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1. Introduction

This paper is part of a series of papers devoted to the study of the geometry of singular
spaces in terms of the theory of differential spaces, which were introduced by Sikorski [1],
see also [2]. In this theory, geometric information about a space S is encoded in a ring C*(S)
of real valued functions, which are deemed to be smooth. In particular, we are concerned
with the class of subcartesian spaces introduced by Aronszajn [3]. A Hausdorff differential
space S is subcartesian if every point x of S has a neighborhood U that is diffeomorphic to a
subset V of a Euclidean (Cartesian) space R". The restriction of C*(S) to U is isomorphic
to the restriction of C*(R") to V, see [4].

Palais [5] introduced the notion of a slice for an action of a not necessarily compact
Lie group G on a manifold M. Since then, the structure of the space M/G of orbits of a
proper action of G on M has been investigated by many mathematicians. In [6] Duistermaat
showed that M /G is a subcartesian differential space with differential structure C*°(M/G)
consisting of push forwards of smooth G invariant functions on M by the G orbit mapping
m: M — M/G. On a smooth manifold M, there are two equivalent definitions of a
vector field, namely as a derivation of C*(M), or as a generator of a local one parameter
local group of diffeomorphisms of M. Choosing one, and proving the other is a matter of
preference. On a subcartesian differential space S, which is not in general a manifold, these
notions differ. We use the term vector field on S for a generator of a local one parameter
group of local diffeomorphisms and denote the class of all vector fields on S by X(S). A
key reason for the choice made in this paper is the special case of the orbit space of a proper
action. The class of derivations of C*®(S) is, in general, larger than the class X(S). For
S = M/G we show that a derivation Y of C*(S) is in X(S), i.e., is a vector field on M /G, if
and only if there exists a G invariant vector field X on M such that Y is 7 related to X, that
is, Yot = Trro X, where m : M — M/ G is the G orbit map.

In the literature, there has been extensive discussion about the notion of a differential
form on a singular space, see Smith [7], Marshall [8], and Sjamaar [9]. Here, in our search
for an intrinsic notion of a differential form, we have been led to see them as multilinear
maps on vector fields. In the case of a 1-form § on M/ G with 6 a linear mapping

0:X(M/G) = C®(M/G) : Y s (8]Y)
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over the ring C**(M/G) of smooth functions on M /G, which is to say (8|fY) = f(6]Y) for
every f € C®(M/G). With this definition we show that every differential 1-form on M /G
pulls back under the orbit map 7 to a semi-basic G invariant 1-form on M. Furthermore,
every G invariant semi-basic differential 1-form on M is the pull back by 7 of a differential
1-formon M/G.

We define a differential exterior algebra of differential forms on the orbit space, which
satisfies a version of de Rham’s theorem. Our version is larger than Smith’s as it includes
forms that are not Smith forms, see Section 6. It also handles singular orbit spaces of a
proper action of a Lie group on a smooth manifold. The Lie group need not be compact
and the orbit space need not be smooth, both of which Koszul hypothesized in [10].

We now give a section by section description of the contents of this paper.

Section 2 deals with basic properties of a proper action of a Lie group G on a smooth
manifold M and the differential structure of the orbit space M /G. We introduce the reader
to the theory of subcartesian differential spaces in the context of the orbit space M/G.
The differential geometry of M is described in terms of its smooth structure given by
the ring C* (M) of smooth functions on M. The differential geometry of the orbit space
M/ G, which may have singularities, is similarly described in terms of the ring C*(M/G)
of smooth functions on M/G, which is isomorphic to the ring C*(M)® of smooth, G-
invariant functions on M. Since a proper action has an invariant Riemannian metric,
several results are proved using properties of the geodesics of the metric. Additionally,
certain objects are shown to be smooth submanifolds.

In Section 3 we study vector fields on the orbit space M/G. In the case of the manifold
M, derivations of the ring C®(M) are vector fields on M, and they generate a local one
parameter group of local diffeomorphisms of M. In the case of the ring C*°(M/G), not all
derivations of C®(M/G) generate local one parameter groups of local diffeomorphisms of
M/G. The derivations of C*(M/G), which generate local one parameter groups of local
diffeomorphisms of M/G. This is the key idea of this paper. We establish that every vector
field on the quotient M/ G is covered by a G-invariant vector field on M. It is well known
that the space M/G is stratified, see [6,11,12]. We show that every vector field on M/G
defines a vector field tangent to each stratum of M/G.

In Section 4, we define differential 1-forms on the orbit space M /G as linear mappings
on the space X(M/G) of smooth vector fields on M/G. The most important consequence
of this definition relates to pulling back 1-forms from M /G to M. In particular, our notion
of a differential 1-form is intrinsic.

In Section 5 to prove a version of de Rham’s theorem we enlarge the algebra of
differential 1-forms to k-forms with an exterior derivative operator. The key techinical
point is that everything is developed in terms of the Lie derivative of vector fields. Almost
all of this section looks the same as that on manifolds.

In Section 6 we give all the details of the simplest nontrivial example. This example
reveals that differential forms in our sense are not the same as those of Smith [7].

2. Basic Properties

This section gives some of the basic properties of smooth vector fields on the orbit
space of a proper action of a Lie group on a smooth manifold.

Let M be a connected smooth manifold with a proper action
D:GXxM—=M:(gm)r— Pg(m) =g-m 1)
of a Lie group G on M, and let
T:M—M/G:m—m=G-m={Pg(m) € M|g e G} 2)

be the orbit map of the G action ®.
Let C®°(M)C be the algebra of smooth G invariant functions on M and let C*(M/G)
be the algebra of functions f on M/G such that f = 7r*f = f o7 lies in C*(M)C. The map
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m*: C®(M/G) — C®(M)© : f = fomis abijective algebra isomorphism, whose inverse
is 77, : C°(M)C — C®(M/G) : f ~ f.

Proposition 1. The orbit space M/ G with the differential structure C*°(M/G) is a locally closed
subcartesian differential space.

Proof. See Corollary 4.11 of Duistermaat [6] and page 72 of [4]. O

Let X be a smooth vector field on a manifold M. X gives rise to a map Ly : C®°(M) —
C®(M) : f — Lxf = X(f), called the derivation associated to X. If we want to emphasize
this action of vector fields on M, we say that they form the space Der C*° (M) of derivations
of C*(M). If we want to emphasize that X generates a local one parameter group of local
diffeomorphisms of M, we say that X is a vector field on M and write X(M) for the set of
vector fields on M. For each smooth manifold M we have X(M) = Der C*(M). However,
these notions need not coincide for a subcartesian differential space.

Let (S,C*(S)) be a differential space with X a derivation of C®(S). Let I, C R —
S :t — ¢(x) be a maximal integral curve of X, which starts at x. Here I, is an interval
containing 0. If ¢, s, and ¢ + s liein I, and if s € I<PfX(X) andt € Iq)gg(x), then

Prs(x) = X (f (%)) = ¢ (9 (1))

The map ¢ may fail to be a local diffeomorphism of the differential space S, see
example 3.2.7 in ([4], p. 37). A vector field on a subcartesian differential space S is a
derivation X of C®(S) such that for every x € S there is an open neighborhood U of x and
¢ > 0 such that for every t € (—¢, ¢) the map ¢ is defined on U and its restriction to U is a
diffeomorphism from U onto an open subset of S. In other words, the derivation X is a
vector field on S if t — @[ is a local one parameter group of local diffeomorphisms of S.

Example 1. Consider Q C R with the structure of a differential subspace of R. Let 1 : QQ — R
be the inclusion mapping. The differential structure C*(Q) of Q consists of 1* f, which is the
restriction of a smooth function f on R to Q. Let X(x1) = my (xl)% be a vector field on R. Then

for every f € C®(R) and every x1 € R the function x1 — X(f)(x1) = al(xl)%(xl) is smooth.

Restricting to points x1 in Q we obtain 1*(X(f)) = 1*(ay) 1* (%) We now show that we can
obtain 1* (%) by operations on Q2. Let x € Q and let {(x1),} be a sequence of points in Q,

which converges to x3. Then

tim 550+ (r0)a) = 52 ).

Thus, we show that 1*(X(f)) = X|(*f) for every f € C®(R). In other words, the

restriction X of the vector field X to Q is a derivation of C*(Q). Thus, Der C*(Q) = {X|Q| X e
X(R)}. However, no two distinct points of Q can be joined by a smooth curve. Hence only the
derivation of C®°(Q) that is identically 0 on Q admits integral curves, i.e., X(Q) = {0}.

Let X(M)C be the set of smooth G invariant vector fields on M, that is,
X(M)C = {X € X(M)| Tu®g X(m) = X(Pg(m)) for every (g,m) € G x M}.
Since X(M) = Der C*®(M), we have X(M)¢ = (Der C®(M))C. Additionally, we may
consider the space Der C* (M) of derivations of C**(M)C. Clearly, we have (Der C*(M))¢ C
Der C®(M)C. For X € X(M)C let

p:DCRXM— M:(t,m)— ¢i(m) ©)]
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be the local flow of X, i.e., ¢ is a differentiable mapping such that

dor

af (m) = X(¢¢(m)), forall (t,m) € D.

Here D is a domain, i.e., D is the largest (in the sense of containment) open subset
of R x M such that for each m € M the set {t € ]R| (t,m) € D} is an open interval
containing 0. Moreover, ¢(0,m) = m for every m € M and if (t,m) € D, (s, ¢:(m)) € D,
and (t+s,m) € D, then ¢s4(m) = ¢s(¢1(m)). Since X € X(M)°,

(Dgo@r)(m) = @t (Pg(m)), forall (g, (t,m)) € G x D. (4)

Thus, (t, ®g(m)) € D forall g € G, if (t,m) € D.

Proposition 2. Let X € (Der C®(M)) ©_ Then X induces a derivation of C*(M/ G) defined by
Y:C®(M/G) = C*®(M/G) : f = m (X(7*f)).
This leads to the module homomorphism
(Der C*(M))® — DerC*(M/G) : X —= Y = m, o Xo ", (5)
Proof. LetY = 7,0 X or* and ?, he C*®(M/G). Then

Y(hf) = m(X(m" (1 f))) = m. (7' B) X (7" f) + (7" )X (7))
(7o T )) (X (7)) + (710 ) f) (X (7°R)) = HY(f) + fY (R).

3

I
—

Since Y is a linear mapping of C*°(M/G) into itself, it follows that it is a derivation of
C®(M/G).

We now show that the map X — 7,0 Xo7* is a module homomorphism. For X,
X' € (DerC*®(M))% and f € C®(M/G) we have

(oo (X + X') o) T = . (X(2°F) + X (')
= (X(F) + (X () = (o Xo ) () + (0 X o7 ().

Hence the map X — 71, o X o 7t* is linear. For every h € C*(M)®

(70 o (hX) o 7)F = 71 (hX(7F)) = 2. (h) 7 (X(F)) = . () (s 0 X o 7).
Therefore the map given by Equation (5) is a module homomorphism. O

The importance of the module homomorphism (5) stems from the following result.

Proposition 3. Since M is a smooth manifold, (Der C®(M))¢ = X(M)®. So X € X(M)®
implies that Y = 1,0 Xomt* € X(M/G).

Proof. Because the orbit space M/G is locally closed and subcartesian, every maximal
integral curve of X projects under the G orbit map to a maximal integral curve of Y. It
follows that Y is a smooth vector field on M/ G, see proposition 3.2.6 on page 34 of [4]. O

The following example shows that not every derivation on C*(M/G) is a vector field
on M/G.

Example 2. Consider the Zy action on R generated by ¢ : R — R : x — —x. The algebra
C*(R)%2 of smooth Z, invariant functions is generated by the polynomial o(x) = x?. The orbit
map of the Zp action is 1 : R — R/Zp C R : x — o(x) = 0. The derivation % of C*(R)%2 is
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not a smooth vector field on R /Z;, because its maximal integral curve -y, starting at op € R/ 7y,
given by 7y, (t) =t + 0y, is defined on [—0y, ), which is not an open interval that contains 0.

Fixm € M. Then G,, = {g € G| ®g(m) = m} is the isotropy group of the action ®
at m. It is a compact subgroup of G, see Duistermaat and Kolk [13]. Let H be a compact
subgroup of G. The set

My = {m € M| G, = H} (6)

is a submanifold of M, which is not necessarily connected. Hence its connected component
are submanifolds. Connected components of My are H invariant submanifolds of M, see
Duistermaat and Kolk [13]. The conjugacy class in G of a closed subgroup H is denoted by
(H)={gHg ' e G| g € G} and is called a type. The set

M) = {m € M|,Gw € (H)} = G- My @)

is called an orbit type (H). Moreover, the G invariance of (H) implies that each connected
component of My is G invariant. The orbit type My is associated to the type (H). Let
(H;) and (H;) be two types. Define the partial order < by the condition: (H;) < (Ha) if
some G conjugate of H, is a subgroup of Hj. Since the orbit space M is connected, there is
a unique maximal orbit type M .

Proposition 4. The maximal orbit type M is open and dense in M.
Proof. See page 118 of Duistermaat and Kolk [13]. O

Proposition 5. The orbit type My is a smooth invariant submanifold of every vector field
X € X(M)C.

Proof. Let m € My). Then G, = gH, ¢! for some g € G. Let ¢; be the local 1 parameter
group of local diffeomorphisms of M generated by X € X(M)C. Then

D@opig-1 (pr(m)) = @ (Pypgg1(m)) = @r(m),

since gHg™ ! = G,y. Thus, gHg™' C Gy, (m)- Conversely, suppose that k € G,(,;). Then
t(m) = Pi(@e(m)) = @i (Pe(m)). So

m=@_(pi(m)) = ¢t (pr(Pr(m)) = D (m),

that is, k € G,y = gHg™!. Thus, Gyymy © gHg™!. Consequently, Goy(m) = gHg™, ie,
q)t(m) S M(H) O]

Let Y be a smooth vector field on M, which is 7 related to the smooth G invariant
vector field X on M, i.e., Ty,,nX(m) = Y(r(m)) for m € M. Then @,(7i) = 7(¢¢(m))
for (t,7) € D = {(t,m) € R x M| (t,m) € D & m(m) = 7}. The set D is well defined,
because (t,g-m) € D for every g € G. So D is the domain of a local generator of Y,
ie,®:D CRx M +— Mis a differentiable mapping such that %(ﬁ) = Y(¢,(m)) for
(t,m) € D.

Please note that the orbit type M ;) need not be connected and its connected compo-
nents may be of different dimensions. In the following we concentrate our attention on the
properties of the connected components of M), which we denote by M ).

Proposition 6. For every compact subgroup H of G the image of each connected component Mgy
of the orbit type My under the orbit mapping 7t : M — M/ G is a smooth submanifold of the

differential space (M/G,C®(M/G)).
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Proof. See page 74 of [4]. O

Proposition 7. The connected component M) = 71(M ) of the orbit type My of M/ G is
an invariant manifold of every smooth vector field Y on M/G.

Proof. Let¢: U C R x M/G — M/G be the local flow of the vector field Y. For each point
yE M( p) there is an open neighborhood V of y in M/G such that for every t € [0,¢) the

map @, is a local diffeomorphism onto its image. Hence 9,(y) € My for every t € [0, ).
So M( p) Is an invariant manifold of the vector field Y. O

Theorem 1. Let H be a compact subgroup of the Lie group G. Let Y be a smooth vector field
on M/G. Then on every connected component My of the orbit type My there is a smooth G
invariant vector field X, which is 7ty &) related to YIM(H)‘

We need the next few results to prove this theorem, which is the main result of
this section.

Lemma 1. The G orbit G- m = O through m € M is a submanifold of M.

Proof. Let S;, be a slice to the G action ® at m. By Bochner’s lemma, see ([14], p. 306),
there is a local diffeomorphism ¢ : T, M — M, which sends 0,, € T,,M tom € M and
intertwines the H = G, action

Yy : HX TyM — TyM : (h,0y) — hx vy = Ty ®p 04y

on T, M with the H action ®y : H x M — M : (h,m) — ®;,(m). Since T,;,Sy, is H invariant,
it follows that ¢ : T,,S;; — Sy, is a local diffeomorphism which sends 0, to m. Let L be a
complement of b in g, where § is the Lie algbebra of H. The map

¢ LxTuSy — M: (E,Um) — cDexpé(lp(Um))'

which sends (0r,0,,) to m is a local diffeomorphism that sends an open neighborhood
of (01,0,) in L x {0,,} onto an open neighborhood of m in O. Thus, O is a smooth
submanifold of M near m. For every ¢ € G, since @ is a diffeomorphism of M, the map
d, o is a local diffeomorphism of (0r,0,) in L x {0} onto an open neighborhood of
g-min O. Thus, O is a submanifold of M. O

Lemma 2. For each connected component M) of the orbit type Mgy the map

is a smooth surjective submersion, whose typical fiber is an orbit of the G action ® restricted to

Proof. The orbit map 7 : M — M = M/G is a surjective smooth map of the smooth mani-
fold M onto the differential space (M/G,C*(M/G)). Hence its restriction 7y o the

H
connected component M of the orbit type M) and the codomain to M( H) = n(l\)/[( H)) is
a smooth map of the smooth manifold M onto the differential space (M), C*(Mg)))-
By Proposition 6, the differential space (M), C*(Mp)) is a smooth manifold. Hence
LIV M) = Mg is a smooth map of the smooth manifold M) onto the smooth man-
ifold M. At € M(p), the fiber (7T|M(H) )~L(m) is the G orbit in M) through m, which
is a smooth submanifold of M. We have T,,My) = ker TnTtm @ (ker Ty, M g )+,
using the restriction of the G invariant Riemannian metric on M to ker T, UMy S€8
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Palais [5]. Because the vector space (ker Ty 7ty o )+ is isomorphic to TWM( H), With the
same dimension, it follows that the map T, 7ty () 18 surjective. Consequently, the map

UM gy, is a submersion. [

Next we construct a connection on the fibration 7y o My — M( ) and then
review some geometric facts about geodesics. Because the G action ® (1) on the smooth
manifold M is proper, it has a G invariant Riemannian metric. Let k be the restriction of
this metric to the smooth submanifold M. For each m € My this yields the G invariant
decomposition

TmM(H) = very, @ hory, 9)

L

where ver,, = ker T}, 7 and hor,, = (ver,,)—, using the metric k(m) on T,;M/ . The
M) ) (H)

distributions ver : Mgy — TMp) : m — very, and hor : Mgy — TM g : m — hory, are
smooth. Moreover, for every m € M< H) the map

(Tmn\M(m)lhorm : hor,, C TmM(H) — TWM(H) P Um > U, (10)

where 71 = 7t(m), is an isomorphism of vector spaces. Thus, Equations (9) and (10) define
an Ehresmann connection & on the fibration 71y e M) — Mp). Because

verg.,; © horg., = TmCDg(TmM(CH)) = Tn®gver,, © Ty Pghory,

and T, Pgvery, C verg,, imply verg.,, = TjyPgvery, and horg.,, = T®chory, the distribu-
tions ver and hor are G invariant. Thus, the connection £ is G invariant.

Let 7: TM(y) — Mp) and p : T*M ) — My be the tangent and cotangent bundle
projection maps, respectively. The metric k on M) defines a vector bundle isomorphism

1(ﬁ : TM(H) — T*M(H) 1O0m b P = kﬁ(m)(vm),

where (k*(m)(vm)|vm) = k(1m)(0m, vy). The inverse of kf is k”. The metric k determines
the Hamiltonian function

E: Mgy = Rt pw = 3 k(m) (K (m) (pm), K (m) (), (11)

which gives rise to the Hamiltonian system (E, T*M ), w), where w is the canonical
symplectic form on T*M . The Hamiltonian vector field Xp on T*My) is defined by
Xg 1 w =dE. For py, € T;’;zM(H) let

O T"M ) = T"M) : P > 93 (P)

be the local flow of the vector field Xg, which is defined for t in an open interval I, in
R containing 0. For vy, € T,;Mp) the curve 7,,, given by t — (p o g E) (K (m) (o)) is
a geodesic on My, starting at m € My, for the metric k. There is an open tubular
neighborhood U of the zero section of the cotangent bundle p : T*M ) — Mg such that

the local flow ¢;F is defined for all € [0,1]. For each m € My, the exponential map

eXpm : uOm g TmM(H) - M(H) “Om = ’va(l) = (po(Pi(E)(kﬁ(m) (Um))/ (12)

is a diffeomorphism onto V;,;, = exp,, (Uo,,), where Uy, € U is a suitable open neighbor-
hood of 0, € TmM( H), See Brickell and Clark [15].

Next we reduce the G symmetry of the Hamiltonian system (E, T*M ), w). Because
the metric k on Mg is G invariant, the smooth Hamiltonian E (11) on My is G invariant,

it induces a metric k on M( H) such that n*k = ko (perp, perp), where perp : ™) —
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(TM(g) )+ is orthogonal projection. The smooth Hamiltonian E (11) on M(p) is G invariant,
and hence induces a smooth Hamiltonian function

N _ N I
E:T"M(p) — R: = 4k () (K () (55), K () (P))-

Since the G orbit map My M@my — M(H) is smooth, symplectic reduction
of the Hamiltonian system (E, T*M ), w) leads to the G reduced Hamiltonian system
(E, T*M( H), @). The reduced system has a Hamiltonian vector field X defined by Xz 1 @ =

dE. Tts local flow . o o X
@ F T*M(H) — T*M(H) P @ F ()

. X XF — .
Fof Xg, ie, mog;t = ¢;"om. The curve 75 given

is 77 related to the local flow <pf(
byt — (po q)ff) (EIj (1) (D) ) is a geodesic on My starting at 77 for the reduced metric
k. Here p : T*"M;y — My is the cotangent bundle projection map. Please note that
TT°Yy,, = Yo, © T, Where Uz = T, 7T 0. There is an open neighborhood U = T7t(U) of the
zero section of p : T*M) — M such that the local flow q)tXE of the reduced vector field

X is defined for all t € [0,1]. The reduced exponential map
__ — — — _ _ Xe\ a0 =
&Py : Ug, S TaM(n) = Ma) : O = 755(1) = (po 9 ") (k ()
is a diffeomorphism onto Vi = &Xp(Uy_), where U = 7(Uy,,)-
Proposition 8. The fibration LIV M) — My = (M) is locally trivial.

Proof. For some b, > 0, the open ball B, = {v,, € horm| k(m)(vm,vm) < by} is a subset
of Up,,- Then V;; = exp,, (B) is a submanifold of M ;) containing 1. Look at the geodesic

VT ®gvym = VYvgm O M) given by

te (0o ") (K (g - m) (T Pg0m))

starting at ¢ - m. One has Bg.,, = deDg(Bm). To see this, observe that thereisa v, € TmM( H)
such that vg.,, = T;Pgvyy, since @y is a diffeomorphism. So

bem = k(g-m)(Vg.m, Vgm) = k(g - m)(Tu@gom, TuPgvm) = k(m)(vm, vm) = bu.

Thus, exp om = d, cexp,, is a diffeomorphism of the open ball Bg.,, of radius bg.,, =
by contained in Ug.,; onto a submanifold V., = exp g-m(Bg-m) = Do (V).

For every i’ € Vi let ¥y = [0,1] — Vi @ t — &Xpy; t0;; be the geodesic in
Vi joining 7 to 71, i.e., ¥y (1) = 7. Because expy; is a diffeomorphism, the vector
Ui € By = 71(Byy) is uniquely determined by 77’ Let

P () 0) = (ag) ) 1= (1) = 1,

T,

where 7, s : [0,1] — Vj, : t — exp,,tv}, is the horizontal lift of the geodesic 7; v using the
connection €. Here n’ € B, with 7t(n') = m',n = ¢-m, and v}, € B,. The map P%/m, is
parallel translation of the fiber (77 " )~ 1 (i) along the geodesic ¥y, 5 joining 7 to 7’ in Vg
using the connection £.

Consider the mappings

T, Vi X (M)~ 00) = (iaagy) ™ (Vi) () v Py ()
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and the projection mapping

T = (H\Mm))\(mM(H))*l(Vm) : (N\M(H))_l(vm) = Vig:n 7T|M<H>(”)-

Then 7y;_is a local trivialization of the fibration defined by the mapping 771 because
for every n € (N‘M(H> )~1(m) and every m’ € Vi

(111 o'rvm)(ﬁ’,n) =m (P%/m/(”)) =7,

We now show that 7; is a diffeomorphism. Define the smooth maps

p = Vi X (g, )™ () = (7, )™ (Vi) : (A, m) = P ()

and
o (n‘M(H))*l(Vm) — Var X (n‘M(H))*l(ﬁ) i (m(n),p(m(n),n)).
The following calculation shows that oo Ty, = ideX ( T, )1 ()
(coty ), n) = o (Py, (1) = (m(Py, ., (n),p(m1(Ps, ., (1)), Py (n)))
= (o, Py, (1)) = (7, (P Py ) () = (77, m)
Additionally,
(t7,,00)(n) = 17, (m1(n), p(m1(n),m)) = (P5, P, ,)(n) =n,
that is, Ty, o0 = id”uv[ )1 (Vi) Thus, Ty, is a diffeomorphism.

(H)

The precedinﬁg argument can be repeated at each point of M. Hence the fibration
UMy, M) = My is locally trivial. [
Corollary 1. The locally trivial fibration defined by 7ty " (8) has a local trivialization

TV CG My =My = (U=mp,,) (V) x G: (g -m') — (', kg"),  (13)
where V is an open G invariant subset of M) with k, ¢’ € G and m’ € Mp.
Proof. Suppose that m” = ¢’ - m’ for some m’, m" € My and some ¢’ € G. Then
(Tatgy (1),€) = (mpgy (), €) = (e - ") = 7y (") = Ty (g - 1) = (g, (1), ):

So ¢’ = e. In other words, the G orbit of m’ in My is {m’}. Hence M g (m') = {m'} for
every m’ € My. Thus, the map 1y (13) is given by

T:VCG-My—UxG: D¢ -m')— ({m'},k¢). (14)
Clearly, Ty is a diffeomorphism. It intertwines the G action ® with the G action
P:Gx(UxG)—=GxU:(k(ug) — (ukg) (15)

and satisfies 71y, = moty, where 1 : U x G — U : (u,g) — u. Hence Ty is a local
trivialization. [

Lemma 3. Every smooth vector field Yy on U = 7t - (V) is 711 related to a smooth G invariant
vector field Y on U x G.
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Proof. To see this let ¢ € g, the Lie algebra of G. Let Y (1, g) = (Yu(u), T.LgZ), where Lg is
left translation on G by g. By construction Y (1, g) € T,U x ToG = T, (U x G). So Yisa
vector field on U x G, which is smooth. For every I € G and every (1, g) € U x G one has

Y(pn(u,8)) = Y(u,hg) = (Yu(u), TeLpgZ) = Ty gy pn(Yu(u), TeLgl) = Ty g ¢ Y (1,8).-
So Y is a G invariant vector field on U x G. Moreover,
Tlug) mY(u,g) = Yu(u) = Yy(m(u,g)), forevery (u,g) € U x G.
So the vector field Y on U x G and the vector field Y, on U are 7 related. [

Lemma 4. Every smooth vector field Yi; on U is 1ty related to a smooth G invariant vector field
XonV.

Proof. Pull the vector field Y on U x G back by the trivialization 7y (13) to a vector field X
on V. Since 1y intertwines the G action ® on V with the G action ¢ on U X G, the vector
field X is G invariant. For m’ € VN My and ¢ - m’ € V one has

Tew Ty X(8 - 1') = Tqu 71y (T (g Ty Y (v (8 - 1)) = Tgur (71 071 ) Y (7101, (), 8)

= T, (m),8) 701 Y (g, (M), 8) = Yu(my (g - m')).
Thus, the G invariant vector field X on V' is 71y, related to the vector field Yy on U. O

Proof of Theorem 1. We just have to piece the local bits together. Cover the orbit type
M(H) by {(Vl, Tvi)}iel’ where

T, :ViCG-My—UxG:¢ -m' — (nm(m’),g’)

is a local trivialization of the bundle 71 I M) — M( H)- Let Y be a smooth vector field
on M(H) C M. Since TUM gy, (ViNnMpy) = U; and TUM gy, is an open mapping, U; is an open
subset of M. Because {V;},;c; covers My, it follows that {U; } . is an open covering of
H( H)- Applying Lemma 3 to the smooth vector field Yy, = Y|U; and then using Lemma
4, we obtain a G invariant vector field Xy, on V;, which is Ty, related to the vector field
Yy, on U;. Since Y is a smooth vector field on M( H), on u,nuj, where 7, j € I, one has
Yu, = Yu’.. Soon V;NV; one has Xy, = XV’.. Thus, the G invariant vector fields Xy, piece
together to give a smooth G invariant vector field X on M(p. Since Xy, is 7y, related to
the vector field Yy, the vector field X on My is 7ty - related to the vector field Y on

3. Vector Fields on M/ G

We start with a local argument in a neighborhood of a point m € M with compact
isotropy group H. By Bochner’s lemma there is a local diffeomorphism ¢ : T,,M — M,
which sends 0, € T, M to m € M and intertwines the linear H action

Yo i HX TuM — TuM : (h,v) = hx 0 = Tru®y0m (16)

with the H action @y : Hx M — M : (h,m) — ®j(m). Because the G action ® on
the smooth manifold M is proper, it has a G invariant Riemannian metric k. Using the
restriction of k to T, M, we define E = Ty, (G - m)L C T,,M. Then there is an H invariant
openball B C E centered at 0,,, with B contained in the domain of the local diffeomorphism
 such that (B) = S, is a slice to the G action on M at m.

We now construct a model for the H orbit space B/ H of the restriction to B of the
linear action ¥,, on H on T,,M. Let {v;}!_; be a basis of the vector space E. Hence E
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is isomorphic to R". Let x = (xq,...,x,) be coordinates on R" with respect to the basis
{v;} ;. Let {(Tj}f.:l be a set of generators for the algebra of H invariant polynomials on

R". Lety = (y1,--.,y,) be coordinates on R’. The orbit map of the H action on R" is
p:R" = R'"/HCR :x—=y=(1(x),...,00(x)). (17)

By Schwarz’ theorem f € C®(R") is H invariant, i.e., f € C*(R")", if and only if
there is a function F € C*(R’) such that f(x) = F(cq(x),...,0¢(x)) for every x € R".
Smooth functions on the orbit space R"/H are restrictions to R" / H of smooth functions
on R’. For every f € C*(R"/H) the pull back p*f by the orbit map p is given by

p*f(x) = (Fop)(x) = f(o1(x),-..,00(x)).

The H orbit map p : R" — R"/H C R’ is a smooth map of differential spaces. We
are interested in B/ H, the space of H orbits on the open ball B in R”. Restricting p to the
domain B C R" and the codomain & = p(B) C R’ gives

pp:BCR" - R"/HCR" : x>y = (01(x),...,00(x)), (18)
which is a surjective smooth map of differential spaces.

Lemma 5. Let pg : B — B/H C R be the orbit mapping of a linear action of a compact Lie
group H on an open ball B in R". For every smooth vector field Y on B/H there is a smooth H
invariant vector field X on B, which is pg related to Y, i.e., Y(f) = ((pp)«° X (0p)*)(f) for
every f € C®°(B/H).

Proof. Let Y be a smooth vector field on B/H. Since B/H is a differential subspace of
RY, in coordinates y = (v1,...,v,;) on R’ we may write Y(y) = ¥/, gi(y)a%i, where

gi € C*°(B/H) is the restriction to B/ H of a smooth function on R.

We begin the proof by showing that the orbit space B/ H is connected. Observe that
the open ball B C R" is centered at the origin and the action of H on B is the restriction
of the linear action of H on T;, M, see Equation (16). The linearity of the action of H on
B implies that it commutes with scalar multiplication. Moreover, the origin 0 € R” is H
invariant so that it is an orbit of H. Hence 0 = pp(0) € B/H. Let x € B. Foreach t € [0,1]
and every h € H we have h x (tx) = t(h % x). Therefore the line segment [0,1] — B : t — tx
joins H orbits through the points 0 and x. Thus, the H orbit through 0 and the H orbit
through x belong to the same connected component of B/H. This implies that B/H is
connected.

The connectedness of B/ H ensures that there is a unique principal type (K) whose
corresponding orbit type Bk is open and dense in B, see Duistermaat and Kolk ([13],
p-118). Moreover, the orbit space B(k)/H is a connected smooth manifold, and

p‘B(K) : B(K) — B(K)/H X — H*x

is a locally trivial fibration, whose fiber over pp ® (x) is the H orbit H * x. Hence for
everyy € Bix)/H C B/H there exists an open neighborhood V of y in B(x)/H such that
W = p~ (V) is trivial. In other words, there is a diffeomorphism 7 : W — H x V such
that o\ = pr, o7, where pr, : H x V' — V is projection on the second factor. This implies
that there is a smooth H invariant vector field Xyy on W C Bx), which is pjy related to the
restriction Yj; of Y to V = p(W).

Repeating the above argument at each point y € B(x)/H leads to a covering {Wa },¢;
of B(k) by H invariant open subsets W, of B(k) on which there exists an H invariant vector
field Xy, , which is p related to the restriction of the vector field Y to V,, = W, /H. Using
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an H invariant partition of unity on By), we obtain a vector field Xp

PIB, related to Y\B(K)/H/ ie., Y|B(1<)/H = (P\B(K>>* OXB(K) o (p\B(K) )*.
The module X(B)H of H invariant smooth vector fields on B is finitely generated

by polynomial vector fields, see [16], and we denote a generating set by {X]}]Ii 1- Hence,

w0 N Bk, which is

every H invariant smooth vector field Xp on B is of the form Xp = Z]‘I\Ll h;X; for some
hy,...,hy € C®(B). Similarly, every K invariant smooth vector field on By, can be
written as Z 1 fjXj, where f; € C*(Bx)). Since B(g is open and dense in B, a generic
feC®(Bi )) need not extend to a smooth function on B. Therefore a generic vector field
on Bk need not extend to a smooth vector field on B. On the other hand, the H invariant
vector field XB(K) on By, is obtained above from a smooth bounded vector field Y on

B/ H. Therefore

N
Xp g, (x) = ]g, kB, ) Xj(x), (19)

—_

for each x € B(K) C B C R", where every k]- € C*®(R™), and kj|B(K) is the restriction of kj
Since B ) is open and dense in B, we may define

XB ) (X) if x € B(K)
X(x) = ¢ LN limg 0 kj(x) Xj(xi), where {x;} C By and (20)
x = limg_,, X € B \ B(K)

provided that limy_,, kj(x¢) exists and is unique. Since the vector fields X;(x;) are smooth
on B,
hm ki(x) X (xx) = (lim k;(x¢)) X;( lim x) forevery j=1,...,N.
k—00 k—00 k—o0
Moreover, since B( K) is open and dense in B, it is open and dense in B, the closure of
B. In Equation (19), each function k; p ® is the restriction to B(xy € B C R" of a smooth
function k; on R". Moreover, the choice of polynomial basis {X /}]Zi ; ensures that the
right-hand side of Equation (19) extends to the closure B of B. Hence all the the limits
limy o, k;j(xx) in Equation (20) exist, and X(x) is defined for all x € B.
We need to show that this definition of X on B depends only on XBi - Since each
k; is continuous on B and its first partial derivatives are bounded on B, it follows that k;

are uniformly continuous on B.In particular, if c : [0,1] — B is a smooth curve, such that
c([0,1)) € B(k) and c(1) € B, then

okj ok
ks (c(1)) :kj|B(C(0))+/Ola—]t‘B(c(t))dt Kis e +/l B (o(8))dt.

Thus, the values of k; on B are uniquely determined by k; " Repeating this argu-
ment for all the first-order partial derivatives of k]-, we deduce that the first-order partial
derivatives of k; on B are uniquely determined by k; ® and its first partial derivatives.
Continuing this process for every partial derivative of every order shows that the restriction
of k; to B is uniquely determined by k; 3 ®

The above argument applies to each of the functions f; fori =1,...,n in Equation (19)
and ensures that the H invariant vector field Xp ®© (19), thought of as the smooth section
B(k) = TBk) = B(x) X R", extends to a smooth H invariant map X : B — B x R", which
is p related to the section Y : B/H — T(B/H). It remains to show that X is a vector field
on B.

By construction Xp © is an H invariant vector field on an open dense subset By, of B,
which is p © related to the vector field Y| )/ H- The closure of Bk in B is the union of
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orbit types B(j), where () < (K). Suppose that x = limy_, X; € B(j), where x; € B for
allk € Z>1. Theny = pp(x) € B(j)/H and

Txpp(X(x)) = Txpp (X(lim x¢)) = lim TxppX (x;)

= lim ¥ (ps(x)) = Y(p5(x) = Y(y),
because Y x/H is the restriction to B g,/ H of a smooth, and hence continuous, vector field
on B/H. By Proposition 7, for every orbit type B(j), the manifold B;)/H is an invariant
manifold of the vector field Y. So Y| o /H is a vector field on B(j)/H. Hence for every
X € B,

X(x) € (Tupp) " (Y(y)) € (Tup) " (Ty(B(j)/H)) C TiB.

Therefore X is a smooth vector field on B, which is pp related to the vector field Y on
B/H. O

The aim of the rest of this section is to prove.

Theorem 2. Let ® : G X M — M be a proper action of a Lie group G on a connected smooth
manifold M with orbit map 7w : M — M/G. Every smooth vector field on the locally closed
subcartesian differential space (M/G,C*®(M/G)) is 7 related to a smooth G invariant vector field
on M.

First we prove.

Lemma 6. Let Sy, be a slice to the G action ® at m € M and suppose that X is a smooth H
invariant vector field on some H invariant open neighborhood Uy, of m in Sy,. Here H is the
isotropy group Gy, at m. Then the vector field X extends to a smooth G invariant vector field X
on M.

Proof. Let U, C S, be an H invariant open subset of S;, containing m. Because S, is a
slice, G - Uy, = {®g(Un) € M| g € G} isa G invariant open subset of M, which contains
the G orbit G - m. On G - U, define the vector field X = {(dDg)*ﬂ g € G}. We check that
X is well defined. Suppose that g - s,, = ¢’ - s, where g, ¢’ € G and s, s}, € Sy,. Since Sy,
is a slice, it follows that g~'¢’ = h € H. Hence

(Bg):X = (@)% = (). ((9).K) = (@g).%,

where the last equality above follows because the vector field X is H invariant. So the
vector field X on G - Uy, is well defined and by definition is G invariant.

Next we show that X is smooth. Let L be a complement to the Lie algebra h of the Lie
group H in the Lie algebra g of the Lie group G. For every ¢ € L and 7 € hj consider the
map p: G — (expL)H : exp(§ + 1) — exp ¢ exp 17, which sends the identity element eg
of G to e; - ey = eg. Itis a local diffeomorphism, since its tangent T,y : g — L& bh =g
is the identity map. Thus, there are open subsets Vi, Vi, and Vy of e, 01, and e,
respectively, such that (V) = exp V1 - V. Hence every g € V; may be written uniquely
as ¢ = (exp &)h for some ¢ € Vi and some h € V. For every s, € Uy, C Sy we have

(qu)*X(sm) = (q)(expc;‘)h)*x(sm) = (qDeXpC)*((q)h)*X(sm))
= (Dexp)+X(sm), since X is H invariant on Sy,

= T97n®5nlx(©exp 75(5111))~ (21)
Consider the local diffeomorphism

Q: VL XSy — G- Sy (C,S> = (I)expij(s) = dD(eXpC,s).
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Then @expz = @)1 x5, S0if g = @(F,5) = Pexpz(s), then CD;(lpg(q) =s. Let Whea

neighborhood of {0} x S,; C Vi X S, such that ¢ restricted to W yields a diffeomorphism
Pw W C VL xSy — U=¢(W) CG:-Spy. Fors € Sy, let etXn (s) be the integral curve of
the vector field X, starting at s. Since X, is a G invariant extension of X, to a vector fieAld
on G - S;; (whose smoothness we want to prove) of a smooth H invariant vector field X,
on S, it follows that X, |S; = X is a smooth vector field on S,,. Therefore

R (s) = 9o (s) = 9 (s), (22)

for all s € S;. Consider a curve ¢; in U C G - Sy, starting at § = QPexpe(s) defined by
cq(t) = @expg((pf('” (@;{Lé(q))) Using Equation (22) we obtain ¢;(0) = Ty®@expz (X (s)) =
X(q) for all g € U. Since the family of curves t — ¢;(t) depends smoothly on g € U and U
is an open subset of G - 5;; containing Sy, it follows that X;; is a smooth vector field on U.
For any m’ € G - Sy, there exists a ¢ € G such that the open set ®¢(U) contains m'. Since
X is G invariant, smoothness of X on U ensures that X is smooth on ®¢(U). Hence X is a
smooth vector field on G - S,.

The above argument can be repeated at each point m € M. This leads to a covering
{G - S, }4c1 of M by open G invariant subsets G - S;,, where Sy, is a slice at m, for the
action of G on M and I is an index set. If Y is a vector field on M, then for each « € [
there exists a G invariant vector field X;;, on G - Sy, that is 7 related to the restriction of
Y to (G- Sm,)/G C M/G. Using a G invariant partition of unity on M subordinate to the
covering {G - Sy, } o1, we can glue the pieces X, together to obtain a smooth G invariant
vector field X on M, which is 7t related to the vector field Y on M/G. O

Proof of Theorem 2. Applying Lemma 6 to the push forward by the local diffeomorphism
Y- BCTyM — Uy C Sy C M, given by the Bochner lemma, of the vector field on B
constructed in Lemma 5, proves Theorem 2. [

Proposition 9. IfY is a derivation of C*(M/G), which is 7t related to a derivation X of C*(M)C,
then Y is a smooth vector field on M/ G.

Proof. Since M is a smooth manifold, X is a smooth G invariant vector field on M, which
is 7 related to derivation Y of C*(M/G). Thus, the image under 7 of a maximal integral
curve of X on M, is a maximal integral curve of Y on M/G. Hence Y is a smooth vector
field on the locally closed subcartesian differential space (M /G,C®(M/ G)) O

4. Differential 1-Forms on the Orbit Space

In this section we define the notion of a differential 1-form on the orbit space M/G
of a proper group action ® : G x M — M : (m, g) — g - m on a smooth manifold M with
orbitmap 7 : M — M/G : m — m = G - m. We show that the differential 1-forms on M/G
together with the exterior derivative generate a differential exterior algebra.

Theorem 2 and Proposition 9 show that Y is a vector field on M/G if and only if there
is a G invariant vector field X on M, which is 7 related to Y, i.e., every integral curve of
Y is the image under the map 7 of an integral curve of X. Let A'(M/G) be the set of
differential 1-forms on M /G, i.e., the set of linear mappings

0:X(M/G) — C®(M/G) : Y 6(Y) = (0]Y),

which are linear over the ring C*°(M/G), i.e., (0|fY) = f (0|Y) for every f € C*(M/G)
and every Y € X(M/G).

In order to prove some basic properties of differential 1-forms on M/G, we need to
prove some properties of the G orbit map 7 (2).
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The map
Tt : TuM — Tr(M/G) = spang {Y(m)| Y € X(M/G)} : vy = X(m) — Y(m),

where X € X(M)® and Y is the vector field on M/G constructed in Proposition 2, is the
tangent of the map 7w at m € M. To show that T, 7t is well defined we argue as follows.
Suppose that v,, = X'(m), where X’ € X(M)®. Then

Tt (X(m) — X' (m)) = Turt(vm — om) =0,
since Ty, 7t is a linear map.
Lemma 7. Foreachm € M
ker Tyy 7t = spanp { Xz(m) € TmM| ¢egl, (23)
where g is the Lie algebra of G.
Proof. By definition 7! (i) = G - m. Thus,
Ty (7 (1)) = Tp(G - m) = spang {Xz € T,M| & € g}. (24)

The curve vy, : [y CR — M : t — expt¢ - m is an integral curve of X¢ starting at m.
So m(ym(t)) = m(m) = 7i for every t € I. Thus, T, Xg(m) = d%‘ 7t (ym(t)) = O, ice.,
=0

Xg(m) € ker Ty, 7t. Consequently, spang { Xz € TmM| ¢ egt CkerT,M.

To prove the reverse inclusion, we argue as follows. Since m € M, it follows that
m € My, where H = Gy,. Let M) be the maximal orbit type of the proper G action on
M. The maximal orbit type My is a dense open subset of M, whose boundary oM ) =
cl(Mk)) \ Mk, contains My, since the orbit types of the G action stratify M. Suppose
that v, is a nonzero vector in ker T, 7t. There is a vector field X on M with X(m) = v,
with an integral curve 7, : [, C R — M : t — ¢f(p) starting at p € Mk such that
Yp(t) = m for some T € I, NR-o. We may suppose that 7,([0,7)) € M. Since
M( k) = T(Mk)) is a smooth submanifold of the differential space (M/G,C*(M/G)), the
curve Iy, 1 (0, 7] = Mg : t = 9p(T — t) is a smooth integral curve of the vector field —X
such that T, ((0, 7]) € M. Hence on (0, 7] the curve 7 o T on the smooth manifold Mg
is smooth. Thus,

ST = Gl om) = 5 wlprtm) = 5 (o (o7 m)

s=!

0
=T 7X(m)7f(Tm7T(7X(m )) = O”(‘Pfx(m))'

since X(m) = vy, € ker Ty, 1. Thus, the curve 7t o T, is constant, since M( K) is a smooth man-
ifold. Because the curve 7t oI, is continuous on [0, T], we obtain n(rm(t)) = n(l"m (0)) =
nt(m) = 7. Hence I'y(t) C 7 '(m) for all t € [0,7]. But limpoT},(t) = vm. So
Oy € Tyt~ (). Hence

ker Ty, 7t C Tyt (1) = spang { Xg(m) € TmM| ¢egl,
where the equality follows from Equation (24). This verifies Equation (23). O

A differential 1-form w on M is semi-basic with respect to the G action ® if and only if
Xz w = 0forevery ¢ € g, the Lie algebra of G.

Proposition 10. For every 0 € A'(M/G), the differential 1-form 7t*6 on M is G invariant and
semi-basic.
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Proof. By definition of 77* the map

0 : X(M)® — C*®(M)C : X — (70| X) (25)
is linear, since the map X(M)® — X(M/G) : X + Y is linear. Moreover, for any f €
Coo(M)G

(70| fX) = 7" ((8|f Y)), since the map X + Y is a module
homomorphism

(£ (8]Y)), because § € A'(M/G)
(f) T ((6]Y)) = f (70| X).

Thus, 776 € A'(M/G). For every { € g one has Lx, ((7*0|X)) = Lx, (7*((0]Y))) =
0, because 77*((A|Y) € C®(M)C. So 7r*6 is a semi-basic 1-form on M. [

= 7'[>~<
7_[.*

Proposition 11. Let ¢ be a G invariant semi-basic differential 1-form on M. Then there is a 1-form
0 on M /G such that ¢ = 77*6.

Proof. GivenY € X(M/G), thereisan X € %(M)G, whichis related to Y, i.e., T,y tX(m) =
Y(7t(m)) for every m € M. It is clear that the definition of 6 needs to be

T ((6]Y)) = (8]X). (26)

It remains to show that 0 is well defined. Since the 1-form & and the vector field X are
G invariant, we obtain

5 ((81X)) (m) = (DO PLX) (Pg (m)) = (8]X) (m),

for every (g,m) € G x M. Thus, the function M — R : m — (9|X)(m) is smooth
and G invariant. We now show that the mapping 6 : X(M/G) — C®(M/G), where
0 is given in Equation (26), is well defined. Suppose that X’ € X(M)C such that X’ is
7t related to Y. Then Ty, t(X(m) — X' (m)) = Y(m) — Y(m) = 0 for every m € M. So
(X(m) — X'(m)) € spanp{Xz(m) € TmM| ¢ € g}, by Proposition 10. Thus,

(81X) = (O1(X = X)) + (8]X") = (8] X"),

since the 1-form ¢ on M is semi-basic. This shows that the map 6 : X(M/G) — C*(M/G)
is well defined. From Equation (26) it follows that @ is a linear mapping and that (9| Y)

f(8]Y) for every f € C®(M/G). Hence @ is a differential 1-form on M/G, i.e., 8

AY(M/G). Every X € X(M)®is rrelatedtoaY € X(M/G). Thus, (7t*0|X) = 7*((0]Y))
(8|X), thatis, 9 = 7*6. O

||m||

5. De Rham’s Theorem

In this section we construct an exterior algebra of differential forms on the orbit space
M/ G with an exterior derivative dand show that de Rham’s theorem holds for the sheaf of
differential exterior algebras.
Let £ € Z>. A differential (-form 6 on M/G is an element of LY (T(M/G), R), the
set of alternating ¢ multilinear real valued mappings on T(M/G) = X(M/G), namely
l

6:X(M/G) % --- x X(M/G) — C®(M/G) :
(Yl,...,Yg) — Y, | ((Y1_l 9)) = <9‘(Y1,...,Yg)>,

which is linear over C*(M/G), that is, (0](Y1,...,fY;,...,Ys)) = f(6](Y1,...,Ys)) for
every 1 < i < {and every f € C®°(M/G). A differential 0-form on M/G is a smooth
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function on M/G. Let A*(M/G) be the real vector space of differential /-forms on M/G.

For each 711 € M/G let AL(M/G) = spang {0(m) € Lﬁlt( 7(M/G), R |9 € A'(M/G)}.

Proposition 12. Let 6 € A'(M/G) with { € Z~1. Then the {-form © = %6 € Afb(M)G, the
set of semi-basic G invariant (-forms on M. Here

(°0) (m) (X1 (m), ..., Xp(m)) = 0(r(m)) (TurXy(m), ..., TurtX,(m)),
for every m € M and every X; € X(M)© for1 < j <.

Proof. The proof is analogous to the proof of Proposition 10 for 1-forms on M/G and is
omitted. [

Proposition 13. Let ¢ € Agb(M)G, where { € Z>y. Then there is an (form § € A‘(M/G)
such that ¢ = 77%(0).

Proof. The proof is analogous to the proof of Proposition 11 for G invariant semi-basic
1-forms on M and is omitted. [

We now define the exterior algebra A(M/G) of differential forms on M/G. Let
0 € A"(M/G) and ¢ € AF(M/G). The exterior product is the h + k form § A ¢ on M/G
corresponding to the G invariant semi-basic h + k-form 779 A 77*¢ on M. Then (A(M/G) =
Y ®AL(M/G), A) is an exterior algebra of differential forms on M/G.

The exterior derivative operator don A(M/G) is defined in terms of the Lie bracket of
vector fieldson M/G. If Y, Y’ € X(M/G), then there are Xy, X'y, € X(M)©, each of which
is 77 related to Y and Y’, respectively. Their Lie bracket [Xy, Xy/] € X(M)C. Then there is
a vector field Y|, xr ,) on M/G, which is 77 related to [Xy, X'y]. Define [Y,Y'] = Y[x, x -
The following lemma shows that this Lie bracket is well defined.

Lemma 8. For every f € C®°(M/G) and every Y, Y' € X(M/G)
Y, Y'1(f) = Y'(Y(f)) = Y(Y'(f))- (27)
Proof. We compute.
7 ([Y,Y'](f)) = [Xy, Xy/](7*(f)), by definition of Lie bracket
(Xy( () - XY(XY’( “(f))), because Xy, Xy, € X(M)©
(7 (Y(f))) = Xy (" (Y'(£))).,

smceXy( “(f)) = ( (f))ander( “(f) = (Y'(f))
T (Y(Y(f) = 7 (Y(Y'(£)))

(Y ((f)) YY(f)))

from which Equation (27) follows, because the orbit map 7 is surjective. [

Xy
= Xy

Corollary 2. [ . | is a Lie bracket on X(M/G).

Proof. The corollary follows from a computation using Equation (27). We give another
argument. Bilinearity of the Lie bracket is straightforward to verify. We need only show
that the Jacobi identity holds. We compute.

[Y/// [Y/ Y,” = [YX”/ Y[X,X/]] = Y[Xy//,[Xy,Xyl”
= Y{[x,,Xy], Xy ] +[Xy,[Xy, Xy, ]] DY the Jacobi identity on X (M)C
= Y[[Xy//,Xy],Xyl] + Y[Xy,[XyN,Xy/” = [[Y”, Y]/Y/] + [Yr [Y”/ Yl”/
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which is the Jacobi identity on X(M/G). O

Let ¢ be an ¢-form on M/G. Inductively define the exterior derivative dof ¢ as the
(£ 4+ 1)-form given by

de(Yo,Y1,...,Y,) = Z;(—1)id(1q_| @) (Yo, ..., Yi, ..., Y))

+ Y )Y ae) (Yo, Y YY), (28)
0<i<j<t

Here Y; _I ¢ is the £ — 1 form on M/ G defined by

<(YZ—' (P)|(YOI "r?ir- . 'rY€71)> = <(P|(Yz/ Yl/' . '/?i/- . .,Yg,1)>,

for Yy,..., ?i/ ..., Yy 1 € X(M/G). To complete the definition of exterior derivative, we
define don O-forms. This we do as follows. Let f € A°(M/G) = C*(M/G). Define the
1-form df by df(m) (Y (m)) = Y(f)(m), for every m € M/G, every f € C*(M/G), and
every Y € X(M/G).

Lemma9. Let 6 € AY(M/G). Then
d(7*6) = 7*(d#). (29)

Proof. Suppose that 6 is an ¢/-form on M/G. Pulling back the forms on both sides of
Equation (28) by the orbit map 7 gives

ﬂ*(dG)(XO,..., 27‘[ Y_|9 (XO,...,Xi,...,Xg)

+ Y ’ﬂn (Vi Y] 0)(Xo, ..., Xiro o, X, -
0<z<]<€

X)) (30)

By induction, assume that Equation (29) holds for all forms of degree strictly less than
(. Then
" (d(Y; 10)) =d(m*(Y; 19)). (31)

Now 7*(Y; 1 6) = X; 1 1*0, where Trro X; = Y; o 71, since

(X; 1 7°0)(Xo, ..., X, ..., X¢) = (=) (7*0)(Xo, ..., Xi, ..., Xy)
= (-1)'0(TnXy,..., TnX;, ..., TnX,) = (=1)0(Yy,...,Y;,...,Y,)
=(Y;ia0)(Yo,..., Y, ..., Ys) = m*(Y; 10)(Xo,..., X, ..., Xp).

Additionally,

(Y3, Y] 0)(Xo, . Xiy oo, Xy, Xy) =

= (Y, Y]] 2 6)(TnXo, ..., TnXy, ..., TnX;, ..., TaX,)
= ([XZ,X]]_I H*Q)(Xo,...,Xi,...,Xj,...,Xg),

since [Yi, Y]] = [T?TXZ', TT[X]‘] = T?T[Xi, X]]
Thus, Equation (30) reads
Z -~
*(d8)(Xo, ..., Xy Z d(X; 1 70)(Xo,..., Xi,. .., Xy)

+ Y (D)X, X A m0) (Ko, Xy X
0<1<]<Z
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= d(7*0)(Xo, ..., Xy).
O
Lemma 10. If§ € AK(M/G) and ¢ € A"(M/G), then
d(OA ) =do AP+ (—1)k0 Adg. (32)
Proof. On M we have

T (d(OAP)) =d(" (0N ¢)) =d(m"0 AT )
=d(m*0) A+ (~1)F o Ad(m*p)
7 (dO A+ (—1)F0 A dg),

which implies that Equation (32) holds, since the orbit map 7 is surjective. [
Lemma 11. d?0 = 0 for every 6 € A'(M/G).

Proof. Suppose that £ > 1. Then 7t*6 is an /-form on M. Because M is a smooth manifold,
one has d*(77*0) = 0. By Lemma 8 77*(df) = d(7*6). So

7 (d20) = 7 (d(d 8)) = d(7*(d8)) = d(r*6) = 0.

Since the G orbit map 7t is surjective, 77* (d?8) = 0 implies d*6 = 0.
We now treat the case when ¢ = 0. Let f € C*(M/G) and let Yy, Y1 € X(M/G). Then

d(df) (Yo, Y1) =d(Yo— df)Y:s —d(Ys - df)Yo — [Yo, V1] I df

=d(Yo(f)Yi —d(vi(F)Yo — [Yo, V1] (F)

=Y1(Yo(f)) — Yo(V1(f)) — Y1(Yo(f)) + Yo(Y1(f)) = 0. (33)

O

We prove an equivariant version of the Poincaré lemma in R".

Lemma 12. Let G be a Lie group, which acts linearly on R" by & : G x R" — R". Let H
be a compact subgroup of G. Let B be an H invariant closed {-form with £ > 1 on an open H
invariant ball B centered at the origin of R", whose closure is compact. Suppose that B is semi-basic
with respect to the G action ®, i.e., Xz 1B = 0 for every ¢ € g, the Lie algebra of G. Here
X¢(x) = Te®yd. Then there is an H invariant (£ — 1)-form a« on B, which is semi-basic with
respect to the G action ®, such that = da.

Proof. Let X be a linear vector field on R" all of whose eigenvalues are negative real
numbers. By averaging over the compact group H, we may assume that X is H invariant.
Let ¢; be the flow of X, which maps B into itself. Moreover, ¢ = 0. On B one has

b= —(pab—gip) = — [ s(0ip) di

=~ [ g (Lxp) at == [T gi(a(X1p)+ X1 ap) b
= _/Ooo ¢f (d(X 1 B)) dt, since B is closed

- —d(/ooo ¢t (X_1 B) di), sincedgf = g7 d.
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The (¢ —1)-forma = [;~ ¢; (X I B) dt on B is H invariant, since ¢; commutes with
the H action on B, and X _1 B is an H invariant (¢ — 1)-form on B, because the vector
field X and the ¢-form B are both H invariant. Thus, § = da on B. Moreover, a is G
semi-basic, since

Lx, (¢} (X1 B)) = ¢ (Lx, (X1 B)) = ¢f (Lx, X I Lx.B) = 0.

The last equality above follows because the /-form f is G semi-basic. [J

Since M/ G is a locally contractible space, we have

Proposition 14 (Poincaré Lemma). Let 0 be a closed (-form on M/G with ¢ > 1. For each
m € M/ G there is a contractible open neighborhood Us; of m and an (£ — 1)-form ¢ on Uy such
that 0 = d¢ on Uz

Proof. Since the G action ® on M is proper, it has a slice S, at m, where 7t(m) = m. Using
Bochner’s lemma there is an open neighborhood U, of m in S;,, which is the image of an
H = G, invariant open ball B C T, M, centered at the origin 0,, whose closure is compact,
under a diffeomorphism ¢ : B C T,,M — U,, C M. The diffeomorphism ¢ intertwines the
linear H action

H X TyM = TyyM : (h,vy) = Ty ®gom

with the H C G action ® on U,,. Let & be the semi-basic G invariant form on G - U, such
that (7I|G,um)*§ = 9. Since 0 is closed by hypothesis, it follows that the semi-basic /-form
®on G- Uy is closed. Let ¢ = &|Uy,,. Then ¢ is a semi-basic H invariant closed ¢-form
on Uy. Under the map ¢ the /-form ¢ pulls back to a G semi-basic H invariant {-form
yp*¢ on B C T,,M. By Lemma 12 there is a G semi-basic H invariant (¢ — 1)-form 7y on B
such that *¢ = d-y. Hence a = .y is a semi-basic H invariant (¢ — 1)-form on U,,. The
(¢ —1)-form a on Uy, extends to a G invariant (¢ — 1)-form ¢ on G - Uy, defined by

0 (@g(m))(TsPgvs) = a(s)vs,

for every s € Uy, and every vs € TsSy,. Arguing as in the proof of Lemma 6, it follows
that ¢ is a smooth G invariant (¢ — 1)-form on G - Uy,. The form ¢ is semi-basic. Moreover,
dé = ¢ on G - Uy, since for every ¢ € G one has
do = d(Pga) = Py(da) = Pg(9) = 0.
Let Uz = t(Uy,). Since Uy, is contractible and the G orbit map 7t is continuous and
open, it follows that the open neighborhood Uz; of m € M/G is contractible. Since the
(-form ¢ is semi-basic, there is an /-form ¢ on Uz such that 7*¢ = con G -m. On G - Uy,

we have
0 =0 =do =d(n"p) = 7" (de).

Because the orbit map 7 is surjective, it follows that 6 = d¢ on Uz, which proves the
proposition. [

Lemma 13. Let f € C®(M/G) and suppose that Uz is a connected open neighborhood of
m € M/G such that df = 0, then f is constant on Usz;.

Proof. It follows from our hypotheses that f = 7* f is a smooth G invariant function on
the open connected component Uy, of 1 (Uz) containing m. Moreover, on U, we have
df =d(n*f) = *(df) = 0. Since M is a smooth manifold, it follows that f is constant on

U,,. Hence f is constant on the connected open set 7t(Uy,) = Uz because 7 is a continuous
openmap. [

To prove de Rham's theorem, we will need some sheaf theory, which can be found
in appendix C of Lukina, Takens, and Broer [17]. Let i/ = {Uy},; be an open covering
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of M/G. Because M/G is locally contractible, the open covering U/ has a good refinement
U', that is, every Up € U’ with B € J C I is locally contractible and Ug, N---NUp, is either
contractible or empty. In addition, because M/ G is paracompact, every open covering has
a locally finite subcovering. Since the G action on M is proper, the orbit space M/G has a
C*®(M/G) partition of unity subbordinate to the covering U.

Define the differential exterior algebra valued sheaf A over M/G by

AUy = (AUs), N, d|uﬂ),
whose sections are differential forms on U,. The sheaf A induces the subsheaves
AU — (AY(M/G), A, dy,),
whose sections are differential /-forms on U,. Please note that

A—M/G: A=Y Ay~
14

is a smooth vector bundle, as is
AY = M/G: AL — T

Let R be the sheaf of locally constant R-valued functions on M/G. The two exact
sequence of sheaves

0-R—-A—--and0 =R > A' — ...

are exact.

We say that the sheaf A is fine if for every open subset i/ of M/G, every smooth
function f on M/G and every smooth section s : U C M/G — A(U) of the sheaf A, then
fuo e A ).

Theorem 3. The sheaves A and A’ of sections of the vector bundles A and A' are fine.

Proof. We treat the case of the sheaf A. The proof for the sheaf A’ is similar and is omitted.
The definition of fineness holds by definition of differential form. [

Corollary 3. A and A are fine sheaves of sections over M/ G, which is paracompact. Let U be an
open covering of M/ G. Then H1(U, ), the sheaf of g™ cohomology group of U with values in the
sheaf A, vanishes for all q € Z~y. Similarly, H1(U, A') = 0 forall q € Z>1.

We are now in position to formulate de Rham’s theorem. Let A’ be the sheaf of
differential /-forms on M/G and letd: A’ — A’*1 be the sheaf homomorphism induced by
exterior differentiation. For each ¢ € Z> let Z! = kerd, whose elements are closed /-forms
on M/G. By Lemma 13 Z° = R. Define the /" de Rham cohomology group H (M/G) =
I'(M/G,2"% /dI(M/G,A""1) when ¢ € Z>y and H}(M/G) = T(M/G, 2°). Here
I'(M/G,G) is the set of sections of the sheaf M/G — G.

Theorem 4 (de Rham’s Theorem). The sheaf cohomology of A’ with coefficients in R does not
depend on the good covering U of M/ G. Thus, for every £ € Z>q the {™ de Rham cohomology
group Hig (M/ G) is isomorphic to the (™ sheaf cohomology group H' (U, R) of the good covering
U with values in the sheaf R of locally constant real valued functions.

Proof. We give a sketch, leaving out the homological algebra, which is standard. For more
details, see [17] or [18]. Let U be a good covering of M/G. The Poincaré lemma holds on
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any finite intersection of contractible open sets in I, so the following sequence of sheaves
is exact 4
0 2t Ly A Sz 5,

where : : Z¢ — Al is the inclusion mapping. This exact sequence gives rise to the long
exact sequence of cohomology groups

0—> HO(Z/[,ZZ) l} HO(Z/[,AZ) & HO(U,Z£+1) & Hl(u[zf) —

where 14, d., and J, are homomorphisms on cohomology induced by the inclusion, exterior
differentiation and coboundary homomorphisms, respectively. Since Al is a fine sheaf, its
cohomology vanishes for £ > 1 and the above sequence falls apart into the exact sequence

0 — HOW, 2°) 5 HO(U, AY) 25 HO(u, 240 5 1Y, 20) — 0, (34)

and for every k > 1 the exact sequence

0 — HEU, 241 2 H Ly, 20 — 0. (35)

Now HY(M/G,R) =T (M/G, 2°) = H%(M/G). Applying the sequence (34) con-
secutively gives
H (U, R) ~H (U, 2.

Exactness of the sequence (35) gives
H'U, 27" >~ B WU, 2°) / q,(80 U, AL-1))-
Here ~ means is isomorphic to. [J

Corollary 4. For the zeroth cohomology we have
H'(U,R) ~T(M/G,Z") JA(T(M/G, A1) = Hig(M/G) for £ € Z>1.  (36)

Our version of de Rham’s theorem is not the same as Smith’s version, since the Z,
invariant semi-basic 1-form xp dx; — x1 dxp in Section 6 is not a Smith 1-form, see also
Smith ([7], p. 133). However, his cohomology and ours agree. Our results extend those of
Koszul [10], who hypothesized that M /G was a smooth manifold and that the group G
was compact.

6. An Example

In this section we give an example, which illustrates Theorem 2 and the construction
of differential 1-forms on the orbit space of a proper group action on a smooth manifold.
Consider the Z, action on R? generated by

:R2 5 R*:ix = (x, %) = (—x1, —x2) = —x.

The algebra of Z, invariant polynomials on R? is generated by the polynomials

01(x) = x3, 0»(x) = x3, and 03(x) = x1x2, which are subject to the relation

03 (x) = oq(x)oz(x), o1(x) >0 & 02(x) > 0, for all x € R2. (37)

Let
c:R? 5 X CR x5 (09(x),02(x), 03(x)) (38)
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be the Hilbert map of the Z, action associated to the polynomial generators o7 (x), 02(x),
and 03(x). The map o (38) is the orbit map of the Z; action on R2. The relation

(7% =010n, 00 >0& 0, >0 (39)

defines the orbit space R?/Z; as a closed semialgebraic subset ¥ of R? with coordinates
(01,02, 03). Geometrically ¥ is a cone in R® with vertex (0,0,0).

Because Z, is a compact Lie group, which acts linearly on R?, Schwarz’ theorem [19]
implies that the space C*(R?)%2 of Z; invariant smooth functions on R? is equal to C*(X),
where f € C*(X) if and only if there is an F € C*(R?) such that f = F|5..

Lemma 14. Let f € C®(R?) satisfy f(x1,x2) = —f(—x1, —x2) for every (x1,x2) € R2
Then there are fi, f» € C*(R2)%2 such that f(x1,x2) = x1f1(x1,%2) + x2fo(x1, x2) for every
(X1, X2) S R2.

Proof. Since f(x1,x2) = —f(—x1, —x2), it follows that f(0,0) = 0. Suppose that there is
an integer k > 1 such that D/ £(0,0) = (0,0) for 0 < j < k — 1 and D¥£(0,0) # (0,0). Then

by Taylor’s theorem with integral remainder we have f(x,y) = Y5_, g/(x1, x2)xk x5 for
every (x1,x3) € R?, where g, € C*(R?) and g,(0,0) = PN ffa 4(0 0) for 0 < ¢ < k. By
hypothesis
£ k—0 . k k k—¢ k
Yo 8e(x1, x0)xf x5 = f(x1,%0) = —f(—x1, —x2) i de —X1,—X2)X] X3
=0
So

go(x1,%2) = (1) gy (—x1, —x7), forall 0 < ¢ < k. (40)
If k is odd Equation (40) implies g, € C""(RZ)Z2 for 0 < ¢ < k. Consequently,

k£K1

fla1,x2) = x1(go(x1, x2)x5 1) + 10 (Y golar, x0) ka7,

1=

=1

which proves the lemma when k is odd. When k is even, Equation (40) reads g;(x1, x2) =
—g¢(—x1,—x) for 0 < ¢ < k, which implies g,(0,0) = 0 for 0 < ¢ < k. In particular,
D¥£(0,0) = 0, which contradicts our hypothesis.

Now suppose that f is flat at (0,0), i.e., D¥£(0,0) = 0 for every k > 0. Then x; and x,
divide f, i.e., fi = f/(2x1) and f, = f/(2x,) are smooth functions on R?. To see this note
that f; and f, are smooth for all (x1,x2) # (0,0). Since f is flat at (0,0), so are f; and f,.
Clearly f(x1, xz) = X1f1 (X1, XZ) + foz(xl, XZ). From

fi(=x1,—x2) = f(—x1, —x2)/(2(—x1)) = f(x1,%2)/(2x1) = f1(x1,x2)
it follows that f; € C*(R?)%2. Similarly, f, € C®(R?)%2. O

Proposition 15. The C*®°(R?)%2 module X(R?)%2 of Z; invariant smooth vector fields on R? is
generated by

0

—, X3 =x
oxy’ 3 1

0 0
—, and Xy = X2E. 41)

d
X1 =x1—, Xo =
1 xlaxl’ 2 = X2 oxy

Proof. A smooth vector field X on R? may be written as X (x1,x2) = f(x1, x2) % +g(x1, x2) %,
where f and g are smooth. X € X(R?)%2 if and only if

0 d «
f(xLXz)E +g(xl,xz)872 = X(x1,x2) = " X(x1,x2)
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%) %)
- _f(_xlr —xz)a - g(_xlr _XZ)E/
thatis, f(x1,x2) = —f(—x1, —x2) and g(x1,%2) = —g(—x1, —x7) for every (x1,x;) € R2.

Using lemma 38 write f(xl, xz) = x181 (Xl, XZ) + ngz(xl, XQ) and g(xl, xz) =x1h (Xl, XQ) +
X2l (x1,X2), where g1, g2, hy, and hy € C®°(R?)%2. Hence for every (x1, x2) € R? we have

d
X(x1,x2) = (x181(x1,x2) + ngz(xlrxz))aTl
0
+ (x1h1(x1, x2) + xzhz(xlfxz))a*
X2
= (§1X1 + £2Xo + 11 X3 + h2X4)(x1, x2),

where g1, g2, 11, and hp € C°°(R2)Z2. O
Lemma 15. The vector fields

Vi = 20150 + 0350, Yo =203 % + T % \
2
5 (42)

— d — d — d =
Y3 :20—3% +U—]E, Y4 :20—2% "‘0—3%

onY C R3, wherev; = ((Tl-)p: fori=1,2,3, are o related to the Z, invariant vector fields X; (41)
fori=1,2,3.

Proof. The calculation

LXl(Tl = xlg = 2(7’1, LX10'2 = xlg =0, LX10'3 = xla(%ﬁ = 03
LX20'1 = XZ% = 20’3, LX20'2 = XZ% =0, LX20'3 = XZE,(%CTZ) = 0y
LX30’1 = xlg =0, LX30’2 = xl% = 203, LX30’3 = xla(%ﬁ =01
LX40'1 = XZ% =0, LX40'7_ = XZ% = 20'2, LX40'3 = XZE)(%X;CZ) =03

gives the vector fields

o)

Y 9 FIRRY, 9
Yi(01,02,03) = 201 50 + 03 552, Ya(01,02,03) = 20355 + 0250

. . (43)
Y3(Ul/0—2/a3) = 20—3% + %1 85)73/ Y4(01102103) = 20—2% + 0‘33873

on R3. Since L X; ((732 —oy0) = 0fori = 1,2,3,4, the vector fields Yi on R3 given by (43)
leave invariant the ideal I of C°°(R3) generated by 0'% — 0q07. Hence foreachi =1,2,3,4
the vector field 171- define the vector field Y; = 171- |X on X, which is given in Equation (42).
The vector fields Y; are ¢ related to the Z, invariant vector fields X; (41) fori = 1,2, 3,4,
because Y; (0(x)) = (Y;|Z)(01,02,03) = Teo Xi(x). O

Since the tangent to the Hilbert mapping ¢ (38) is defined and is surjective, the tangent
bundle TZ of the semialgebraic variety X (37) is the semialgebraic subset of R” with
coordinates (07, 0,03, Y1, Y2, Y3, Ys) defined by Equation (37) and

0’3171 — 0’1172 =0 and 0’3?3 — 0’1Y4 =0.

By Theorem 2 every smooth vector field on X is ¢ related to a smooth Z; invariant
vector field on R?. Because the C*®(R?)%2 module X(IR?)%2 of smooth Z, invariant vector
fields on R? is generated by the vector fields X; for 1 < i < 4 given by Equation (41), it
follows that the o related vector fields Y; for 1 <i < 4 given by Equation (42) generate the
C*®(X) module X(X) of smooth vector fields on X.
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Lemma 16. The differential 1-forms
@1 = X1 dxl, 132 = X1 dX2, 53 = X7 dxl, §4 = X7 de. (44)
generate the C*®(R?)%2 module A (R?)?%2 of 7, invariant 1-forms on R,

Proof. We use the differential forms

% = dx} = 2x;dxy, 8 = dx} = 2xpdxy,

45
1.93 = d(xle) = X1 dXQ + X2 dxl, 194 = X1 de — X2 dx1 ( )

instead of those given in (44), because we then obtain ¢, = doj for k = 1,2, 3. Suppose that
the 1-form & (x1, x) = f1(x1, x2) dx1 +f2(x1, x2) dxo on R%, where f; € C®°(R?) fori = 1,2,
is invariant under the Z, action generated by ¢ : R? — R? : (x1,x5) + (—x1, —x2). Then
for every (x1,x;) € R?

fi(xa, x2) dxy + fa(x1,x2) dxp = 9(x1, x2) = (£78) (x1, x2)
= fi(—x1, —x2) d(—x1) + fo(—x1, —x2) d(—x2)
= —fi(—x1, —x2) dx1 — fo(—x1, —x2) dx.
So (*¢ = ¢ if and only if for i = 1,2 one has f;(x1,x2) = —fi(—x1, —x3) for every
(x1,x2) € R?. By Lemma 14 if ¢(xq, x2) = —g(—x1, —x7) for some ¢ € C*(IR?), then there

are g; € C®(R?)%2 for i = 1,2 such that g(x;,x2) = x191(x1, x2) + x292(x1, x2) for every
(x1,%2) € R2. Consequently, for some hy, hy, k1, kp € C*® (]Rz)Zz

8(x1,x2) = (x1h1(x1,x2) + x2h2 (%1, x2)) doxg + (x1kq (1, x2) + Xoka (¥, x2)) dixa
= h1(xq,x2) X1 dxq + ho(xq, x2) X2 dxq
+ k1(x1, x2) x1dxp + kz(xl, xz) xp dxp
= T (x1,%2) 01 + (1, %2) 02 + Ky (31, %2) 93 + ka(x1, x2) By,

for every (x1,x;) € R% Here Iy = 2hy, hy = 2ko, ky = ky + h, and ko = ky — hyp. This
proves the lemma. O

Fori=1,...,4 define the 1-forms 6; on X by
U*((Yi|2)_|9i) =X;_11;, (46)

see the proof of Proposition 10. The 1-forms 6; generate the C*(R?/Z;) module of 1-forms
on X, since the Z; invariant 1-forms ¢; for i = 1,...,4 generate the C""(IRZ)ZZ module
A(R?)?%2 of 7, invariant 1-forms on R?, see proposition 23. Every Z, invariant 1-form on
R? is semi-basic, since the Lie algebra of Z; is {0}.

Fact 1. On X we have
91 = dﬁl, 97_ = dﬁz, and 93 = d53. (47)
Let 04 be the 1-form on X defined by its values

Yi|Z 10, =—03, Y2|Z _10,=0y,

_ _ (48)
Y3|Z_l 0y = —0>, Y4|Z_l 0y = —03.

Here 0; = 0j)x for i =1,2,3. The 1-form 84 is not the restriction of a 1-form on R3 to ¥.

Proof. Equation (47) follows immediately from the definition of 8; given in Equation (46).
We give three proofs of the assertion about 6.
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1. Consider the 1 form 0 = 21 doy — 23 doq on R3. Then

2
X7 clx2 — x2 dx1

(T*(H‘Z) = 2%1% = X1 dxz — X2 dx1 = 194.

The following argument shows that the 1 -form 6|z = 203 ‘Z(daz)‘z 203 ‘Z(dal)‘z is not

smooth, because its coefficients are not smooth functions on 2. First we need some
geometric information about the Z; orbit space & C R3 defined by 02 = 010, withoq > 0
and 0, > 0. The only subgroups of Z, are the identity {e} and Z,. The isotropy group
(Zy)yx at x € R?is Zy if x = 0 and {e} if x # 0. The corresponding orbit types are {0} and
R?\ {0}, whose image under the orbit map ¢ is O = {(0,0,0)}, the vectex of the cone %,
and X \ O, which is a smooth manifold. Thus, 9‘(2\0) is a smooth 1-form, whose pull back
under ¢ is the smooth 1-form ¢4 on R? \ {(O 0)}. The 1-form )5\ o) does not extend to

a smooth 1-form 6|5, because the functions 20 5 and 2‘; |5 2Te not smooth at (0,0,0), the
0 0

vertex of the cone X. To see this let 0¥ = (¢?,09,0)) € £\ O. The closed line segment
2,0([0,1]), where £,0 : [0,1] — Z t s to? = (to?, tUg, tag) lies in ¥ and joins (0,0,0) to

2t0) 203
continuous at (0,0,0). A simlhar argument shows that the function 52 = = is not continuous
at (0,0,0).
2. The following argument shows that the 1-form 6, on X defined in Equation (48) is not
the restriction to £ of any smooth 1-form on R3. Suppose it is. Then 6, = Z?:1 Ajdoy, for
some A; € C®(X) = C®(R3)/I, where I is the ideal of C®(R3) generated by 03 — 0107.
Using (48) we obtain

0
0. Now 5L (£ (1)) = = So 72(0,0,0) = 220" Hence the function - 1 is not

_ 0 d = _ =
—3+I=03=Y1|Z 10, = (20’1870_1 -1-0'3%)‘2_, 04 = 201A1 + 03A3,

which implies

— 03 =201A1+03A3+ 1. (49a)
Similarly,
01 =203A1 + 0 Az + 1 (49Db)
—0p =203Ay + 01 Az + 1 (49¢)
—03 = 200Ay +03A3 + 1. (49d)

Set Ay = —0p and A3 = —1+ 203. Then
201 A1 + 03A3 = —20109p — 03 + 20'§ =—03+ L

So Equation (49a) holds. Multiplying (49b) by o7 and (49¢) by 0» and adding gives

oy — 0'22 = 2(0’1141 + 0'7_A7_)0'3 + 20900 A5+ 1
= 203 [0’1A1 + 0y Ay + 0'3A3] + 1= 20’3[—0’10’2 + 0y Ay — 03 + 0'%] +1 =203 [0’2A2 — 03 + 0'32} + L. (50)

But 03 does not divide (712 - 022, which does not lie in I. Thus, Equation (50) does not
hold for any choice of A, € C*(IR?). Hence our hypothesis is false, i.e., the 1-form 6, on
R2/ Z, = X is not the restriction to X of a 1-form on R3.

3. Our third proof is more analytic. The 1-form 6, (48) on the orbit space £ C R3 is not
the restriction to X of a 1 form 6 = 2]3-:1 Ajdo;on R3, where Aj € C*(R3). Suppose that
04 = 0|%, then

o* (d94) = d(O'*94) =dt¥ = d(X1 dxy, — x dxl) = 2dx; Adxo,
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which does not vanish at (0,0) € R?. However, the 2-form

(68}

3 3
o ((d6)]z) = 1d(¢7*Aj) Ao*(dTj) = gd(U*Aj) Ad(0* (@) = gd(U*Aj) NG
j j= j=

vanishes at (0,0), since the 1-forms 8; (44) for j = 1,2,3 vanish at (0,0). This is a contradic-
tion, since df, = d(6|%). O
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