = A2
2, which is a contradiction with α2 = 1.

Thus, it follows that g(z + c)− g(z) is a constant. Then, we have g(z) = L(z) + H(s),
where L(z) is a linear form of L(z) = a1z1 + a2z2, a1, a2 are constants, and H(s) is a
polynomial in s = c2z1 − c1z2. From (58), it follows that

e
1
2 (a1c1+a2c2) =

1
2

A1ξ + A2ξ−1

A2ξ + A1ξ−1 [a1 + a2 + (c2 − c1)H′]. (59)

In view of c2 6= c1, it yields that H′ is a constant, which means that degs H ≤ 1.
Hence, we can conclude that L(z) + H(s) is a linear form in z1, z2. Let us still denote
g(z) = a1z1 + a2z2 + b, which implies that H′ ≡ 0. Thus, by combining with (56) and (59),
we have

f (z) =
1√
2
(A1ξ + A2ξ−1)e

1
2 (a1z1+a2z2+b)− 1

2 (a1c1+a2c2)

=

√
2

a1 + a2
(A2ξ + A1ξ−1)e

1
2 (a1z1+a2z2+b), (60)

and

e
1
2 (a1c1+a2c2) =

1
2

A1ξ + A2ξ−1

A2ξ + A1ξ−1 (a1 + a2). (61)

Thus, in view of (59) and (61), this completes the proof of Theorem 9 (i).
Case 2. Suppose that p(z) is not a constant. Then, we have that ∂γ1

∂z1
+ ∂γ1

∂z2
and ∂γ2

∂z1
+ ∂γ2

∂z2
cannot be equal to 0 at the same time. Otherwise, it yields that γ1(z + c)− γ2(z + c) is a
constant, which is a contradiction. If ∂γ1

∂z1
+ ∂γ1

∂z2
≡ 0 and ∂γ2

∂z1
+ ∂γ2

∂z2
6≡ 0, it thus follows from

(55) that (
∂γ2

∂z1
+

∂γ2

∂z2

)
eγ2(z)−γ1(z+c) − A1

A2
eγ2(z+c)−γ1(z+c) ≡ 1. (62)

Obviously, γ2(z)− γ1(z + c) is not a constant. Otherwise, γ2(z + c)− γ1(z + c) is a
constant because γ1, γ2 are polynomials. By applying the Nevanlinna second fundamental
theorem for eγ2(z+c)−γ1(z+c), we have from (62) that
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T(r, eγ2(z+c)−γ1(z+c))

≤N(r,
1

eγ2(z+c)−γ1(z+c)
) + N(r,

1

eγ2(z+c)−γ1(z+c) + A2
A1

) + S(r, eγ2(z+c)−γ1(z+c))

≤N(r,
1

( ∂γ2
∂z1

+ ∂γ2
∂z2

)eγ2(z)−γ1(z+c)
) + S(r, eγ2(z+c)−γ1(z+c)) = S(r, eγ2(z+c)−γ1(z+c)),

which is a contradiction.
If ∂γ1

∂z1
+ ∂γ1

∂z2
6≡ 0 and ∂γ2

∂z1
+ ∂γ2

∂z2
≡ 0, using the same argument as in the above, we can

get a contradiction. Hence, we have ∂γ1
∂z1

+ ∂γ1
∂z2
6≡ 0 and ∂γ2

∂z1
+ ∂γ2

∂z2
6≡ 0. By Lemma 4, it

follows that

A1

A2

(
∂γ1

∂z1
+

∂γ1

∂z2

)
eγ1(z)−γ1(z+c) ≡ 1, or

(
∂γ2

∂z1
+

∂γ2

∂z2

)
eγ2(z)−γ1(z+c) ≡ 1.

Subcase 2.1. If A1
A2

(
∂γ1
∂z1

+ ∂γ1
∂z2

)
eγ1(z)−γ1(z+c) ≡ 1, it yields that γ1(z) − γ1(z + c) is

a constant. This implies that γ1(z) is a linear form of γ1(z) = L1(z) + H1(s), where
L1(z) = a11z1 + a12z2, a11, a12 are constants, and H1(s) is a polynomial in s = c2z1 − c1z2.
Thus, it follows that

A1

A2

[
a11 + a12 + (c2 − c1)H′1

]
e−L1(c) ≡ 1,

which means that (c2 − c1)H′1 is a constant. In view of c2 6= c1, it yields that degs H1 ≤ 1.
Hence, we can conclude that L1(z) + H1(s) is a linear form in z1, z2. Let us still denote
γ1(z) = L1(z) + b1 = a11z1 + a12z2 + b1, which implies that H′1 ≡ 0. Hence, we have

eL1(c) = ea11c1+a12c2 = (a11 + a12)
A1

A2
. (63)

In addition, in view of (55), it follows

A2

A1

(
∂γ2

∂z1
+

∂γ2

∂z2

)
eγ2(z)−γ2(z+c) ≡ 1.

Similarly, we have γ2(z) = L2(z) + b2 = a21z1 + a22z2 + b2, where a21, a22, b2 are
constants satisfying

eL2(c) = ea21c1+a22c2 = (a21 + a22)
A2

A1
. (64)

Since γ1(z + c)− γ2(z + c) is not a constant, it follows that L1(z) 6= L2(z). In view of
(20) and (55), it follows that

g(z) = γ1(z) + γ2(z) = (a11 + a21)z1 + (a12 + a22)z2 + b1 + b2 = a1z1 + a2z2 + b,

and

f (z) =
1√
2
(A1eL1(z)+b1−L1(c) + A2eL2(z)+b2−L2(c))

=
1√
2
(

A2

a11 + a12
ea11z1+a12z2+b1 +

A1

a21 + a22
ea21z1+a22z2+b2). (65)

Subcase 2.2. If ( ∂γ2
∂z1

+ ∂γ2
∂z2

)eγ2(z)−γ1(z+c) ≡ 1, similar to the argument as the proof of

Subcase 2.2 in Theorem 8, we have p(z) + p(z + c) = 1
2 (µ2 − µ1), which contradicts with

the assumption that γ1(z + c)− γ2(z + c) = 2p(z + c) is not a constant. Thus, we get the
conclusions of Theorem 9 (ii) from (63)–(65).

Therefore, this completes the proof of Theorem 9.
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