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1. Introduction

Let M(q, K) be the set of all matrices of size q× q with elements from a ring K, GL(q, K)
be the set of all invertible matrices in M(q, K), C[z±1] be the ring C[z, z−1], F〈v1, . . . , vn〉 be the
smallest differential field containing the field F and functions v1, . . . , vn (see Chapter 1 in [1]).

In the theory of transcendental numbers, one of the main methods remains the Siegel–
Shidlovsky method (see [2,3]), with which one can prove transcendence and algebraic
independence of the values of entire functions of a certain class (so-called E-functions).

Siegel calls the entire function

f (z) =
∞

∑
n=0

cn
zn

n!

an E-function, if:

(1) all the numbers cn belong to an algebraic field K of finite degree over Q;
(2) for arbitrary ε > 0 |cn| = O(nεn), n → ∞, where |α| is the maximum of the

absolute values of the algebraic number α and all its conjugates in the field K;
(3) for arbitrary ε > 0 the least common denominator of c1, . . . , cn is O(nεn), n→ ∞.

To apply the Siegel–Shidlovsky method, it is necessary that the functions under
consideration constitute a solution of a system of differential equations and be algebraically
independent over C(z).

The question of algebraic independence of solutions of linear differential equations
and systems of such equations is also of great importance in differential algebra, analytical
theory of differential equations, theory of special functions and calculus in a broad sense.
As shown in the works of E. Kolchin [4], F. Beukers, W. Brownwell and G. Heckman [5], this
question is largely reduced to checking the cogredience and contragredience conditions.

Two systems of linear homogeneous differential equations of the 1st order,

~y ′ = Ak~y, Ak ∈ M(q,C(z)), q > 2, k = 1, 2,
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are called cogredient (respectively, contragredient) if, for arbitrary fundamental matrices
Φ1, Φ2 of these systems, one of the equalities

Φ1 = gBΦ2C, Φ1(Φ2C)T = gB, (1)

holds, where C ∈ GL(C), B ∈ GL(C(z)), g = g(z) is a function with the condition
g′/g ∈ C(z). Similarly, the concepts of cogredience and contragredience are determined
for linear homogeneous differential equations of arbitrary order.

Example 1. Consider Kummer’s functions

Aµ,ν(z) = 1F1

(
ν

µ

∣∣∣∣z) =
∞

∑
n=0

ν(ν + 1) . . . (ν + n− 1)
n!µ(µ + 1) . . . (µ + n− 1)

zn,

satisfying the equations
y′′ +

(
−1 +

µ

z

)
y′ − ν

z
y = 0. (2)

If µ /∈ Z, then the collection of functions {Aµ,ν(z), z1−µ A2−µ, ν−µ+1(z)} is the fundamental
system of solution of Equation (2) (see, for example, Chapter 7 in [6]). Suppose that Φ is the
fundamental matrix corresponding to this collection. Suppose that Ψ is the fundamental matrix,
which is determined similarly for the function Aµ,ν+1(z) and Equation (2), where we change ν to
ν + 1. Then the identity

Ψ =
1
ν

(
ν z
ν z + ν− µ + 1

)
Φ

holds (see [7]).

More complex examples are given at the end of the article.
Examples of cogredience can be obtained from the relations of contiguity for the

hypergeometric function, discovered by Gauss. For arbitrary generalized hypergeometric
functions, the cogredience conditions were obtained by the author (see [8]; Lemma 12
in [7]).

Recall that generalized hypergeometric functions (see [2,3,6,9]) are functions of the form

l ϕq(z) = l ϕq(~ν;~λ; z) = l+1Fq

(
1, ν1, . . . , νl
λ1, . . . , λq

∣∣∣∣z) =
∞

∑
n=0

(ν1)n . . . (νl)n

(λ1)n . . . (λq)n
zn,

where 0 ≤ l ≤ q, (ν)0 = 1, (ν)n = ν(ν + 1) . . . (ν + n − 1), ~ν = (ν1, . . . , νl) ∈ Cl , ~λ ∈
(C \Z−)q.

The function l ϕq(~ν;~λ; z) satisfies (generalized) hypergeometric differential equation

L(~ν;~λ; z)y = (λ1 − 1) . . . (λq − 1),

where

L(~ν;~λ; z) ≡
(

q

∏
j=1

(δ + λj − 1)− z
l

∏
k=1

(δ + νk)

)
, δ = z

d
dz

.

An explicit form of the equation L(~ν;~λ; αzp)y = 0, obtained from L(~ν;~λ; z)y = 0 by
the substitution z −→ αzp, where α ∈ C, p ∈ N, is given in [8,10]. The Wronskian of the
equation L(~ν;~λ; αzp)y = 0 is Lemma 6 in [10]

W = cz−(λ1+···+λq−q)p−(q−1)q/2(1− αzp)(λ1+···+λq−ν1···−νq−q)εeαzpε1 ,

where c ∈ C \ {0}, ε = δl
q, ε1 = δl+1

q , δ
j
i is the Kronecker delta.

If~ν ∈ Ql ,~λ ∈ Qq, l < q, α is an algebraic number, then the function l ϕq(~ν;~λ; αzq−l) is
an E-function (see [2]; Chapter 5 in [3]).
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The first example of contragredience (without mentioning this term) of a system of
differential equations related to hypergeometric functions was apparently constructed
by Yu.V.,Nesterenko (see Lemma 8 in [11]). Cogredience and contragredience theorems
for generalized hypergeometric differential equations, many of which had necessary and
sufficient conditions, were proved by the author in [8] and [7] (Lemma 14). At the same
time, in article [8], in fact a narrower definition was used. According to this definition, we
have the equality (1)

g = zreγz or g = zr exp(γzp + γ1zp1), (3)

where r, γ, γ1 ∈ C, p, p1 ∈ N. The examples constructed in [10–12] were also related to case (3).
In this paper, we find the conditions under which the definitions of cogredient and

contragredient equations or systems in equalities (1), we can restrict ourselves to case (3).

Theorem 1. Let Φk = ‖vk,t,s‖t,s=1,...,q be the fundamental matrices of the systems

~v ′k = Ak~vk, Ak ∈ M(q,C[z±1]), q ≥ 2, k = 1, 2,

moreover
deg trC(z,Wk)

C
〈

vk,1,1, . . . , vk,1,q

〉
= q2 − 1,

Wk = |Φk| = ckzσk exp(αkzpk ), pk ∈ N, ck, σk, αk ∈ C, k = 1, 2.

Then, for the cogredience and contragredience of systems (A1), (A2), it is necessary and
sufficient to satisfy equalities (1) with conditions (3).

2. Proof of the Theorem 1

Lemma 1. (Lemma 6 in [8]). Suppose that F is a differential field with field of constants C.
Suppose that, for any k, 1 ≤ k ≤ n Φk = ‖v

(i)
k,s‖i=0,...,qk−1; s=1,...,qk is the fundamental matrix of

the differential equation

y(qk) + Pk,qk−1y(qk−1) + · · ·+ Pk,0y = 0, qk ≥ 2, Pk,s ∈ F,

and |Φk| ∈ F. Suppose that the field of constants of the differential field L = F
〈
v1,1, . . . , vn,qn

〉
is C, and deg trFL < q2

1 + · · ·+ q2
n − n. Then, either deg trFF

〈
vk,1, . . . , vk,qk

〉
< q2

k − 1 for
some k or, for some indices 1 ≤ j < k ≤ n qj = qk = q holds as well as at least one of the
following equalities:

Φj = aBΦkC, Φj = aB(Φ−1
k )TC, (4)

where a ∈ L, aq ∈ F, B ∈ GL(q,F), C ∈ GL(q,C).

An analog of Lemma 1 for q1 = · · · = qn was proved by E. Kolchin [4].
For groups Sp(2k,C) and SO(n,C) there is a generalization of the assertion of Lemma 1

(see Proposition 1.8.2 in [13]). An implicit analog of Lemma 1 for Galois groups containing
SL(m), Sp(2k), was used in [5] in the proof of the Theorem 2.3.

Assuming in Lemma 1 F = C(z) and changing, if necessary, the numbering of
equations, equalities (4) can be written in the form

Φ1 = AΦ2C, Φ1 = A(Φ−1
2 )TC, (5)

where A is a matrix whose elements are analytic functions, generally speaking, are ambiguous.
Let Ak be the matrix of coefficients of the system, corresponding to the differential

equation with number k, k = 1, . . . , n.
The next Lemma follows from Lemma 1 (see Lemma 7 in [8])

Lemma 2. If under the conditions of Lemma 1 F = C(z), Aj ∈ M(q,C[z±1]), j = 1, . . . , n, then
in equalities (5) A = zrB, B ∈ GL(q,C[z±1]), r ∈ Q, rq ∈ Z.
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Lemma 3. Let V be an arbitrary differential field of analytic functions containing C(z) but not
containing irrational functions, whose logarithmic derivatives belong to C(z). Then, any functions
linearly independent over C(z), whose logarithmic derivatives belong to C(z) will be linearly
independent over V.

Proof of Lemma 3. Let
κ1 f1 + · · ·+κn fn = 0, (6)

κk ∈ V, κk 6≡ 0, f ′k/ fk = gk ∈ C(z), k = 1, . . . , n,

where n ≥ 2 is the smallest possible. Differentiating equality (6), we obtain

(κ′1 +κ1g1) f1 + · · ·+ (κ′n +κngn) fn = 0. (7)

Since the number n is minimal, the linear combinations on the left-hand sides equali-
ties (6) and (7) must be proportional. In this way,

κ′1
κ1

+ g1 =
κ′k
κk

+ gk, k = 1, . . . , n.

Hence, (κk/κ1)
′/(κk/κ1) ∈ C(z) and, since κk/κ1 ∈ V, then κk/κ1 ∈ C(z), k =

1, . . . , n.

Lemma 4. Let Φk = ‖vk,i,s‖i,s=1,...,qk be the fundamental matrix of the system

~v ′k = Ak~vk, Ak ∈ M(qk,C(z)), qk ≥ 2, (8)

|Φk| = Wk = |vk,i,s|i,s ∈ C(z), k = 1, . . . , n and the functions{
vk,i,s

∣∣
k=1,...,n; i,s=1,...,qk ; (i,s) 6=(qk ,qk)

}
(9)

be algebraically independent over C(z). Then the field V generated over C(z) by functions (9) does
not contain irrational functions whose logarithmic derivatives belong to C(z).

Corollary 1. Any linearly (algebraically) independent over C(z) functions whose logarithmic
derivatives belong to C(z), under the conditions of Lemma 4 will be linearly (respectively, alge-
braically) independent over V.

Proof of Lemma 4. If functions (9) are algebraically independent over C(z), then it is con-
venient to carry out all operations with them formally, as with their corresponding variables{

xk,i,s
∣∣
k=1,...,n; i,s=1,...,qk ; (i,s) 6=(qk ,qk)

}
. (10)

The fundamental matrix Φk takes the form

Φk =

 xk,1,1 . . . xk,1,qk
. . . . . . . . .

xk,qk ,1 . . . x̂k,qk ,qk

,

where x̂k,qk ,qk
is a rational function of variables (10), defined by the equation |Φk| = bk ∈

C(z), equivalent to

Ak,qk ,1xk,qk ,1 + · · ·+ Ak,qk ,qk−1xk,qk ,qk−1 + Ak,qk ,qk
x̂k,qk ,qk

= bk,

from where

x̂k,qk ,qk
=

bk − Ak,qk ,1xk,qk ,1 − · · · − Ak,qk ,qk−1xk,qk ,qk−1

Ak,qk ,qk

, (11)
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where Ak,qk ,1, . . . , Ak,qk ,qk
are algebraic complements the corresponding elements of the

matrix Φk, which are polynomials in variables (10). Note that for a different choice of
functions (9) included in Wk, the function bk ∈ C(z), generally speaking, is multiplied by
some factor from C.

The derivatives with respect to z of variables (10) can be calculated formally, proceed-
ing from the systems of Equation (8) and equalities (11).

Let the function v satisfy the equation

y′ = ay, a ∈ C(z) (12)

and belongs to the field V, that is, it can be represented in the form

v = T =
P
Q

, (13)

where T is a rational function over C of functions (9) and z, P and Q are polynomials in the
same functions, (P, Q) = 1.

Replacing functions (9) in equality (13) by variables (10) and differentiating it with
respect to z, we obtain

v′ =
P1

Q1
,

where P1, Q1 are polynomials in variables (10) and z, (P1, Q1) = 1. In view of equality (12)

P1

Q1
= a

P
Q

identically by (10) and z. This implies, that if in equality (13) instead of ~vk,1, . . . ,~vk,qk
,

k = 1, . . . , n we substitute any other linearly independent solutions of the corresponding
systems (Ak), such that Wk = bk, then the function u = T will be a solution of Equation (12)
and, therefore, u = cv, c ∈ C. Let T really depend on the variables included in the
matrix Φ1, and q1 ≥ 3. Substitute in T instead of variables x1,i,1 functions v1,i,1 + λv1,i,2,
i = 1, . . . , q1, where λ is a new variable, and instead of the remaining variables (10), the
corresponding functions (9). Obviously, the Jacobian Wk will not change in this case. Then

c(λ)v = T(v1,1,1 + λv1,1,2, . . . , v1,q1,1 + λv1,q1,2, v1,1,2, . . . , vn,qn−1,qn). (14)

In view of the algebraic independence of functions (9), this equality is preserved when
replacing functions (9) with the corresponding variables (10). Differentiating after such a
change equality (14) with respect to λ and then setting λ = 0, we get

c ′(0)T =
∂T

∂x1,1,1
x1,1,2 +

∂T
∂x1,2,1

x1,2,2 + · · ·+
∂T

∂x1,q1,1
x1,q1,2. (15)

We define the degree of a rational function with respect to any set of variables as the
difference between the degrees of the numerator and denominator for this population. It
is easy check that, with such a definition, the degree of the product of rational functions
is equal to the sum of the powers of the factors, the degree of the sum does not exceed
the maximum degrees of terms, and when taking a partial derivative with respect to
some variable from the selected population, the degree decreases. Hence, the degree of
the right-hand side of equality (15) with respect to the set of variables x1,1,1, . . . , x1,q1,1 is
strictly less than the degree of the left side, except for the case when T does not depend
on these variables, and c ′(0) = 0. Exactly the same reasoning shows that in the case of
q1 ≥ 3 T does not depend on x1,1,s, . . . , x1,q1,s, 2 ≤ s ≤ q1, and in case q1 = 2 T does not
depend on x1,1,2. It remains to prove that for q1 = 2 T does not depend on x1,1,1, x1,2,1.
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Repeating the previous reasoning taking into account that according to Liouville’s formula
v1,2,2 = (v1,2,1v1,1,2 + b1)/v1,1,1, instead of (15) we get

c ′(0)Tx1,1,1 =
∂T

∂x1,1,1
x1,1,1x1,1,2 +

∂T
∂x1,2,1

x1,2,1x1,1,2 +
∂T

∂x1,2,1
b1.

Comparing the degrees in the set of variables x1,1,1, x1,2,1 left and right sides of the
resulting equality, we conclude that T does not depend on x1,1,1 and x1,2,1. Thus, T is
independent on variables (10) included in Φ1, and therefore, on all variables (10).

The Corollary 1 of Lemma 4 is obtained using Lemma 3 and the fact that any product
of powers of functions whose logarithmic derivatives belong to C(z), is a function with the
same property.

Lemma 5. Let the system of equations

~v ′ = A~v, A ∈ M(q,C(z)), q ≥ 2, (16)

have no nontrivial solutions containing zero components, and Φ = ‖vi,s‖i,s=1,...,q be an ar-
bitrary fundamental matrix of this system. Then for any t ∈ {1, . . . , q} the matrix Ψ =

‖u(i)
s ‖i=0,...,q−1;s=1,...,q, where us = vt,s, is the fundamental matrix of a differential equation

v(q) + aq−1v(q−1) + · · ·+ a0v = 0, q ≥ 2, aj ∈ C(z),

moreover, Ψ = ΩΦ, Ω ∈ GL(q,C(z)).

Corollary 2. Let, under the conditions of Lemma 5, W = |Φ|, W◦ = |Ψ|. Then

deg trC(z,W)C
〈
u1, . . . , uq

〉
= deg trC(z,W◦)C

〈
v1,1, . . . , vq,q

〉
.

Proof of Lemma 5. From Lemma 7 of Chapter 3 in [3] it follows that if

R1 = P1,1y1 + · · ·+ P1,qyq, P1,1, . . . , P1,q ∈ C[z], R1 6≡ 0,

and the rank of the set of linear forms

Rk = T
d
dz

Rk−1, k = 2, 3, . . . , T ∈ C[z], TA ∈ M(q,C[z]),

Rk = Pk,1y1 + · · ·+ Pk,qyq, Pk,i ∈ C[z], i = 1, . . . , q,

is less than q, then there is at least one nontrivial solution of system (16), under whose
substitution all linear forms Rk, k ≥ 1 vanish. If R1 = vt,s, where t, s ∈ {1, . . . , q}, this
means that vt,s ≡ 0. Then, in view of the conditions of the Lemma, we obtain that for
any fixed s and t the functions vt,s, . . . , v(q−1)

t,s are linearly independent linear forms of
v1,s, . . . , vq,s. The coefficients of these linear forms are independent of s and therefore
constitute the matrix Ω ∈ GL(q,C(z)), and Ψ = ΩΦ.

Proof of Theorem 1. It is enough to show what if equalities (1) are not satisfied with
conditions (3), then they are not satisfied with the condition g′/g ∈ C(z).

It is easy to check that the matrix Φ◦k = W−1/q
k Φk will be the fundamental matrix of

the system (Bk), where

Bk = Ak + gkE, gk = −
W ′k
qWk

= −TrAk
q
∈ C[z±1], |Φ◦k | = 1, k = 1, 2.
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The matrix Φ◦k satisfies the conditions of Lemma 5, therefore the matrix

Ψk = ‖(W
−1/q
k vk,1,s)

(i)‖i=0,...,q−1; s=1,...,q is the fundamental matrix of the differential equation

v(q) + ak,q−1v(q−1) + · · ·+ ak,0v = 0, ak,j ∈ C(z),

moreover, Ψk = ΩkΦ◦k , Ωk ∈ GL(q,C(z)), k = 1, 2. If equalities (1) with conditions (3) are
not satisfied for the matrices Φk for B ∈ GL(q,C[z±1]), then, according to Lemma 2, they
also fail for Φ◦k for B ∈ GL(q,C(z)). Then, conditions (4) of Lemma 1, in which we put
F = C(z), cannot hold for matrices Ψk. Therefore, from Lemma 1 we obtain that 2q2 − 2
of functions {

(W−1/q
k vk,1,s)

(i)
∣∣∣
k=1,2; i=0,...,q−1; s=1,...,q; (i,s) 6=(q−1,q)

}
are algebraically independent over C(z). Then, in view of Corollary 2, are algebraically
independent over C(z) 2q2 − 2 functions{

W−1/q
k vk,t,s

∣∣∣
k=1,2; t,s=1,...,q; (t,s) 6=(q,q)

}
.

Since (W1/q
k )′/W1/q

k ∈ C(z), hence, taking into account Corollary 1, we conclude that
equalities (1) are impossible.

3. Conclusions

1. Consider the functions

Kλ(z) = 0F1

(
−

λ + 1

∣∣∣∣− z2

4

)
=

∞

∑
n=0

(−1)n

n!(λ + 1)n

( z
2

)2n
,

which differ from the Bessel’s functions Jλ(z) with the index λ only by multiplier (z/2)λ(Γ(λ +
1))−1 and satisfying the equations

y′′ +
2λ + 1

z
y′ + y = 0. (17)

Theorem 1 allows us, in particular, to describe all algebraic identities between the
functions Kλ(z) and Kummer’s functions Aµ,ν(z). Consider

Example 2. Suppose that 2λ ∈ C \ Z, α ∈ C, p ∈ N, and Φ1, Φ2, Φ3 are the fundamental
matrices corresponding to the collections of functions
{Kλ(αzp), z−2pλK−λ(αzp)}, {A2λ+1,λ+1/2(2iαzp), z−2pλ A1−2λ,1/2−λ(2iαzp)},
{A1−2λ,1/2−λ(−2iαzp),−z2pλ A2λ+1,λ+1/2(−2iαzp)},
respectively. Φ1, Φ2, Φ3 are fundamental matrices of the 2nd order linear differential equations,
which are easy to obtain from Equations (2) and (17). Then the identities

Φ1 = e−iαzp
(

1 0
−ipαzp−1 1

)
Φ2,

Φ1ΦT
3 = 2pλz−1e−iαzp

(
0 −1
1 −ipαzp−1 + 2pλz−1

)
hold (see [12]).

Are there other algebraic identities between Kλ(z) and Aµ,ν(z)?
Theorem 1 is applicable to the functions l ϕq(~ν;~λ; αzp) for l < q. Therefore, the necessary

and sufficient conditions of cogredience and contragredience of generalized hypergeometric
equations from article [8] that were found for the case (3) are also valid for the general
definition (1). This comment also applies to the article [10], where conditions of cogredience
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and contragredience were also discussed. According to [8,10], Example 2 is the only case
of cogredience and contragredience between the equations that are obtained from (2)
and (17) by the substitution z −→ αzp. Therefore, according to [5,8], other algebraic
identities between Kλ(z) and Aµ,ν(z), different from the identities derived from Example 2
do not exist.

2. The lack of cogredience and contragredience allows one to conclude about the
algebraic independence of generalized hypergeometric functions over C(z) (see [5,8]).
It follows the algebraic independence of their values (see [2,3]). Using the theorems of
Chapters 11–13 of the book [3] (or their more exact analogs from [14]), one can also obtain
lower estimates of moduli of polynomials of the values.

Funding: This research received no external funding.
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