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Abstract: In literature, there are a number of cryptographic algorithms (RSA, ElGamal, NTRU, etc.)
that require multiple computations of modulo multiplicative inverses. In this paper, we describe the
modulo operation and we recollect the main approaches to computing the modulus. Then, given
a and n positive integers, we present the sequence (zj)j≥0, where zj = zj−1 + aβ j − n, a < n and
GCD(a, n) = 1. Regarding the above sequence, we show that it is bounded and admits a simple
explicit, periodic solution. The main result is that the inverse of a modulo n is given by a−1 = bimc+ 1
with m = n/a. The computational cost of such an index i is O(a), which is less than O(n ln n) of
the Euler’s phi function. Furthermore, we suggest an algorithm for the computation of a−1 using
plain multiplications instead of modular multiplications. The latter, still, has complexity O(a) versus
complexityO(n) (naive algorithm) or complexityO(ln n) (extended Euclidean algorithm). Therefore,
the above procedure is more convenient when a << n (e.g., a < ln n).

Keywords: extended-Euclid algorithm; RSA algorithm; modular multiplicative inverse; public-
key cryptography

MSC: 11T71; 11Y16; 11Y05

1. Introduction

The modulo operation returns the remainder of a division, after one number is divided
by another number called “modulus”. In other terms, given two positive numbers a and n,
a mod n is the remainder of the Euclidean division of the dividend a by the divisor n.

A modular multiplicative inverse of an integer a is an integer x such that the product
ax is congruent to 1 with respect to the modulus n, and it is denoted as

ax ≡ 1 (mod n) .

Modulo n is an equivalence relation. The equivalence class of the integer a, denoted by
an, is the set {. . . , a− 2n, a− n, a, a + n, a + 2n, . . .}. This set, consisting of all the integers
congruent to a modulo n, is called congruence class or residue class of the integer a
modulo n.

If a has an inverse modulo n, then there are an infinite number of solutions that belong
to the congruence class with respect to the said modulus. In addition, any integer that is
congruent to a will have any element of x’s congruence class as a modular multiplicative
inverse. In other terms, denoted with the symbol ·n, the multiplication of equivalence
classes modulo n, the modulo multiplicative inverse of the congruence class a is the
congruence class x such that:

a ·n x = 1 .
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This multiplication is the analogue of the multiplicative inverse in the set of real
numbers where numbers are replaced by congruence classes. Therefore, a fundamental use
of this operation is to solve (whenever possible) linear congruences of the form

ax ≡ b (mod n) . (1)

The solution of Equation (1) has practical applications in the field of public-key
cryptography and, in particular, in the Rivest–Shamir–Adleman (RSA) algorithm [1] where
encryption and decryption are performed by using a pair of large prime numbers that are
multiplicative inverses with respect to a selected modulus.

When invented, RSA was considered one of the most effective algorithms because
there was no key exchange in the encryption and decryption processes. In the RSA
algorithm, the strength depends on the factorization problem that is NP complete [2] and
the key length was the only way to protect systems. However, the RSA key is broken from
time to time due to the development of both software and computer speed. To counter
that, developers have increased key length from one time to another to maintain a high
security and privacy to systems that are protected by the RSA. Other countermeasures vary
from using multiple public and private keys [3] to enhance and secure the RSA public key
cryptosystem (ESRPKC) algorithm using the Chinese remainder theorem [4], from the use
of a pair of random numbers and their modular multiplicative inverse [5] to the Cuckoo
Search Optimization (CSA) algorithm for securing data integrity in the cloud [6]. For a
survey, see Mumtaz et al. [7].

As mentioned, cryptographic algorithms rely on multiple computations of modulo
multiplicative inverses. Examples are the RSA cryptographic algorithm by [8,9], RSA
with digital signature [10], ElGamal cryptocol [11]; encryption and decryption schemes
based on extraction of square roots [12], NTRU cryptosystem [13], modular multiplicative
inverse (MMI) for cryptanalysis of public-key cryptographic protocols [14], etc. Recently,
Boolean functions have gained attraction because of some interesting properties from a
cryptographic point of view such as “nonlinearity, propagation criterion, resiliency, and
balance” [15]. However, following similar research on RSA cryptographic algorithms, we
focused on the problem of encrypting/decoding information based on the use of the vector-
modular methods. For example, Yakymenko et al. [16] suggest a modular exponential
to “replace the complex operation of modular multiplication with the addition operation,
which increases the speed of the RSA cryptosystem”. In our case, instead, we investigate
the properties of the sequence (zj)j≥0 in Definition 1, which we show to be useful for
computing the inverse modulo. In particular, for the above sequence, we show that it
is bounded and admits a simple explicit, periodic solution. Next, we illustrate that the
inverse of a modulo n is given by a−1 = bimc+ 1 with m = n/a. The advantage is that the
computational cost of such an index i is O(a) versus O(n ln n) of the Euler’s phi function.
Finally, we suggest an algorithm for calculating a−1 using plain multiplications instead of
modular multiplications. The latter, again, has complexity O(a) versus complexity O(ln n)
of the extended Euclidean algorithm. Therefore, the above procedure is more convenient
when a << n (e.g., a < ln n). Those results are new in literature.

This work is divided as follows: Section 2 describes the main approaches to the
computation of modulus. Section 3 illustrates the sequence (zj)j≥0 along with some of its
properties. Section 4 presents the conclusions.

2. Main Approaches to the Computation of Modulus

In the following, we describe the most common methods to compute the inverse
modulo n.

2.1. Naive Method (Recursive Multiplications)

This is the simplest way to compute the inverse of a positive integer a, modulo n,
with a < n and greatest common divisor GCD(a, n) = 1. We have to multiply a by all the
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elements of N∗n = {1, 2, ..., n− 1} and the first of them which gives a product equal to 1
(modulo n) will be the inverse of a. The complexity in this case is O(n).

Example 1. To find the inverse of a = 6 modulo n = 7, we have to multiply a by every element of
N∗7 = {1, 2, ..., 6}, i.e.,

1 · 6 = 6 (mod 7), 2 · 6 = 12 ≡ 5 (mod 7), 3 · 6 = 18 ≡ 4 (mod 7),

4 · 6 = 24 ≡ 3 (mod 7), 5 · 6 = 30 ≡ 2 (mod 7), 6 · 6 = 36 ≡ 1 (mod 7).

Therefore, a−1 = 6 modulo 7.

2.2. Euler’s Phi Function

The following approach was introduced in modern terms by Gauss with reference to
Euler (even though the method has been reported before [17]). Given a positive integer n,
the Euler’s phi function Φ(n) (or Euler’s totient function) counts the number of primes, up
to n, which are relatively prime to n. It can be expressed as

Φ(n) = n ∏
pj

∣∣n
(

1− 1
pj

)
,

with pj’s being the primes dividing n. Given a positive integer a, with a < n and
GCD(a, n) = 1, one has

aΦ(n) ≡ 1 (mod n)

due to the well-known Fermat’s little theorem. The above relation provides an explicit
formula for the inverse of a modulo n that is

a−1 = aΦ(n)−1. (2)

However, the calculation of Φ(n) is equivalent to doing the prime factorization of n,
hence the complexity of Formula (2) isO(n ln n). Thus, despite (2) giving a closed formula,
it is less convenient than a recursive algorithm (like those of Sections 2.1 and 2.3).

Example 2. To compute the inverse of 23 modulo 36 through Formula (2), one has

Φ(36) = 36
(

1− 1
2

)(
1− 1

3

)
= 12,

and 2312−1 ≡ 11 (mod 36), i.e., 23−1 ≡ 11 (mod 36).

2.3. Extended Euclidean Algorithm

One of the ancient methods to compute the GCD between two integers a, b, with a > b,
is given by the Euclidean algorithm. It is based on the following property: if both a and
b divide a same integer c, then also their difference a− b divides c. The algorithm states
that GCD(a, b) = b if the difference d = a− b is equal to b; otherwise, a, b are replaced by
max{a− b, b} and min{a− b, b}, respectively, and the previous procedure is repeated by
computing the new difference d. Table 1 describes the pseudocode of the algorithm.
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Table 1. Pseudocode of the Euclidean algorithm (repeated differences).

1. Initialize i = 0, ai = a, bi = b and Flag = 0;
2. while Flag = 0
3. set di = ai − bi;
4. if ai − bi = bi
5. set Flag = 1;
6. else set i = i + 1, ai = max{ai−1 − bi−1, bi−1}, and bi = min{ai−1 − bi−1, bi−1};
7. end
8. end
9. set GCD(a, b) = di.

An interesting extension of such method works with repeated divisions instead of the
repeated differences. By computing the following quotients qi and remainders ri,

a = b · q0 + r0,

b = r0 · q1 + r1,

r0 = r1 · q2 + r2,

...

ri−1 = ri · qi+1 + ri+1,

...

it is possible to say that GCD(a, b) is the last non-zero remainder ri. The complexity of this
method is O(ln n). The pseudocode of this procedure is reported in Table 2.

Table 2. Pseudocode of the Euclidean algorithm (repeated divisions).

1. Initialize i = 0, ai = a, bi = b, and let qi, ri be the quotient and the remainder
of ai/bi, respectively ;

2. if r0 = 0
3. let GCD(a, b) = b;
4. else
5. while ri 6= 0
6. set i = i + 1, ai = bi−1,bi = ri−1, and let qi, ri be the quotient and the remainder

of ai/bi, respectively;
7. end
8. set GCD(a, b) = ri−1.
9. end

The above method allows us to compute the inverse modulo n through the so-called
Bézouts’s identity which states that there exist two integer s, t such that

GCD(a, b) = s · a + t · b.

The numbers s, t can be computed from the quotients qi (i ≥ 0), by reversing the order
of the equations in the Euclidean algorithm (with repeated divisions). Beginning with the
last non-zero remainder ri, we can write

GCD(a, b) = ri = ri−2 − qi · ri−1.

The quantity ri−1, ri−2 may be likewise expressed in terms of their quotients and
preceding remainders, i.e.,

ri−1 = ri−3 − qi−1 · ri−2,

ri−2 = ri−4 − qi−2 · ri−3.
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Substituting these formulas into the first equation yields GCD(a, b) as a linear sum of
ri−3, ri−4. The process of substituting remainders by formulas involving their predecessors
can be continued until a and b are reached, as follows:

...

r2 = r0 − q2 · r1,

r1 = b− q1 · r0,

r0 = a− q0 · b.

After all the remainders ri (i ≥ 0) have been replaced, the final equation expresses
GCD(a, b) as the linear combination s · a + t · b.

In the special case that GCD(a, b) = 1, then t is the multiplicative inverse of b, modulo
a, or, equivalently, s is the multiplicative inverse of a, modulo b.

The pseudocode of this method is shown in Table 3.

Table 3. Pseudocode of the inverse modulo n (through the extended Euclidean algorithm).

1. Compute qj, rj, −2 ≤ j ≤ i (where r−1 = a, r−2 = n and ri = 1 is the last remainder)
by the extended Euclidean algorithm (see Table 2) between a and n;

2. for j = i : −1 : −2
3. write rj as linear combination of rj−1 and rj−2;
4. end
5. set a−1 equal to the coefficient multiplied by a in the final recursive relation.

Example 3. Consider a = 27 and n = 392. Obviously, GCD(27, 392) = 1. The extended
Euclidean algorithm gives

392 = 27 · 14 + 14,

27 = 14 · 1 + 13,

14 = 13 · 1 + 1.

By rewriting the next steps backward, we obtain

1 = 14− 13 · 1 = 14− (27− 14 · 1) = 2 · 14− 2 = 2(392− 27 · 14)− 27 = 2 · 392+ 27(−29),

where −29 ≡ 363 (mod 392). Hence, we can conclude that 27−1 ≡ 363 (mod 392).

3. The Sequence zj: Definition and Properties

In this section, given a and n positive integers, we define the sequence (zj)j≥0, where
zj = zj−1 + aβ j − n, a < n and GCD(a, n) = 1. For the said sequence, we illustrate some
properties and results useful to the computation of the inverse modulo.

3.1. Definitions and Main Results

Definition 1. Given two positive integers a, n with a < n and GCD(a, n) = 1, define the sequence
(zj)j≥0 as follows:

zj = zj−1 + aβ j − n (j ≥ 1), (3)

starting from z0 = 0, with {
β1 = M
β j =

⌊ n−zj−1
a
⌋
+ 1 j ≥ 2,

(4)

with M being the ceiling part of m := n/a.

Observe that β j’s represent the (ceiling) difference between n and zj relative to a.
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Next, the Proposition gives an explicit expression for the sequence (zj)j≥0.

Proposition 1. The explicit form of the sequence (zj)j≥0 defined in (3) is given by

zj = a
j

∑
h=1

βh − jn. (5)

Proof. The proof is immediate, indeed starting from definition (3), one has

z1 = aβ1 − n,

z2 = z1 + aβ2 − n = a(β1 + β2)− 2n,

...

zj = zj−1 + aβ j − n = a
j

∑
h=1

βh − jn.

The following Proposition gives an explicit, and more convenient, expression for the
sequence (β j)j≥1.

Proposition 2. Let (β j)j≥1 be the sequence defined in (4). For any j ≥ 1, it holds that

β j = bjmc − b(j− 1)mc, (6)

with m = n/a. Moreover,
j

∑
h=1

βh = bjmc+ 1. (7)

Proof. First of all, observe that (6) implies that the partial sum is (7), since

j

∑
h=1

βh =
j

∑
h=1

(
bhmc − b(h− 1)mc

)
=

bjmc − b(j− 1)mc+ b(j− 1)mc − b(j− 2)mc+ ... + b3mc − b2mc+ b2mc − bmc+ M =

bjmc − bmc+ M = bjmc+ 1,

being bmc = M− 1.
Formula (6) can be proved by induction on j. Indeed, if j = 2, by relation (3), one has

β2 =

⌊
n− z1

a

⌋
+ 1 =

⌊
n− aM + n

a

⌋
+ 1 = b2mc −M + 1 = b2mc − bmc.

Now, if (6) holds true up to the index (j− 1), then, by relations (5) and (7), it is easy to
see that

β j =

⌊n− zj−1

a

⌋
+ 1 =

⌊
n− a ∑

j−1
h=1 βh + (j− 1)n

a

⌋
+ 1 = bjmc − b(j− 1)mc − 1 + 1 =

bjmc − b(j− 1)mc.

Corollary 1. The sequence (zj)j≥0 defined in (3) can be rewritten as

zj = a
(
bjmc+ 1

)
− jn (j ≥ 1), (8)
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with z0 = 0.

Proof. The assertion results by combining relations (5) and (7).

Now, we are able to state the main results of this section.

Theorem 1. Consider two positive integers a, n with a < n and GCD(a, n) = 1. Let (zj)j≥0 be
the sequence defined in (3) and i ≥ 1 the index such that zi = 1. Then, due to (8), the inverse of a
modulo n is given by

a−1 = bimc+ 1, (9)

with m = n/a.

Proof. Since GCD(a, n) = 1, from the Bézouts’s identity, there exists an index i ≥ 1 such
that zi = 1. Indeed, without loss of generality, there exist a pair of positive integers g, i
such that

1 = ga− in.

Fixing i, from the above equation, we obtain

g = im +
1
a
= bimc+ ϕi +

1
a
= bimc+ 1, (10)

where we denote by
ϕj = jm− bjmc (j ≥ 0), (11)

the fractional part function of jm. In particular, the last equality of (10) holds true because
both g and bimc are positive integers. Thus, as ϕi and 1

a belong to (0, 1) we can say that
ϕi +

1
a must be equal to 1. Hence,

1 = a
(
bimc+ 1

)
− in,

and, more specifically,
a
(
bimc+ 1

)
≡ 1 (mod n),

which implies
a−1 ≡ bimc+ 1 (mod n),

where the last equality comes from Proposition 2. Finally, notice that bimc+ 1 < n (see
Corollary 2) and this concludes the proof.

3.2. Properties of the Sequence zj

To better understand the nature of the sequence (zj)j≥0, we illustrate the following
properties.

Proposition 3. The sequence (zj)j≥1 defined in (3) is periodic with a period equal to a.

Proof. For any j ≥ 1, we have to prove that zj+a = zj. Let us proceed by induction on j.
If j = 1,

z1+a = a(b(1 + a)mc+ 1)− (1 + a)n = aM + an− n− an = z1.

Now, if the assertion holds true for (j− 1), from relation (3), we may write

zj+a = z(j−1)+a + aβ j+a − n = zj−1 + a
(
b(j + a)mc − b(j + a− 1)mc

)
− n,

where

b(j + a)mc − b(j + a− 1)mc = bjm + nc − b(j− 1)m + nc = bjmc − b(j− 1)mc.
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Therefore, we get

zj+a = zj−1 + a
(
bjmc − b(j− 1)mc

)
− n = zj−1 + aβ j − n = zj.

Corollary 2. The sequence (zj)j≥0 defined in (3) is less than n. In particular, the modular inverse
defined in (9) is also less than n.

Proof. From Proposition 3, we have to prove that zj < n for any 0 ≤ j ≤ a. For this
purpose, distinguish the following three cases:

(i) The j = 0 is trivial.
(ii) If 0 < j < a, we have

zj = a(jm− ϕj + 1)− jn = a(1− ϕj) < a < n.

(iii) The case j = a may be proved analogously to ii).

Finally, it is clear that the modular inverse defined in (9), i.e., bimc+ 1, is less than n
since i ≤ a− 1.

To see what was observed up to now, we shall consider a numerical example.

Example 4. Choose a = 131 and n = 621. Obviously, GCD(a, n) = 1 that guarantees the
existence of a−1. It is obtained by i = 27 and

131−1 =

⌊
27 · 621

131

⌋
+ 1 = 128,

modulo 621. Figure 1 shows the behavior of the sequence (zj)j≥0. In particular, the blue line denotes
the series when 1 ≤ j ≤ 203, while those colored in red represent the entire sequence from two
consecutive unitary zi’s (circled in red), i.e., i = 27 and i = 158. As proved, the series (zj)j≥1 is
periodic with a period equal to 131 and any value less than 621.

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

Figure 1. Sequence (zj)1≤j≤203 when a = 131 and n = 621. The red line highlights the entire sequence
(zj)j≥1 between two consecutive unitary zi’s (red circles).
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3.3. Limitations and Future Challenges

A limitation of the proposed approach is that we have left the problem of determining
the index i unsolved. In fact, by virtue of Theorem 1, we need to compute zi = 1, such that

a
(
bimc+ 1

)
− in = 1. (12)

Observe that bimc = im− ϕi, where ϕi is defined by (11), and can be easily computed,
as follows.

Proposition 4. Let i be the solution of Equation (12); then, one has

ϕi =
a− 1

a
. (13)

Proof. Equation (12) gives

1 = a
(
bimc+ 1

)
− in = a

(
im− ϕi + 1

)
− in = a(1− ϕi),

which implies Formula (13).

Example 5. With reference to Example 4, we have m = 4.7405 and i = 27. By computing
ϕi directly from i, we obtain the value 0.9924, which coincides with that given by the a priori
Formula (13).

The knowledge of ϕi jointly with the periodicity information given by Proposition 4
suggests to solve the problem (12) by the simple algorithm described in Table 4.

Table 4. Pseudocode of a simple algorithm to solve (12).

1. Initialize j = 0, zj = 0 and set m = n/a, ϕ = (a− 1)/a;
2. while zj 6= 1
3. set zj = a(jm− ϕ + 1)− jn and j = j + 1;
4. end
5. set i = j− 1 and a−1 = a(im− ϕ + 1).

Notice that the complexity of the algorithm just shown in Table 4 is O(a). Therefore,
the above procedure is more convenient when a << n (e.g., a < ln n). In addition, when a
is close to n, the algorithm in Table 4 is still better compared to the naive algorithm in Table 1
(since it involves simple multiplications instead of modular multiplications). Furthermore,
Equation (9) represents a closed formula for the modular inverse, as does Equation (2),
where the computational cost of the index i is O(a). This is less than O(n ln n) of the
Euler’s phi function. These features are a clear advantage when n is large.

4. Conclusions

In this article, we have introduced the modulo operation and described the most
common methods for computing the inverse modulo n. Hence, we have shown that, to
solve the problem in Equation (12) through a closed formula, we need to investigate the
properties of the sequence (zj)j≥0. The fact that the sequence (zj)j≥0 admits a simple
explicit form which is periodic (for j ≥ 1) helps us in understanding the features of (zj)j≥0.
In particular, we have shown that the computational cost is O(a) versus O(n ln n) of
Euler’s phi function. In terms of implementation, we suggest an algorithm for calculating
a−1 using plain multiplications instead of modular multiplications. From a practical point
of view, this approach is quite convenient because it has complexity O(a) compared to
O(ln n) of the extended Euclidean algorithm. This result is related to the characteristics of
i, and, consequently, of a−1. Next, research will focus on the determination of the index i
such that zi = 1.
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