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1. Introduction

The invariant manifold theory started with the work of Hadamard [1] in 1901 when
he constructed a manifold in the solution space of a differential equation with the property
that if the trajectory of a solution starts in the manifold, it will remain in the manifold for
all time t > 0. This proved to be of great importance for analyzing complex systems as it
reduces the relevant dimension significantly. Later, Perron [2] and Lyapunov [3] developed
another method to construct the invariant manifolds for autonomous differential equations.
In the 1970s, due to the fundamental works of Hirsch et al. [4,5], Sacker and Sell [6], and
Pesin [7,8], this theory became an important instrument for various fields like applied
mathematics, biology, and engineering.

In the first method for constructing the invariant manifolds, Hadamard [1] used the
geometrical properties of differential equations. He constructed the manifold over the
linearized stable and unstable subspaces. However, Lyapunov [3] and Perron [2] developed
an analytical method to construct the invariant manifolds. They obtained the invariant
manifolds, using the variation of constants formula of the differential equations. In his
approach, Perron introduced (and assumed) the notion of (uniform) exponential dichotomy
for the solution operators and proved the existence of Lipschitz stable invariant manifolds
for the small nonlinear perturbation of autonomous differential equations. The smoothness
of these invariant manifolds is proved by Pesin [7]. In 1977, Pesin [8] generalized the notion
of uniform hyperbolicity to nonuniform hyperbolicity which allows the rate of expansion
and contraction to depend on initial time. Later he proved the stable manifold theorem in
the finite-dimensional settings for nonhyperbolic trajectories. Pugh and Shub [9] proved a
similar result for nonhyperbolic trajectories using the method developed by Hadamard.
Ruelle [10] extended the result by Pesin to the Hilbert space settings in 1982.

The exponential dichotomy played an essential role in the development of invariant
manifold theory for autonomous differential equations. Barreira and Valls extended the
notion of exponential dichotomy for nonautonomous differential equations and called
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it nonuniform exponential dichotomy. With the assumption of nonuniform exponential
dichotomy, they constructed the Lipschitz invariant manifold [11] and smooth invariant
manifold [12] for nonautonomous differential equations. They also obtained the essential
conditions for the existence of the nonuniform exponential dichotomy. The book [13]
contains all the early works of Barreira and Valls.

Barreira and Valls observed that the solution operators corresponding to a class of
nonautonomous differential equations show dichotomic behavior and also they have
growth or decay rates of ecρ(t), for some function ρ(t). They named this notion as ρ-
nonuniform exponential dichotomy. They showed in article [14] that the class of differential
equations for which all the Lyapunov’s exponents are infinite, satisfies ρ-nonuniform
exponential dichotomy for ρ(t) 6= t. Subsequently they proved the stable manifold theorem
for ordinary differential equations assuming ρ-nonuniform exponential dichotomy in [15].
In the article [16], Pan proved the existence of Lipschitz stable invariant manifold for
impulsive nonautonomous differential equations with the assumption of ρ-nonuniform
exponential dichotomy.

In this article, we consider a differential equation with the infinite delay given by,

x′ = Ax(t) + Lxt + f (t, xt), xs = φ, (1)

in a Banach space X. We assume that the solution operator associated with the correspond-
ing linear delay differential equation

x′ = Ax(t) + Lxt, xs = φ, (2)

satisfies ρ-nonuniform exponential dichotomy and the nonlinear perturbation f (t, xt) is
sufficiently small and smooth. With these assumptions, we prove the existence of a C1 stable
invariant manifold for the delay differential Equation (1) following the approach of Perron
and Lyapunov. We also showed the dependence of invariant manifolds on perturbations.

Barreira and Valls used the ρ-nonuniform exponential dichotomy for the nonau-
tonomous differential equations in [17] to construct the Lipschitz stable invariant manifold
and in [18] to construct the smooth invariant manifold. Pan considered the impulsive
differential equation in [16], to construct the Lipschitz stable invariant manifold assuming
ρ-nonuniform exponential dichotomy. In the article [19], we considered the case of delay
differential equations with nonuniform exponential dichotomy and constructed a Lipschitz
invariant manifold. However, in this article, we are assuming a more general ρ-nonuniform
exponential dichotomy for differential equation with infinite delay and we are constructing
a C1 stable invariant manifold. In the later part of the article, we also show that a small
change in perturbation gives rise to a small variation in the manifold.

The paper is arranged in the following manner. Our setup and some preliminary
results are given in Section 2. In the next section, we provide a few examples of differential
equations satisfying the ρ-nonuniform exponential dichotomy. Section 3 contains the
proof of the existence of the C1 stable invariant manifold, and in Section 4, we prove the
dependency of the manifold on perturbation. In the end, we present a few more examples
satisfying the assumptions of our main theorem.

2. Preliminaries

Let (X, ‖ ‖X) be a Banach space. For any interval J ⊂ R := (−∞, ∞), we denote
C(J, X) as a space of X-valued continuous function on J. For a function x : (−∞, a]→ X
and t ≤ a, we define a function xt : R− := (−∞, 0] → X by xt(θ) := x(t + θ) for θ ∈ R−.
Furthermore, let Cγ be a space of continuous functions defined by

Cγ :=
{

ψ ∈ C(R−, X) : lim
θ→−∞

‖ψ(θ)‖Xeγθ = 0
}

,
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for γ > 0. We define a norm on the phase space Cγ,

‖ψ‖Cγ
:= sup

θ∈R−
‖ψ(θ)‖Xeγθ , ψ ∈ Cγ.

Finally, we consider a linear delay differential equation in the Banach space X,

x′ = Ax(t) + Lxt, xs = φ,

for (s, φ) ∈ R+ × Cγ. The linear operator A : X → X generates a strongly continuous
compact semigroup {T(t, s)}t≥0 and L : Cγ → X is a bounded linear operator. Let the
evolution operator corresponding to the above differential equation is denoted by V(t, s)
and for φ ∈ Cγ, V(t, s) is given by

[V(t, s)φ](θ) = xt(θ, s, φ, 0), θ ∈ R−, t ≥ s. (3)

One can easily see that the evolution operator defines a strongly continuous semigroup
and for every t ≥ s ≥ r ≥ 0, it satisfies the semigroup property given by:

V(t, s)V(s, r) = V(t, r), and V(t, t) = I.

Here, I is an identity operator on Cγ. For a continuous function p : R → X, we
consider the perturbed system of delay differential equation:

x′ = Ax(t) + Lxt + p(t), xs = φ. (4)

Let the solution of the above delay differential equation is denoted by (xt(s, φ, p). Now,
we give a representation of xt(s, φ, p) depending on the evolution operator {V(t, s)}t≥s.
Let us introduce a function Γn given by

Γn(θ) =

{
(nθ + 1)IX , −1

n ≤ θ ≤ 0,
0, θ < −1

n ,

where n is any positive integer and IX is the identity operator on X. It is easy to verify that
for y ∈ X,

Γny ∈ Cγ and ‖Γny‖Cγ
≤ max{1, e

−γ
n }‖ y ‖X ≤ ‖ y ‖X . (5)

The next result by Hino and Naito [20] establishes the variation of constants formula
for the delay differential Equation (4) in the phase space Cγ.

Proposition 1. Let (s, φ) ∈ R+×Cγ be given. Then the segment xt(s, φ, p) of solution x(·, s, φ, p)
of non-homogeneous functional differential Equation (4) satisfies the following relation in Cγ:

xt(s, φ, p) = V(t, s)φ + lim
n→∞

∫ t

s
V(t, τ) Γn p(τ) dτ, t ≥ s. (6)

Definition 1. [ρ-nonuniform exponential dichotomy] Let ρ : [0, ∞) → [0, ∞) be an increasing
function with ρ(t) → ∞ as t → ∞. We say that the linear Equation (2) admits a ρ-nonuniform
exponential dichotomy if for every t ≥ s ≥ 0, there exist projection maps P(t) : Cγ → Cγ,
constants a < 0 ≤ b, ε ≥ 0 and K > 1, such that :

(i) P(t)V(t, s) = V(t, s)P(s);
(ii) VQ(t, s) := V(t, s) : Q(s)Cγ → Q(t)Cγ is invertible, where Q(t) = I − P(t) is the

complementary projection ;
(iii)

‖V(t, s)P(s)‖ ≤ Kea(ρ(t)−ρ(s))+ερ(s), ‖VQ(t, s)−1Q(t)‖ ≤ Ke−b(ρ(t)−ρ(s))+ερ(t). (7)
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Now, for each t ≥ 0, we define

E(t) := P(t)(Cγ) and F(t) := Q(t)(Cγ).

We call E(t) and F(t) stable and unstable subspace respectively. Let us take examples
of some differential equations which satisfy ρ-nonuniform exponential dichotomy.

Remark 1. Here we are presenting a few examples of differential equations that satisfy the ρ-
nonuniform exponential dichotomy. In the first example, we consider a case where differential
equation satisfies ρ-nonuniform exponential dichotomy for ρ(t) = t.

Example 1. [21]

x′(t) =
(
− α− cos t

a + sin t
+ β t sin t

)
x(t), (8)

for α > 2β > 0.
Let V(t, s) be the solution operator of the above problem, then

V(t, s) = e−α(t−s)−ln(a+sin t)+ln(a+sin s)+β(s cos s−t cos t)+β(sin t−sin s).

‖V(t, s)‖ = e−α(t−s)−ln(a+sin t)+ln(a+sin s)+β(s cos s−t cos t)+β(sin t−sin s)

≤ e2β+2(ln(a+1)) e(−α+β)(t−s)+2βs

= Ce(−α+β)(t−s)+2βs.

Note that (−α + β) < 0 and C is a constant. Hence, the differential equation satisfies
ρ-nonuniform exponential dichotomy with ρ(t) = t.

In the next example, we consider a system of two differential equations which satisfies
ρ-nonuniform exponential dichotomy with ρ(t) = t2.

Example 2.

x′(t) =
( −2ωt

1 + e−t2 + 2ε t
(
t2 sin t2 − 1

))
x(t),

y′(t) =
( 2ωt

1 + e−t2 − 2ε t
(
t2 cos t2 − 1

))
y(t),

for some ω > 2ε > 0.
The evolution operator for linear system above is given by

T(t, s) =
[

U(t, s) 0
0 V(t, s)

]
,

where

U(t, s) = e
−ω(t2−s2)−ω ln (1+e−t2 )

(1+e−s2
)
+ε(s2 cos s2−t2 cos t2)+ε(sin t2−sin s2)−ε(t2−s2)

and

V(t, s) = e
ω(t2−s2)+ω ln (1+e−t2 )

(1+e−s2
)
+ε(s2 sin s2−t2 sin t2)+ε(cos t2−cos s2)−ε(t2−s2)

.

Now, for the projection map P(t)(x, y) = (x, 0),

‖T(t, s)P(t)‖ = ‖U(t, s)‖ ≤ e2ε+ω ln 2e−ω(t2−s2)+2εs2
,



Axioms 2021, 10, 105 5 of 14

and

‖T(t, s)−1Q(t)‖ = ‖V(t, s)−1‖ ≤ e2ε+ω ln 2e−ω(t2−s2)+2εt2
,

for t ≥ s ≥ 0. Hence, the linear system satisfies ρ-nonuniform exponential dichotomy with
a = −ω < 0 and b = ω > 0 where ρ(t) = t2.

3. Stable Manifold Theorem

This section is dedicated to the construction of the C1 stable invariant manifold for
the delay differential Equation (1). Let Ω be the space of continuous functions f (t, φ) :
R+ × Cγ → X such that

(i) f (t, 0) = 0 and ∂ f
∂φ (t, 0) = 0 for all t ≥ 0 ;

(ii) There exists a positive function b : [0, ∞)→ (0, ∞) such that,

‖ ∂j f
∂φj (t, φ)− ∂j f

∂φj (t, ψ)‖X ≤ b(t)‖φ− ψ‖Cγ
, (9)

for j = 0, 1.

Proposition 1 ensures the existence of global solution xt(·, s, φ, f ) of the differential
Equation (1) with the above mentioned properties of perturbation f (t, xt). We also assume
that the solution operator V(t, s) satisfies ρ-nonuniform exponential dichotomy. Therefore,
Using the projection maps, we can project the global solution xt = (ut, vt) ∈ E(t)× F(t)
with initial condition (us, vs) ∈ E(s)× F(s) and it satisfy

ut = V(t, s)us + lim
n→∞

∫ t

s
P(t)V(t, τ)Γn f (τ, uτ , vτ)dτ, (10)

vt = V(t, s)vs + lim
n→∞

∫ t

s
Q(t)V(t, τ)Γn f (τ, uτ , vτ)dτ, (11)

for t ≥ s, here u(t) and v(t) are called stable solution and unstable solution respectively.
Since we want our manifold to be in the form of a graph of some C1 function, therefore

let us consider a space of C1 functions χ consisting of Φ(s, ·) : E(s) → Cγ such that for
each s ≥ 0,

1. Φ(s, 0) = 0; (∂Φ/∂φ)(s, 0) = 0 and Φ(s, E(s)) ⊂ F(s).
2. For every φ, ψ ∈ E(s) and for j = 0, 1,

‖∂jΦ
∂φj (s, φ)− ∂jΦ

∂φj (s, ψ)‖Cγ
≤ ‖φ− ψ‖Cγ

. (12)

Using the result of [22], χ is a Banach space with the norm,

|Φ|′ := sup

{
‖Φ(s, φ)‖Cγ

‖φ‖Cγ

: s ≥ 0 and φ ∈ E(s) \ {0}
}

. (13)

Given Φ ∈ χ, we consider the graph

WΦ = {(s, φ, Φ(s, φ)) : (s, φ) ∈ [0, ∞)× E(s)}. (14)

Furthermore, for each κ ∈ R+, let Ψκ be the semiflow generated by the
autonomous equation

t′ = 1, x′ = Ax(t) + Lxt + f (t, xt).
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Given κ = t− s ≥ 0 and (s, us, vs) ∈ R+ × E(s)× F(s), we have

Ψκ(s, us, vs) = (s + κ, us+κ , vs+κ) = (t, ut, vt), (15)

where ut and vt are solutions on stable and unstable subspaces respectively given by
Equations (10) and (11).

Here are our assumptions to obtain the C1 manifold for the Equation (1).

(H1) a + ε ≤ 0.
(H2) 0 < M = sups≥0{

∫ ∞
s b(τ)eερ(τ)dτ} < ∞ with 4KM < 1.

(H3) 0 < M̄ = sups≥0{e(b−a+ε)ρ(s) ∫ ∞
s e(a−b+ε)ρ(τ)b(τ)dτ} < ∞ with 12K2M̄ < 1.

In the following Theorem, we give the existence of a C1 stable invariant manifold for
the perturbed Equation (1).

Theorem 1. Assume that the linear Equation (2) satisfies ρ-nonuniform exponential dichotomy
with (H1) and the perturbation in (1) satisfies (9) with (H2), (H3), then there exists a C1 function
Φ ∈ χ such that the set WΦ, defined by the Equation (14), is forward invariant under the semiflow
Ψκ , in the sense that for each κ ≥ 0, Ψκ(WΦ) ⊆ WΦ. Furthermore, for every κ = t− s ≥ 0;
φ, ψ ∈ E(s) there exists D > 0 such that

‖Ψκ(s, φ, Φ(s, φ))−Ψκ(s, ψ, Φ(s, ψ))‖Cγ
≤ Dea(ρ(t)−ρ(s))+ερ(s)‖φ− ψ‖Cγ

. (16)

Outline: We want our manifold to be invariant under the semiflow, this means that the
trajectory of the solutions should remain in the manifold for all time t ≥ 0, provided it starts
in the manifold. Since our choice of manifold is graph of some C1 function Φ, therefore, in
the manifold, the solution x(t) must take the form, x(t) = (u(t), Φ(t, u(t))) ∈ E(t)× F(t)
with (us, vs) ∈ E(s)× F(s) where u(t), Φ(t, u(t)) satisfy

ut = V(t, s)us + lim
n→∞

∫ t

s
P(t)V(t, τ)Γn f (τ, uτ , Φ(τ, uτ))dτ, (17)

Φ(t, ut) = V(t, s)vs + lim
n→∞

∫ t

s
Q(t)V(t, τ)Γn f (τ, uτ , Φ(τ, uτ))dτ. (18)

Now, we are going to prove some lemmas which will be helpful in giving the existence
of C1 smooth manifold. In our first lemma, we establish the existence of solution in the
stable direction given by Equation (17).

Lemma 1. Given (s, φ, Φ) ∈ [0, ∞)× E(s)×χ, there exists a unique C1 function u : (−∞, ∞)×
E(s)→ X with us = φ and ut ∈ E(t) for each t ≥ s. The function ut also satisfies Equation (17)
for every t ≥ s and for each φ ∈ E(s) the segment ut satisfies:

‖ut‖Cγ
≤ 2Kea(ρ(t)−ρ(s))+ερ(s)‖φ‖Cγ

. (19)

Proof. Let Ω∗ be the space of all C1 functions u : (−∞, ∞) × E(s) → X such that the
following properties satisfies:

(1) us = φ, and ut ∈ E(t) for every t ≥ s and for each φ ∈ E(s) with the norm,

‖u‖∗ := sup
t≥s,φ∈E(s)\{0}

{
‖ut‖Cγ

‖φ‖Cγ

e−σ(t)

}
≤ 2K. (20)
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(2) The function u ∈ Ω∗ satisfies

α(ut) := sup
t≥s,φ∈E(s)\{0}

{∥∥∥∂ut

∂φ

∥∥∥e−σ(t)
}
≤ 2K, (21)

β(ut) := sup
t≥s,φ1,φ2∈E(s)\{0}

{∥∥∥∂ut

∂φ
(φ1)−

∂ut

∂φ
(φ2)

∥∥∥ e−σ(t)−ερ(s)

‖φ1 − φ2‖

}
≤ 2K, (22)

where σ(t) = a(ρ(t)− ρ(s)) + ερ(s). It follows from result in [22] that Ω∗ is a complete
metric space with norm in (20). Given (s, φ) ∈ [0, ∞) × E(s) and Φ ∈ χ, we define an
operator L : Ω∗ → Ω∗ as

(Lu)t = V(t, s)φ + lim
n→∞

∫ t

s
V(t, τ)P(τ)Γn f (τ, uτ , Φ(τ, uτ))dτ.

Note that (Lu)s = φ and (Lu)t ∈ E(t) for every t ≥ s. Now using Equations (5), (7),
(9), (12) and (20), we have

‖(Lu)t‖Cγ

≤ ‖V(t, s)φ‖Cγ
+ lim

n→∞

∫ t

s
‖V(t, τ)P(τ)‖‖Γn f (τ, uτ , Φ(τ, uτ))‖Cγ

dτ

≤ Kea(ρ(t)−ρ(s))+ερ(s)‖φ‖Cγ
+
∫ t

s
Kea(ρ(t)−ρ(τ))+ερ(τ)b(τ)‖(uτ , Φ(τ, uτ))‖Cγ

dτ

≤ Kea(ρ(t)−ρ(s))+ερ(s)‖φ‖Cγ
+ 2K

∫ t

s
ea(ρ(t)−ρ(τ))+ερ(τ)b(τ)‖uτ‖Cγ

dτ

≤ 2Kea(ρ(t)−ρ(s))+ερ(s)‖φ‖Cγ

(
1
2
+ 2K‖u‖∗

∫ t

s
b(τ)eερ(τ)dτ

)
.

Therefore,

‖(Lu)‖∗ ≤
1
2
+ 2KM‖u‖∗ < ∞. (23)

Hence, L(Ω∗) ⊂ Ω∗. Now, let u, v ∈ Ω∗, then again using Equations (5), (7), (9), (12)
and (20),

‖(Lu)t − (Lv)t‖Cγ

≤
∫ t

s
Kea(ρ(t)−ρ(τ))+ερ(τ)‖ f (τ, uτ , Φ(τ, uτ))− f (τ, vτ , Φ(τ, vτ))‖Xdτ

≤ 2K
∫ t

s
ea(ρ(t)−ρ(τ))+ερ(τ)b(τ)‖uτ − vτ‖Cγ

dτ

≤ 4K2‖φ‖Cγ
ea(ρ(t)−ρ(s))+ερ(s)‖u− v‖∗

∫ t

s
b(τ)eερ(τ)dτ.

Furthermore we can write, ‖Lu− Lv‖∗ ≤ 2KM‖u− v‖∗.
Since KM < 1

4 , therefore L is a contraction map in Ω∗ which ensures a unique fixed
point function u ∈ Ω∗ such that Lu = u. Using Equation (23), we have,

‖u‖∗ ≤
1
2
+ 2KM‖u‖∗.

Hence, for every t ≥ s,

‖ut‖Cγ
≤ 2Kea(ρ(t)−ρ(s))+ερ(s)‖φ‖Cγ

.
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Next, we give the alternate form for our manifold map.

Lemma 2. Given Φ ∈ χ, let ut be the stable solution given by Lemma 1 for (s, φ) ∈ [0, ∞)× E(s).
Then, for Φ, the following properties holds,

1. If (s, φ) ∈ [0, ∞)× E(s) and for every t ≥ s

Φ(t, ut) = V(t, s)Φ(s, φ) + lim
n→∞

∫ t

s
V(t, τ)Q(τ)Γn f (τ, uτ , Φ(τ, uτ))dτ, (24)

then for all (s, φ) ∈ [0, ∞)× E(s),

Φ(s, φ) = − lim
n→∞

∫ ∞

s
V−1

Q (τ, s)Q(τ)Γn f (τ, uτ , Φ(τ, uτ))dτ. (25)

2. If Equation (25) holds for all (s, φ) ∈ [s, ∞)× E(s), then Equation (24) holds for all t ≥ s
and ut = ut(s, φ, Φ) while (s, φ) ∈ [s, ∞)× E(s).

Proof. Let us first show the validity of the integral in (25) for each fixed n > 0. Using
ρ-nonuniform exponential dichotomy and Equations (9), (12), (19), we have

‖
∫ ∞

s
V−1

Q (τ, s)Q(τ)Γn f (τ, uτ , Φ(τ, uτ))dτ‖Cγ

≤
∫ ∞

s
Ke−b(ρ(τ)−ρ(s))+ερ(τ)‖ f (τ, uτ , Φ(τ, uτ))‖Xdτ

≤ 2K
∫ ∞

s
e−b(ρ(τ)−ρ(s))+ερ(τ)b(τ)‖uτ‖Cγ

dτ

≤ 4K2‖φ‖Cγ

∫ ∞

s
b(τ)e(−b+ε+a)ρ(τ)e(b−a+ε)ρ(s)dτ

≤ 4K2‖φ‖Cγ
M̄ < ∞.

Hence, for each fixed n > 0, the integral in Equation (25) is valid. Now if Equation (24)
holds for every (s, φ) ∈ [0, ∞)× E(s) and t ≥ s, then

Φ(s, φ) = V−1
Q (t, s)Φ(t, ut)− lim

n→∞

∫ t

s
V−1

Q (τ, s)Q(τ)Γn f (τ, uτ , Φ(τ, uτ))dτ.

Using Equations (7), (12) and (19),

‖V−1
Q (t, s)Φ(t, ut)‖Cγ

≤ Ke−b(ρ(t)−ρ(s))+ερ(t)‖ut‖Cγ

≤ 2K2e−b(ρ(t)−ρ(s))+ερ(t)ea(ρ(t)−ρ(s))+ερ(s)‖φ‖Cγ

≤ 2K2e(b−a+ε)ρ(s)e(a−b+ε)ρ(t)‖φ‖Cγ
.

Note that (a + ε− b) < 0, and taking t → ∞ proves our result. Additionally, note
that the Equation (25) is obtained by operating the invertible map V−1

Q (t, s) on the solution
x(t) = (u(t), Φ(t, u(t))), therefore there is no issue of convergence here.

Now assume Equation (25) holds for all (s, φ) ∈ [0, ∞) × E(s). Note that (t, ut) ∈
[s, ∞)× E(t), therefore it follows from Equation (25),
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V(t, s)Φ(s, φ) = − lim
n→∞

∫ ∞

s
V(t, τ)Q(τ)Γn f (τ, uτ , Φ(τ, uτ))dτ

= − lim
n→∞

∫ t

s
V(t, τ)Q(τ)Γn f (τ, uτ , Φ(τ, uτ))dτ

− lim
n→∞

∫ ∞

t
V−1(τ, t)Q(τ)Γn f (τ, uτ , Φ(τ, uτ))dτ

= − lim
n→∞

∫ t

s
V(t, τ)Q(τ)Γn f (τ, uτ , Φ(τ, uτ))dτ + Φ(t, ut).

Hence we get,

Φ(t, ut) = V(t, s)Φ(s, φ) + lim
n→∞

∫ t

s
V(t, τ)Q(τ)Γn f (τ, uτ , Φ(τ, uτ))dτ.

The next result shows the dependency of the stable solution ut on the history func-
tion φ ∈ Cγ.

Lemma 3. Let the stable solutions ut, vt be obtained using Lemma 1 for (s, φ, Φ) and (s, ψ, Φ) ∈
[0, ∞)× E(s)× χ respectively. We have the following estimates for every t ≥ s:

‖ut − vt‖Cγ
≤ 2Kea(ρ(t)−ρ(s))+ερ(s)‖φ− ψ‖Cγ

. (26)

Proof. Using Lemma 1 and Equations (7), (9), (19) in (17),

‖ut − vt‖Cγ

≤ ‖V(t, s)(φ− ψ)‖Cγ
+
∫ t

s
‖V(t, τ)P(τ)‖‖ f (τ, uτ , Φ(τ, uτ))− f (τ, vτ , Φ(τ, vτ))‖Xdτ

≤ Kea(ρ(t)−ρ(s))+ερ(s)‖φ− ψ‖Cγ
+ 2K

∫ t

s
ea(ρ(t)−ρ(τ))+ερ(τ)b(τ)‖uτ − vτ‖Cγ

dτ

≤ 2Kea(ρ(t)−ρ(s))+ερ(s)‖φ− ψ‖Cγ

{
1
2
+ 2K‖u− v‖∗

∫ t

s
eερ(τ)b(τ)dτ

}
.

Therefore we have,

‖u− v‖∗ ≤
1
2
+ 2KM‖u− v‖∗,

‖u− v‖∗ ≤
1

2(1− 2KM)
< 1.

Hence we get the desired result,

‖ut − vt‖Cγ
≤ 2Kea(ρ(t)−ρ(s))+ερ(s)‖φ− ψ‖Cγ

, for every t ≥ s.

Lemma 4. Let the stable solutions ut, vt be obtained using Lemma 1 for (s, φ, Φ) and (s, φ, Ψ) ∈
[0, ∞)× E(s)× χ respectively. We have the following estimates for every t ≥ s:

‖ut − vt‖Cγ
≤ 2Kea(ρ(t)−ρ(s))+ερ(s)|Φ−Ψ|′‖φ‖Cγ

. (27)

Proof. Using Equations (12) and (13), we have

‖Φ(τ, uτ)−Ψ(τ, vτ)‖Cγ
≤ ‖uτ − vτ‖Cγ

+ |Φ−Ψ|′‖vτ‖Cγ
. (28)
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Now, using above estimate and Equations (7), (9) and (19) in (17),

‖ut − vt‖Cγ
≤
∫ t

s
Kea(ρ(t)−ρ(τ))+ερ(τ)b(τ)‖(uτ , Φ(τ, uτ))− (vτ , Ψ(τ, vτ))‖Cγ

dτ

≤ K
∫ t

s
ea(ρ(t)−ρ(τ))+ερ(τ)b(τ)

{
2‖uτ − vτ‖Cγ

+ |Φ−Ψ|′‖vτ‖Cγ

}
dτ

≤ 2Kea(ρ(t)−ρ(s))+ερ(s)‖φ‖Cγ

{
2‖u− v‖∗ + |Φ−Ψ|′

}
K
∫ t

s
b(τ)eερ(τ)dτ.

Therefore we have,

‖u− v‖∗ ≤
{

2‖u− v‖∗ + |Φ−Ψ|′
}

KM,

‖u− v‖∗ ≤
KM

1− 2KM
|Φ−Ψ|′.

Since 2KM < 1/2, therefore, for every t ≥ s, we get our desired result:

‖ut − vt‖Cγ
≤ 2Kea(ρ(t)−ρ(s))+ερ(s)|Φ−Ψ|′‖φ‖Cγ

.

The following result proves the existence of a C1 smooth map Φ ∈ χ satisfying
Equation (25).

Lemma 5. Let the assumptions a + ε ≤ 0,(H2) and (H3) hold. Then, there exists a unique
function Φ ∈ χ such that Equation (25) holds for each (s, φ) ∈ [0, ∞)× E(s).

Proof. Consider an operator J : χ→ χ given by,

(JΦ)(s, φ) := − lim
n→∞

∫ ∞

s
V−1

Q (τ, s)Q(τ)Γn f (τ, uτ , Φ(τ, uτ))dτ, (29)

for each (s, φ) ∈ [0, ∞) × E(s), where ut is the unique function given by Lemma 1 for
(s, φ, Φ). Using the Equation (19), (JΦ)(s, 0) = 0, ∀ s > 0. For s ∈ [0, ∞) and φ, ψ ∈ E(s),
let ut, vt denote the stable solutions obtained using Lemma 1 for (s, φ, Φ) and (s, ψ, Φ)
respectively. Now, using Equations (7), (9), (12) and (26) and Lemma 3 we have,

‖(JΦ)(s, φ)− (JΦ)(s, ψ)‖Cγ

≤
∫ ∞

s
Ke−b(ρ(τ)−ρ(s))+ερ(τ)b(τ)‖(uτ , Φ(τ, uτ))− (vτ , Φ(τ, vτ))‖Cγ

dτ

≤ 2K
∫ ∞

s
e−b(ρ(τ)−ρ(s))+ερ(τ)b(τ)‖uτ − vτ‖Cγ

dτ

≤ 4K2‖φ− ψ‖Cγ

∫ ∞

s
e(a−b+ε)ρ(τ)b(τ)e(b−a+ε)ρ(s)dτ

≤ 4K2M̄‖φ− ψ‖Cγ
.

Since 4K2M̄ < 1,

‖(JΦ)(s, φ)− (JΦ)(s, ψ)‖Cγ
≤ ‖φ− ψ‖Cγ

.

Hence, J(χ) ⊂ χ. For (s, φ) ∈ [0, ∞)× E(s); Φ, Ψ ∈ χ and ut, vt are the corresponding
stable solutions, then,
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‖(JΦ)(s, φ)− (JΨ)(s, φ)‖Cγ

≤
∫ ∞

s
Ke−b(ρ(τ)−ρ(s))+ερ(τ)b(τ)‖(uτ − vτ , Φ(τ, uτ)−Ψ(τ, vτ))‖Cγ

dτ

≤ K
∫ ∞

s
e−b(ρ(τ)−ρ(s))+ερ(τ)b(τ)

(
2‖uτ − vτ‖Cγ

+ |Φ−Ψ|′‖vτ‖Cγ

)
dτ

≤ 4K2|Φ−Ψ|′‖φ‖Cγ
e(b−a+ε)ρ(s)

∫ ∞

s
e(a−b+ε)ρ(τ)b(τ)dτ

≤ 4K2M̄|Φ−Ψ|′‖φ‖Cγ
.

Since 4K2M̄ < 1, hence, J is a contraction map which gives the existence of a unique
fixed function Φ ∈ χ such that JΦ = Φ.

Now we give the proof of Theorem 1 using the lemmas proved in this section.

Proof. To prove Theorem 1 we need to find a function Φ ∈ χ satisfying Equations (24) and (25),
also, the graph of Φ, i.e., WΦ, should be invariant under the semiflow Ψκ given by Equation (15).
For each (s, φ) ∈ [0, ∞) × E(s), Lemma 5 gives the existence of Φ ∈ χ satisfying
Equations (24) and (25). Furthermore, from Lemma 1 for each (s, φ, Φ) ∈ [0, ∞)× E(s)× χ
there exists a unique function ut satisfying Equation (17). Note that (t, ut) ∈ [0, ∞) ×
E(t), therefore

Ψt−s(s, φ, Φ(s, φ)) = (t, ut, Φ(t, ut)) ∈WΦ, for all t ≥ s.

Now for each (s, φ), (s, ψ) ∈ [0, ∞)× E(s) and κ = t− s ≥ 0 by Lemma 3, Lemma 4
and Equation (15) we have,

‖Ψκ(s, φ, Φ(s, φ))−Ψκ(s, ψ, Φ(s, ψ))‖ ≤ ‖(t, uφ
t , Φ(t, uφ

t ))− (t, uψ
t , Φ(t, uψ

t ))‖

≤ 2‖uφ
t − uψ

t ‖Cγ

≤ 4Kea(ρ(t)−ρ(s))+ερ(s)‖φ− ψ‖Cγ
.

This completes the proof of the theorem.

4. Stable Manifold and Perturbations

In this section we are showing how the manifold varies with the change in perturba-
tion. We defined the space of perturbation Ω in the beginning of Section 3. Now we define
a norm on Ω, for f ∈ Ω,

‖ f ‖Ω := sup
{
‖ f (t, φ)‖X
‖φ‖Cγ

, t ≥ 0, φ ∈ Cγ \ {0}
}

. (30)

We also assume one more condition:

(H4) 0 < M̂ = sups≥0{e(b−a+ε)ρ(s) ∫ ∞
s e(a−b+ε)ρ(τ)dτ} ≤ ∞ with 8K2M̂ < 1.

Theorem 2. Assume that the differential Equation (1) admits ρ-nonuniform exponential dichotomy
and also the assumptions in (H1)–(H4) hold, then for each set (s, φ, f ) and (s, φ, g) the maps Φ
and Ψ satisfies

|Φ−Ψ|′ ≤ ‖ f − g‖Ω. (31)
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Proof. For every (s, φ, f )and (s, φ, g), we obtain unique functions Φ and Ψ using Lemma 5.
Now using Lemma 1 for (s, φ, f , Φ) and (s, φ, g, Ψ) we obtain unique functions uΦ = u and
uΨ = v. From Equation (25) we have,

‖Φ(s, φ)−Ψ(s, φ)‖Cγ

≤
∫ ∞

s
‖V−1

Q (τ, s)Q(τ)
(

f (τ, uτ , Φ(τ, uτ))− g(τ, vτ , Ψ(τ, vτ))
)
‖Cγ

dτ

≤
∫ ∞

s
Ke−b(ρ(τ)−ρ(s))+ερ(τ)‖ f (τ, uτ , Φ(τ, uτ))− g(τ, vτ , Ψ(τ, vτ))‖Xdτ

≤ K
∫ ∞

s
e−b(ρ(τ)−ρ(s))+ερ(τ)

{
b(τ)

(
2‖uτ − vτ‖Cγ

+ |Φ−Ψ|′‖uτ‖Cγ

)
+‖ f − g‖Ω ‖(uτ , Φ(τ, uτ))‖Cγ

}
dτ

≤ K
∫ ∞

s
e−b(ρ(τ)−ρ(s))+ερ(τ)

{
6Kb(τ)ea(ρ(τ)−ρ(s))+ερ(s)|Φ−Ψ|′‖φ‖Cγ

+4K‖ f − g‖Ω ea(ρ(τ)−ρ(s))+ερ(s)‖φ‖Cγ

}
dτ

≤ 6K2‖φ‖Cγ
|Φ−Ψ|′M̄ + 4K2‖φ‖Cγ

‖ f − g‖Ω M̂.

Therefore we have,

|Φ−Ψ|′ ≤ 4K2M̂
1− 6K2M̄

‖ f − g‖Ω.

Since 4K2 M̂
1−6K2 M̄ < 1, using (H4), hence we got our result.

Thus we have shown that a small change in the perturbation gives arise to the small
variation in manifold map.

5. Examples

In this example, we consider a delay differential equation admitting the dichotomic
behavior with the growth rate of type eρ(t).

Example 3.

x′(t) =
(
−ωρ′(t)− cos t

a + sin t
+ ε ρ′(t)ρ(t) sin ρ(t)

)
x(t) + e−3ε(t−1)x2(t− 1), (32)

for ω > 2ε > 0 and a > 2.
For the associated linear problem, the solution x(t) is given by x(t) = V(t, s)x(s), where,

V(t, s)

= e−ω(ρ(t)−ρ(s))−ln(a+sin t)+ln(a+sin s)+ε(ρ(s) cos ρ(s)−ρ(t) cos ρ(t))+ε(sin ρ(t)−sin ρ(s)).

Additionally,

‖V(t, s)‖

= e−ω(ρ(t)−ρ(s))−ln(a+sin t)+ln(a+sin s)+ε(ρ(s) cos ρ(s)−ρ(t) cos ρ(t))+ε(sin ρ(t)−sin ρ(s))

≤ e2ε+2(ln(a+1)) e(−ω+ε)(ρ(t)−ρ(s))+2ερ(s)

= Ce(−ω+ε)(ρ(t)−ρ(s))+2ερ(s).

Note that (−ω + ε) < 0 and C is a constant, therefore the solution operator V(t, s) admits
dichotomic behavior with growth rate eρ(t). Additionally, the nonlinear perturbation satisfies
Equation (9). Hence, Theorem 1 ensures that the differential Equation (32) admits C1 stable
invariant manifold.
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Now, we consider a system of delay differential equations which satisfies all the
assumptions of Theorem 1 and admits C1 stable invariant manifold.

Example 4.

x′(t) =
( −ωρ′(t)

1 + e−ρ(t)
+ ε ρ′(t)

(
ρ(t) sin ρ(t)− 1

))
x(t) + sin(t− 1) e−5ε(t−1)y2(t− 1),

y′(t) =
( ωρ(t)

1 + e−ρ(t)
− ε ρ′(t)

(
ρ(t) cos ρ(t)− 1

))
y(t) + cos(t− 1) e−7ε(t−1)x2(t− 1),

for some positive constants ω, ε and for φ = (φ1, φ2); φ1, φ2 ∈ Cγ also the function ρ(t) satisfies
the conditions in (7). Let the non homogeneous term be,

f (t, φ) =
(

sin t e−5εtφ2
2(t), cos t e−7εtφ2

1(t)
)
.

The evolution operator for the associated linear system is given by

T(t, s) =
[

U(t, s) 0
0 V(t, s)

]
,

where

U(t, s)

= e
−ω(ρ(t)−ρ(s))−ω ln (1+e−ρ(t))

(1+e−ρ(s))
+ε(ρ(s) cos ρ(s)−ρ(t) cos ρ(t))+ε(sin ρ(t)−sin ρ(s))−ε(ρ(t)−ρ(s))

and

V(t, s)

= e
ω(ρ(t)−ρ(s))+ω ln (1+e−ρ(t))

(1+e−ρ(s))
+ε(ρ(s) sin ρ(s)−ρ(t) sin ρ(t))+ε(cos ρ(t)−cos ρ(s))−ε(ρ(t)−ρ(s))

.

Consider the projection map P(t)(x, y) = (x, 0) for all t ≥ 0. Then,

‖T(t, s)P(t)‖ = ‖U(t, s)‖ ≤ e2ε+ω ln 2e−ω(ρ(t)−ρ(s))+2ερ(s),

and

‖T(t, s)−1Q(t)‖ = ‖V(t, s)−1‖ ≤ e2ε+ω ln 2e−ω(ρ(t)−ρ(s))+2ερ(t).

for t ≥ s ≥ 0. Hence for a = −ω < 0 and b = ω > 0, the associated linear system satisfies
ρ-nonuniform exponential dichotomy.

Furthermore, f (t, φ) admits the conditions in Equation (9), with f (t, 0) = 0. Hence,
Theorem 1 ensures that the differential Equation (4) admits C1 stable invariant manifold.

6. Conclusions

In this article, we have constructed a C1 stable invariant manifold for the differential
equation with infinite delay (1). We gave the dependence of manifold on the perturba-
tions. We have also included general examples of differential equations which satisfy
ρ-nonuniform exponential dichotomy. Thus, we have shown that our result is applicable to
a large class of delay differential equations.
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