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Abstract: In this paper, we investigate the Lagrange dynamics generated by a class of isoperimet-
ric constrained controlled optimization problems involving second-order partial derivatives and
boundary conditions. More precisely, we derive necessary optimality conditions for the considered
class of variational control problems governed by path-independent curvilinear integral functionals.
Moreover, the theoretical results presented in the paper are accompanied by an illustrative example.
Furthermore, an algorithm is proposed to emphasize the steps to be followed to solve a control
problem such as the one studied in this paper.
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1. Introduction

In the last decade, several researchers (see, for instance, Treanţă [1–8], Jayswal et al. [9]
and Mititelu and Treanţă [10]) have studied several controlled processes by considering some
integral functionals with PDE, PDI, or mixed constraints. More specifically, these researchers
have introduced and investigated new classes of optimization problems governed by multi-
ple and path-independent curvilinear integral functionals with mixed constraints involving
first-order PDEs of m-flow type, partial differential inequations and boundary conditions.
In this regard, quite recently, Treanţă [11] established the optimality conditions for a class of
constrained interval-valued optimization problems governed by path-independent curvilinear
integral (mechanical work) cost functionals. More exactely, he formulated and proved a
minimal criterion of optimality such that a local LU-optimal solution of the considered
constrained optimization problem to be its global LU-optimal solution. On the other
hand, due to their importance in the applied sciences and engineering, the isoperimet-
ric constrained optimization problems have been introduced, studied and analyzed by
many researchers. In this respect, by using the Pontryagin’s principle, Schmitendorf [12]
established necessary optimality conditions for a class of isoperimetric constrained control
problems with inequality constraints at the terminal time. Further, Forster and Long [13]
have studied the same isoperimetric constrained optimization problem formulated in
Schmitendorf [12] (see, also, Schmitendorf [14]). They have established the associated
necessary conditions of optimality by considering an alternative transformation technique.
Recently, Benner et al. [15] investigated bang-bang control strategies corresponding to pe-
riodic trajectories with isoperimetric constraints for a control problem, with application to
nonlinear chemical reactions. For other different but connected ideas on this subject, the
reader is directed to the following reasearch works [16–20].

In this paper, motivated and inspired by the research works conducted by Hestenes [21],
Lee [22], Schmitendorf [12] and Treanţă [4], we introduce a new class of isoperimetric
constrained controlled optimization problems governed by path-independent curvilinear
integral functionals which involves second-order partial derivatives and boundary conditions.
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Concretely, in comparison with other related research papers, without restrict our analysis
to linear systems having convex cost (see Lee [22]), we build a mathematical framework
that is more general than in Hestenes [21] and Schmitendorf [12], both by the presence of
path-independent curvilinear integrals as isoperimetric constraints but also by the inclusion
of second-order partial derivatives and the new proof associated with the main result.
Furthermore, besides totally new elements mentioned above, due to the physical meaning of
the integral functionals used (as is well-known the path-independent curvilinear integrals
represent the mechanical work performed by a variable force in order to move its point of
application along a given piecewise smooth curve), this paper becomes a fundamental work
for researchers in the field of applied mathematics and ingineering.

The paper is divided as follows. Section 2 introduces the controlled optimization
problem under study, and includes the main result of the current paper, namely, Theorem 1.
This result establishes the necessary conditions of optimality for the considered isoperi-
metric constrained variational control problem. Furthermore, an illustrative example is
presented in the second part of Section 2. Moreover, to emphasize the steps to be followed
to solve a control problem such as the one studied in this paper, an algorithm is presented.
Section 3 contains the conclusions of the paper.

2. Isoperimetric Constrained Controlled Optimization Problem

In the following, let Lζ

(
s(t), sγ(t), sαβ(t), u(t), t

)
, ζ = 1, m, be C3-class functions,

called multi-time controlled second-order Lagrangians, where t = (tα) = (t1, · · · , tm) ∈
Λt0,t1 ⊂ Rm

+, s = (si) =
(

s1, · · · , sn
)

: Λt0,t1 → Rn is a C4-class function (called the

state variable) and u = (uϑ) =
(

u1, · · · , uk
)

: Λt0,t1 → Rk is a piecewise continuous

function (called the control variable). Furthermore, denote sα(t) :=
∂s
∂tα

(t), sαβ(t) :=

∂2s
∂tα∂tβ

(t), α, β ∈ {1, ..., m}, and consider Λt0,t1 = [t0, t1] (multi-time interval in Rm
+) is a

hyper-parallelepiped determined by the diagonally opposite points t0, t1 ∈ Rm
+. Moreover,

we assume that the previous multi-time controlled second-order Lagrangians determine a
controlled closed (complete integrable) Lagrange 1-form

Lζ

(
s(t), sγ(t), sαβ(t), u(t), t

)
dtζ

(see summation over the repeated indices, Einstein summation), which generates the
following controlled path-independent curvilinear integral functional

J(s(·), u(·)) =
∫

Υt0,t1

Lζ

(
s(t), sγ(t), sαβ(t), u(t), t

)
dtζ , (1)

where Υt0,t1 is a smooth curve, included in Λt0,t1 , joining the points t0, t1 ∈ Rm
+.

Isoperimetric constrained controlled optimization problem. Find the pair (s∗, u∗) that
minimizes the above controlled path-independent curvilinear integral functional (1), among all the
pair functions (s, u) satisfying

s(t0) = s0, s(t1) = s1, sγ(t0) = s̃γ0, sγ(t1) = s̃γ1

and the isoperimetric constraints (constant level sets of some controlled curvilinear integral func-
tionals) defined as follows:∫

Υt0,t1

ga
ζ

(
s(t), sγ(t), sαβ(t), u(t), t

)
dtζ = la, a = 1, 2, · · · , r ≤ n,

where
ga

ζ

(
s(t), sγ(t), sαβ(t), u(t), t

)
dtζ , a = 1, 2, · · · , r
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are (C1-class functions) complete integrable differential 1-forms, that is, Dγgζ = Dζ gγ, γ, ζ ∈

{1, · · · , m}, γ 6= ζ, where Dγ :=
∂

∂tγ
, γ ∈ {1, · · · , m}.

In order to formulate the necessary optimality conditions of the above controlled
optimization problem (1), associated with the aforementioned isoperimetric constraints,
we introduce the curve Υt0,t ⊂ Υt0,t1 and the auxiliary variables

ya(t) =
∫

Υt0,t
ga

ζ

(
s(τ), sγ(τ), sαβ(τ), u(τ), τ

)
dτζ , a = 1, 2, · · · , r,

which satisfy ya(t0) = 0, ya(t1) = la. It results that the functions ya fulfil the following
controlled complete integrable first-order PDEs

∂ya

∂tζ
(t) = ga

ζ

(
s(t), sγ(t), sαβ(t), u(t), t

)
, ya(t1) = la.

Now, under the Abadie constraint qualifications, considering the Lagrange multiplier
p = (pa(t)) and by denoting y = (ya(t)), we build new multi-time controlled second-order
Lagrangians

L1ζ

(
s(t), sγ(t), sαβ(t), u(t), y(t), yζ(t), p(t), t

)
= Lζ

(
s(t), sγ(t), sαβ(t), u(t), t

)
+pa(t)

(
ga

ζ

(
s(t), sγ(t), sαβ(t), u(t), t

)
− ∂ya

∂tζ
(t)
)

, ζ = 1, m,

which change the initial controlled optimization problem (with isoperimetric constraints
defined by controlled path-independent curvilinear integral functionals) into an uncon-
strained controlled optimization problem

min
(s(·), u(·), y(·), p(·))

∫
Υt0,t1

L1ζ

(
s(t), sγ(t), sαβ(t), u(t), y(t), yζ(t), p(t), t

)
dtζ (2)

s(tq) = sq, sγ(tq) = s̃γq, q = 0, 1

y(t0) = 0, y(t1) = l.

According to Lagrange theory (Treanţă [4]), a minimum point of (1) is found among
the minimum points of (2).

A multi-index (see Saunders [23]) is an m-tuple U of natural numbers. The components
of U are denoted U(α), where α is an ordinary index, 1 ≤ α ≤ m. The multi-index
1α is defined by 1α(α) = 1, 1α(β) = 0 for α 6= β. The addition and the substraction
of the multi-indexes are defined componentwise (although the result of a substraction
might not be a multi-index): (U ± V)(α) = U(α) ± V(α). The length of a multi-index

is | U |=
m

∑
α=1

U(α), and its factorial is U! =
m

∏
α=1

(U(α))!. The number of distinct indices

represented by {α1, α2, ..., αk}, αj ∈ {1, 2, ..., m}, j = 1, k, is

µ(α1, α2, ..., αk) =
| 1α1 + 1α2 + ... + 1αk |!
(1α1 + 1α2 + ... + 1αk )!

.
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The following theorem represents the main result of this paper. It establishes the
necessary conditions of optimality associated with the considered isoperimetric constrained
controlled optimization problem.

Theorem 1. If (s∗(·), u∗(·), y∗(·), p∗(·)) is solution for (2), then

(s∗(·), u∗(·), y∗(·), p∗(·))

is solution of the following Euler–Lagrange system of PDEs

∂L1ζ

∂si − Dγ
∂L1ζ

∂si
γ

+
1

µ(α, β)
D2

αβ

∂L1ζ

∂si
αβ

= 0, i = 1, n, ζ = 1, m

∂L1ζ

∂uϑ
− Dγ

∂L1ζ

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂L1ζ

∂uϑ
αβ

= 0, ϑ = 1, k, ζ = 1, m

∂L1ζ

∂ya − Dζ
∂L1ζ

∂ya
ζ

+
1

µ(α, β)
D2

αβ

∂L1ζ

∂ya
αβ

= 0, a = 1, r, ζ = 1, m

∂L1ζ

∂pa
− Dγ

∂L1ζ

∂pa,γ
+

1
µ(α, β)

D2
αβ

∂L1ζ

∂pa,αβ
= 0, a = 1, r, ζ = 1, m

where pa,γ :=
∂pa

∂tγ
, pa,αβ :=

∂2 pa

∂tα∂tβ
, uϑ

αβ :=
∂2uϑ

∂tα∂tβ
, ya

αβ :=
∂2ya

∂tα∂tβ
, α, β, γ, ζ ∈ {1, 2, ..., m}.

Proof. Let (s(t), u(t), y(t), p(t)) be a solution for (2) and s(t) + εh(t) is a variation of s(t),

with h(t0) = h(t1) = 0, hη(t0) = hη(t1) = 0, η ∈ {1, 2, ..., m} (see hη :=
∂h
∂tη ). Fur-

thermore, let p(t) + εf(t) be a variation of p(t), with f(t0) = f(t1) = 0. In the same
manner, consider u(t) + εm(t), y(t) + εn(t) be a variation of u(t) and y(t), respectively,
with m(t0) = m(t1) = n(t0) = n(t1) = 0. The functions h, f, m, n represent some “small”
variations and ε is a “small” parameter used in our variational arguments. By considering
the aforementioned variations, the controlled curvilinear integral functional becomes a
function depending by ε, that is, a controlled curvilinear integral with parameter

I(ε) =
∫

Υt0,t1

L1ζ(s(t) + εh(t), sγ(t) + εhγ(t), sαβ(t) + εhαβ(t), u(t) + εm(t),

y(t) + εn(t), yζ(t) + εnζ(t), p(t) + εf(t), t)dtζ .

By hypothesis, we must have the following relation

0 =
d
dε

I(ε)|ε=0 =
∫

Υt0,t1

(∂L1ζ

∂sj hj +
∂L1ζ

∂sj
γ

hj
γ +

1
µ(α, β)

∂L1ζ

∂sj
αβ

hj
αβ +

∂L1ζ

∂uϑ
mϑ

+
∂L1ζ

∂ya na +
∂L1ζ

∂ya
ζ

na
ζ +

∂L1ζ

∂pa
fa
)

dtζ

= BT +
∫

Υt0,t1

(∂L1ζ

∂sj − Dγ
∂L1ζ

∂sj
γ

+
1

µ(α, β)
D2

αβ

∂L1ζ

∂sj
αβ

)
hjdtζ

+
∫

Υt0,t1

(∂L1ζ

∂ya − Dζ
∂L1ζ

∂ya
ζ

+
1

µ(α, β)
D2

αβ

∂L1ζ

∂ya
αβ

)
nadtζ

+
∫

Υt0,t1

(∂L1ζ

∂uϑ
− Dγ

∂L1ζ

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂L1ζ

∂uϑ
αβ

)
mϑdtζ
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+
∫

Υt0,t1

(∂L1ζ

∂pa
− Dγ

∂L1ζ

∂pa,γ
+

1
µ(α, β)

D2
αβ

∂L1ζ

∂pa,αβ

)
fadtζ .

Taking into account the formula of integration by parts, we find the following equalities

∂L1ζ

∂sj
γ

hj
γ = −hjDγ

∂L1ζ

∂sj
γ

+ Dγ

(
∂L1ζ

∂sj
γ

hj

)
,

∂L1ζ

∂ya
ζ

na
ζ = −naDζ

∂L1ζ

∂ya
ζ

+ Dζ

(
∂L1ζ

∂ya
ζ

na

)
,

1
µ(α, β)

∂L1ζ

∂sj
αβ

hj
αβ =

1
µ(α, β)

hjD2
αβ

∂L1ζ

∂sj
αβ

− Dα

hjDβ
∂L1ζ

∂sj
αβ

+ Dβ

∂L1ζ

∂sj
αβ

hj
α

.

The boundary terms BT vanish (see, also, h(tq) = m(tq) = n(tq) = f(tq) = 0, hη(tq) =
0, q = 0, 1), by considering the following equalities

Dγ

(
∂L1ζ

∂sj
γ

hj

)
= Dζ

(
∂L1γ

∂sj
γ

hj

)
,

Dα

hjDβ
∂L1ζ

∂sj
αβ

 = Dζ

hjDβ
∂L1α

∂sj
αβ

,

Dβ

∂L1ζ

∂sj
αβ

hj
α

 = Dζ

∂L1β

∂sj
αβ

hj
α

.

In addition, we assume that the solution (s(t), u(t), y(t), p(t)) in (2) fulfils the fol-
lowing complete integrability conditions (closeness conditions) of Lagrange 1-form L1ζ ,
that is,

∂L1ζ

∂si
∂si

∂tα
+

∂L1ζ

∂si
γ

∂si
γ

∂tα
+

1
µ(α, β)

∂L1ζ

∂si
αβ

∂si
αβ

∂tα
+

∂L1ζ

∂pa

∂pa

∂tα
+

∂L1ζ

∂tα

+
∂L1ζ

∂uϑ

∂uϑ

∂tα
+

∂L1ζ

∂ya
∂ya

∂tα
+

∂L1ζ

∂ya
ζ

∂ya
ζ

∂tα

=
∂L1α

∂si
∂si

∂tζ
+

∂L1α

∂si
γ

∂si
γ

∂tζ
+

1
µ(α, β)

∂L1α

∂si
αβ

∂si
αβ

∂tζ
+

∂L1α

∂pa

∂pa

∂tζ
+

∂L1α

∂tζ

+
∂L1α

∂uϑ

∂uϑ

∂tζ
+

∂L1α

∂ya
∂ya

∂tζ
+

∂L1α

∂ya
ζ

∂ya
ζ

∂tζ
.
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Furthermore, we assume that the variation functions h, f, m, n satisfy the closeness
conditions of the 1-form

L1ζ(s(t) + εh(t), sγ(t) + εhγ(t), sαβ(t) + εhαβ(t), u(t) + εm(t),

y(t) + εn(t), yζ(t) + εnζ(t), p(t) + εf(t), t)dtζ .

This condition adds the following PDEs

∂L1ζ

∂si
∂hi

∂tα
+

∂L1ζ

∂si
γ

∂hi
γ

∂tα
+

1
µ(α, β)

∂L1ζ

∂si
αβ

∂hi
αβ

∂tα
+

∂L1ζ

∂pa

∂fa

∂tα

+
∂L1ζ

∂uϑ

∂mϑ

∂tα
+

∂L1ζ

∂ya
∂na

∂tα
+

∂L1ζ

∂ya
ζ

∂na
ζ

∂tα

=
∂L1α

∂si
∂hi

∂tζ
+

∂L1α

∂si
γ

∂hi
γ

∂tζ
+

1
µ(α, β)

∂L1α

∂si
αβ

∂hi
αβ

∂tζ
+

∂L1α

∂pa

∂fa

∂tζ

+
∂L1α

∂uϑ

∂mϑ

∂tζ
+

∂L1α

∂ya
∂na

∂tζ
+

∂L1α

∂ya
ζ

∂na
ζ

∂tζ
.

Finally, we get

0 =
∫

Υt0,t1

(∂L1ζ

∂sj − Dγ
∂L1ζ

∂sj
γ

+
1

µ(α, β)
D2

αβ

∂L1ζ

∂sj
αβ

)
hjdtζ

+
∫

Υt0,t1

(∂L1ζ

∂ya − Dζ
∂L1ζ

∂ya
ζ

+
1

µ(α, β)
D2

αβ

∂L1ζ

∂ya
αβ

)
nadtζ

+
∫

Υt0,t1

(∂L1ζ

∂uϑ
− Dγ

∂L1ζ

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂L1ζ

∂uϑ
αβ

)
mϑdtζ

+
∫

Υt0,t1

(∂L1ζ

∂pa
− Dγ

∂L1ζ

∂pa,γ
+

1
µ(α, β)

D2
αβ

∂L1ζ

∂pa,αβ

)
fadtζ

and, since the smooth curve Υt0,t1 is arbitrary, we obtain the Euler–Lagrange system of
PDEs formulated in theorem.

Remark 1. The Euler–Lagrange system of PDEs in Theorem 1 can be rewritten as follows

∂L1ζ

∂si − Dγ
∂L1ζ

∂si
γ

+
1

µ(α, β)
D2

αβ

∂L1ζ

∂si
αβ

= 0, i = 1, n, ζ = 1, m

∂L1ζ

∂uϑ
− Dγ

∂L1ζ

∂uϑ
γ

+
1

µ(α, β)
D2

αβ

∂L1ζ

∂uϑ
αβ

= 0, ϑ = 1, k, ζ = 1, m

∂pa

∂tζ
= 0, a = 1, r, ζ = 1, m

∂ya

∂tζ
(t) = ga

ζ

(
s(t), sγ(t), sαβ(t), u(t), t

)
, a = 1, r, ζ = 1, m.

In consequence, the Lagrange multiplier p is constant. Moreover, it is well determined only if
the optimal solution is not an extrem for at least one of the following controlled path-independent
curvilinear integral functionals∫

Υt0,t1

ga
ζ

(
s(t), sγ(t), sαβ(t), u(t), t

)
dtζ , a = 1, r.
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Illustrative example. Let us find the minimum for the following controlled curvilinear integral
functional

J(s(·), u(·)) =
∫

Υ0,1

(
s2(t) + u2(t)

)
dt1 +

(
s2(t) + u2(t)

)
dt2

subject to:
∫

Υ0,1

st1(t)dt1 + st2(t)dt2 = 0 (path-independent curvilinear integral) and the boundary

conditions s(0, 0) = 0, s(1, 1) = 0, where Υ0,1 is a C1-class curve, included in [0, 1]2, joining the
points (0, 0), (1, 1).

Solution. The path-independence associated with the cost functional J(s(·), u(·)) gives the relation

s
( ∂s

∂t2 −
∂s
∂t1

)
= u

( ∂u
∂t1 −

∂u
∂t2

)
.

Furthermore, the associated Lagrange 1-form has the following components

L11 = s2(t) + u2(t) + p(yt1(t)− st1(t)),

L12 = s2(t) + u2(t) + p(yt2(t)− st2(t))

and the extremals are described by the following system of Euler–Lagrange PDEs

2s +
∂p
∂t1 = 0, 2s +

∂p
∂t2 = 0,

2u = 0,

yt1(t)− st1(t) = 0, yt2(t)− st2(t) = 0,

implying that (s∗, u∗) = (0, 0) is the optimal solution of the considered isoperimetric constrained
controlled optimization problem.

Further, taking into account the above illustrative example and the theory developed
in the paper, we formulate an algorithm. The main intention of the next algorithm is
to synthesize the concrete steps to be followed to solve a control problem such as those
studied in the paper. In particular, for a controlled path-independent curvilinear integral
cost functional and a set of mixed (isoperimetric and boundary conditions) restrictions
and self or normal data, the main goal is to find (s?, u?) (satisfying the set of mixed
constraints and normal data) such that J(s?, u?) ≤ J(s, u), for all feasible points (s, u). For
this purpose, we start with a feasible point (s, u). If the pair (s, u) fulfils the necessary
optimality conditions formulated in Theorem 1, then the “Generating Stage” (see below) is
satisfied and we go to the next step, namely “Detecting Stage”; else, the algorithm stops.
If the set of self or normal data is fulfilled, then the “Detecting Stage” is satisfied and we
go to the next step, namely “Deciding Stage” (see below); else, the algorithm stops. For
(s?, u?) derived in “Detecting Stage”, if J(s?, u?) ≤ J(s, u) holds for all feasible points (s, u),
then (s?, u?) is an optimal solution; else, the Algorithm 1 stops.
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Algorithm 1:
DATA:

• controlled path-independent curvilinear integral cost functional

min
(s,u)

J(s, u) =
∫

Υt0,t1

Lζ

(
s(t), sγ(t), sαβ(t), u(t), t

)
dtζ ;

• set of mixed constraints∫
Υt0,t1

ga
ζ

(
s(t), sγ(t), sαβ(t), u(t), t

)
dtζ = la, a = 1, 2, · · · , r ≤ n

and
s(tq) = sq, sγ(tq) = s̃γq, q = 0, 1;

• set of self or normal data
- the differential 1-form g =

(
ga

ζ

)
satisfies the closeness conditions;

RESULT:

S = {(s?, u?)|J(s?, u?) ≤ J(s, u),

with (s?, u?) satisfying the set

of ; mixed ; constraints ; and ; normal ; data};

BEGIN

• Generating Stage: consider (s, u) a feasible point
if the necessary optimality conditions (see Theorem 1)
are not compatible with respect to (s, u)
then STOP
else GO to the next step

• Detecting Stage: monitoring of Lagrange multipliers
if the set of self or normal data is not fulfilled
then STOP
else GO to the next step

• Deciding Stage: let (s?, u?) be derived in Detecting Stage
if J(s, u) ≥ J(s?, u?) holds for all feasible points (s, u)
then (s?, u?) is an optimal solution
else STOP

END

3. Conclusions

In this paper, we have studied a new class of isoperimetric constrained controlled op-
timization problems. In accordance with Lagrange Theory, necessary optimality conditions
have been formulated and proved for the considered class of variational control problems
governed by path-independent curvilinear integrals and second-order partial derivatives.
The theoretical mathematical results developed in the paper have been highlighted by an
illustrative example and an algorithm.

As a new research direction on the class of problems introduced in this paper, we
mention, for example, the study of well-posedness.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Axioms 2021, 10, 112 9 of 9

Conflicts of Interest: The author declares no conflict of interest.

References
1. Treanţă, S. A necessary and sufficient condition of optimality for a class of multidimensional control problems. Optim. Control

Appl. Methods 2020, 41, 2137–2148. [CrossRef]
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