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Abstract: By coincidence degree theory due to Mawhin, some sufficient conditions for the existence
of solution for a class of coupled jerk equations with multi-point conditions are established. The new
existence results have not yet been reported before. Novel coupled fractional jerk equations with
resonant boundary value conditions are discussed in detail for the first time. Our work is interesting
and complements known results.
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1. Introduction

In this paper, we study the following coupled jerk system of the fractional order

Dα
0+x1(t) = x2(t),

Dβ
0+x2(t) = x3(t),

Dγ
0+x3(t) = f

(
y1(t), y2(t), y3(t)

)
,

Dλ
0+y1(t) = y2(t),

Dµ
0+y2(t) = y3(t),

Dν
0+y3(t) = g

(
x1(t), x2(t), x3(t)

)
,

(1)

with boundary value conditions given as{
x2(0) = x3(0) = 0, x1(0) = ∑m−1

i=1 aix1(ξi),
y2(0) = y3(0) = 0, y1(0) = ∑m−1

i=1 biy1(ηi),
(2)

where t ∈ (0, 1), 0 ≤ ξ1 ≤ ξ2 ≤ · · · ≤ ξm−1 ≤ 1, 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηm−1 ≤ 1,
∑m−1

i=1 ai = ∑m−1
i=1 bi = 1, ∑m−1

i=1 aiξi 6= 0, ∑m−1
i=1 biηi 6= 0, 0 < ε < 1, ε = {α, β, γ, λ, µ, ν}, Dε

0+

denotes the Caputo fractional derivative, and f , g : R3 → R are continuous functions.
In 1978, S. H. Schot [1] presented the definition of a jerk, i.e., the rate of change of

acceleration. This involves a third derivative of x and has been found to have numerous
applications in many areas of science, such as electrical circuits, laser physics, mechanics,
acoustics, and dynamical processes. We refer the reader to [2–11].

As we all know, a three-dimensional dynamical system ẋ(t) = y, ẏ(t) = z, ż(t) =
f (x, y, z), can be written in the form

...
x (t) = f (x, ẋ, ẍ). The third order autonomous differ-

ential equation is named as a jerk equation. In recent years, the discussion of jerk equations
has attracted much attention because it arises in a variety of different scientific fields,
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such as the theory of chaos, secure communication, electrical engineering, and economic
systems. For recent results, we refer the readers to [12–20] and the references therein.

In 2020, Marcelo and Silva [18] used the algebraic criterion to determine a special form
for the polynomial jerk function j in order to guarantee the nonchaotic behavior of the
following jerk equation:

...
x (t) = j(x, ẋ, ẍ).

They provided a simpler proof for the nonchaotic behavior. The algebraic criterion
proved in their work is quite general and can be used to study the nonchaotic behavior of
other types of ordinary differential equations.

In [19], M. Ismail et al. dealt with an initial value problem of a nonlinear third order
jerk equation: { ...

x + f (x, ẋ, ẍ) = 0,
x(0) = 0, ẋ(0) = A, ẍ(0) = 0.

The authors succeeded in extending the global error minimization method (GEMM)
to obtain analytic approximations. Compared and simulated with the known solutions
and the exact numerical ones, their obtained method were proven to be effective and to
provide an efficient alternative to the previously known existing methods.

In nature, most nonlinear systems are mutually coupled. Coupled nonlinear systems
have rich dynamic behaviors. As an extension of jerk equations, coupled jerk equations
also have simple algebraic structures and more complex dynamic characteristics compared
with jerk systems.

In [20], Chen et al. considered the following coupled systems of jerk equations:{ ...
x = aẍ− ẋ + (|x| − 1) + ε(x− y),
...
y = bÿ− ẏ + y− y3 + ε(y− x).

The authors investigated the dynamical evolution of the above coupled system and
obtained bifurcation sets in parameter space by the analysis of the equilibrium points and
their stabilities.

During the last two decades, great interest has been devoted to the study of fractional
differential equations, which can serve as an excellent tool for the mathematical modeling
of systems and processes in the fields of physics, chemistry, biology, electromagnetic,
mechanics, economics, dynamical processes, etc. For more details regarding fractional
differential equations involving initial or boundary conditions, see for instance, [21–31]
and the references therein.

At the same time, the theory of fractional jerk equations has been also analyti-
cally investigated by some very interesting and novel papers (see [32–34]). In 2020,
Echenausía-Monroy et al. [32] considered a multi-scroll generator system based on frac-
tional jerk equations: 

Dqx
0+x(t) = y(t),

D
qy
0+y(t) = z(t),

Dqz
0+z(t) = g(x, y, z),

where g(x, y, z) = −α[x + y + z− f (x)], Dqi
0+ denotes the Caputo fractional derivatives

i = {x, y, z}, and α ∈ R is the control parameter. The authors further studied the effects of
the above fractional jerk system and provided a physical interpretation based on statistical
analysis. Compared to the integer-order system, their results show that the use of fractional-
order can decrease the size of the generated attractor and can modify the long-range
correlations in the system. The obtained results can not only be used for applications
arising in engineering and the sciences, such as mobile surveillance devices, they can also
enrich the analysis and understanding of the implications of fractional integration orders.

From the existing results, we can see a fact: although the solutions for fractional jerk
equations have been studied by some authors, to the best of our knowledge, coupled
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jerk differential equations with the fractional order, have not been investigated until now.
The objective of this paper is to fill that gap in the relevant literature.

It is easy to check that the following coupled fractional jerk equations:

(
Dγ

0+(Dβ
0+(Dα

0+u))
)
(t) = f

(
v(t), Dλ

0+v(t), (Dµ
0+(Dλ

0+v))(t)
)
,(

Dν
0+(Dµ

0+(Dλ
0+v))

)
(t) = g

(
u(t), Dα

0+u(t), (Dβ
0+(Dα

0+u))(t)
)
,

u(0) = ∑m−1
i=1 aiu(ξi), Dα

0+u(0) =
(

Dβ
0+(Dα

0+u)
)
(0) = 0,

v(0) = ∑m−1
i=1 biv(ηi), Dλ

0+v(0) =
(

Dµ
0+(Dλ

0+v)
)
(0) = 0,

(3)

are equivalent to (1) and (2). Due to the conditions (2), BVP (3) happens to be at resonance
in the sense that the associated linear homogeneous equations:

(
Dγ

0+(Dβ
0+(Dα

0+u))
)
(t) = 0,

(
Dν

0+(Dµ
0+(Dλ

0+v))
)
(t) = 0,

u(0) = ∑m−1
i=1 aiu(ξi), Dα

0+u(0) =
(

Dβ
0+(Dα

0+u)
)
(0) = 0,

v(0) = ∑m−1
i=1 biv(ηi), Dλ

0+v(0) =
(

Dµ
0+(Dλ

0+v)
)
(0) = 0,

have (u, v) = (c, d), c, d ∈ R as nontrivial solutions.
In addition, we remark that if all the fractional orders α, β, γ, λ, µ, and ν are equal to 1,

then Equation (3) can be rewritten as
...
u(t) = f (v, v̇, v̈),

...
v (t) = g(u, u̇, ü),

u(0) = ∑m−1
i=1 aiu(ξi), u̇(0) = ü(0) = 0,

v(0) = ∑m−1
i=1 biv(ηi), v̇(0) = v̈(0) = 0,

which is a standard nonlinear coupled jerk system and is a complement of [20]. Compared
with [20], we can see the nonhomogeneous terms f and g in the above system are more
general. Furthermore, if f = g and u = v, then the above problem can be written by
...
u(t) = f (u, u̇, ü), u(0) = ∑m−1

i=1 aiu(ξi), u̇(0) = ü(0) = 0. Compared with previous
research works, such as [19] whose conditions include x(0) = 0, we find that the boundary
value conditions, u(0) = ∑m−1

i=1 aiu(ξi), are nonlocal initial conditions, which were first
used by Byszewski [35] and are more appropriate to describe natural phenomena for they
contain more additional information.

As far as nonlinear jerk equations are concerned, most of the efforts on this topic are
related to the initial value problem. For example, see [15,16] and the references therein.
Among the existing results, no one result can be applied to our problem. Therefore, our
results enrich the existing literature. This is another reason why we study problem (1).

This paper is organized as follows. In Section 2, we give some notations and lemmas.
In Section 3, we establish a theorem of existence of a solution for the problem (1) and (2)
by applying the coincidence degree theory due to Mawhin [36]. In Section 4, we give
an example to demonstrate our results.

2. Preliminaries

In this section, we present the necessary definitions and lemmas from fractional
calculus theory that can be found in the recent literature [30].

Definition 1 ([30]). The Riemann-Liouville fractional integral of order α > 0 of a function
f : (0, ∞)→ R is given by

Iα
0+ f (t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds,

provided that the right-hand side is pointwise defined on (0, ∞).
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Definition 2 ([30]). The Caputo fractional derivative of order α > 0 for a function f ∈ Cn[0,+∞)
is given by

Dα
0+ f (t) =

1
Γ(n− α)

∫ t

0
(t− s)n−α−1 f (n)(s)ds, n− 1 < α < n,

where n = [α] + 1, [α] denotes the integer part of α.

Lemma 1 ([30]). Let n− 1 < α ≤ n, Dα
0+u ∈ L1(0, 1), then

Iα
0+Dα

0+u(t) = u(t) + c0 + c1t + · · ·+ cn−1tn−1,

where ci ∈ R, i = 0, 1, . . . , n− 1.

Lemma 2 ([30]). If β > 0, α + β > 0, then the equation

Iα
0+ Iβ

0+ f (x) = Iα+β
0+ f (x),

is satisfied for a continuous function f .

Now, let us recall notation about the coincidence degree continuation theorem [36].

Definition 3 ([36]). Let Y and Z be normed spaces. A linear operator L : dom(L) ⊂ Y → Z is
said to be a Fredholm operator of index zero provided that

(i) Im L is a closed subset of Z;
(ii) dimker L = codimIm L < +∞.

It follows from Definition 3, if L is a Fredholm operator of index zero, then there
exist continuous projectors P : Y → Y, Q : Z → Z as continuous projectors such that
ker L = Im P, Im L = ker Q and Y = ker L ⊕ ker P, Z = Im L ⊕ Im Q. It follows that
L|dom L∩ker P : dom L∩ ker P→ Im L is invertible. We denote the inverse of this map by KP.
If Ω is an open bounded subset of Y, the map N will be called L-compact on Ω if QN(Ω)
is bounded and KP,QN = KP(I −Q)N : Ω→ Y is compact.

Theorem 1 ([36]). Let L be a Fredholm operator of index zero and N be L-compact on Ω. Suppose
that the following conditions are satisfied:

(1) Lx 6= λNx for each (x, λ) ∈ [(dom L\ ker L) ∩ ∂Ω]× (0, 1);
(2) Nx 6∈ Im L for each x ∈ ker L ∩ ∂Ω; and
(3) deg(JQN|ker L, Ω ∩ ker L, 0) 6= 0, where Q : Z → Z is a continuous projection as above

with Im L = ker Q and J : Im Q→ ker L is any isomorphism.

Then, the equation Lx = Nx has at least one solution in dom L ∩Ω.

3. Main Results

In this section, we will prove the existence and uniqueness results for (1) and (2).
We use the Banach space E = C[0, 1] with the norm ‖u‖∞ = max

0≤t≤1
|u(t)|. Define two

linear spaces

X =
{

u(t)| u(t) ∈ E, Dα
0+u(t) ∈ E, (Dβ

0+(Dα
0+u))(t) ∈ E

}
,

Y =
{

v(t)| v(t) ∈ E, Dλ
0+u(t) ∈ E, (Dµ

0+(Dλ
0+u))(t) ∈ E

}
.

Clearly, X and Y are Banach spaces with the norm

‖u‖X = max
{
‖u‖∞, ‖Dα

0+u(t)‖∞, ‖(Dβ
0+(Dα

0+u))(t)‖∞

}
,

‖v‖Y = max
{
‖v‖∞, ‖Dλ

0+v(t)‖∞, ‖(Dµ
0+(Dλ

0+v))(t)‖∞

}
.
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We consider the Banach space X×Y endowed with the norm defined by ‖(u, v)‖X×Y =
max{‖u‖X , ‖v‖Y} and Z = E× E is a Banach space with the norm defined by ‖(x, y)‖Z =
max{‖x‖∞, ‖y‖∞}.

We define the linear operator L1 from domL1 ∩ X to E by

L1u =
(

Dγ
0+(Dβ

0+(Dα
0+u))

)
(t),

where domL1 = {u ∈ X|u(0) = ∑m−1
i=1 aiu(ξi), Dα

0+u(0) =
(

Dβ
0+(Dα

0+u)
)
(0) = 0}.

We define the linear operator L2 from domL2 ∩Y to E by

L2v =
(

Dν
0+(Dµ

0+(Dλ
0+v))

)
(t),

where domL2 = {v ∈ Y|v(0) = ∑m−1
i=1 biv(ηi), Dλ

0+v(0) =
(

Dµ
0+(Dλ

0+v)
)
(0) = 0}.

We define the operator L : domL ∩ (X×Y)→ Z by

L(u, v) = (L1u, L2v), (4)

where domL = {(u, v) ∈ X × Y|u ∈ domL1, v ∈ domL2}, and we define N : X × Y → Z
by setting

N(u, v) = (N1v, N2u),

where N1 : Y → E is defined by

N1v(t) = f
(
v(t), Dλ

0+v(t), (Dµ
0+(Dλ

0+v))(t)
)

and N2 : X → E is defined by

N2u(t) = g
(
u(t), Dα

0+u(t), (Dβ
0+(Dα

0+u))(t)
)
.

Then, the problem (1) and (2) can be written by L(u, v) = N(u, v).

Lemma 3. Let the mapping L be defined by (4), then

KerL =
{
(u, v) ∈ X×Y : (u, v) = (c, d), c, d ∈ R

}
, (5)

ImL =
{
(x, y) ∈ E :

m−1

∑
i=1

ai I
α+β+γ
0+ x(ξi) =

m−1

∑
i=1

bi I
λ+µ+ν
0+ y(ηi) = 0

}
. (6)

Proof. Clearly, L1 and L2 are linear operators. By L1u = 0, i.e.,
(

Dγ
0+(Dβ

0+(Dα
0+u))

)
(t) = 0

and Lemma 1, we have
(Dβ

0+(Dα
0+u))(t) = c0, c0 ∈ R.

Applying the operator of Iβ
0+ on both sides of the above equation, we have

Dα
0+u(t) = Iβ

0+c0 + c1 c0, c1 ∈ R.

By Lemma 2, we obtain

u(t) = Iβ+α
0+ c0 + Iα

0+c1 + c, c0, c1, c ∈ R.

In view of Dα
0+u(0) =

(
Dβ

0+(Dα
0+u)

)
(0) = 0, we obtain c0 = c1 = 0. Then, we have

u(t) = c. By similar proof, if L2v = 0, then we have v(t) = d, d ∈ R. Hence, one has that
(5) holds. It is clear that KerL = (c, d) ∼= R2.
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Next, we prove that (6) holds. Let x ∈ ImL1, and thus there exists u ∈ domL1 such
that x(t) =

(
Dγ

0+(Dβ
0+(Dα

0+u))
)
(t). By Lemma 1 and the definition of domL1, we have

u(t) = Iα+β+γ
0+ x(t) + Iβ+α

0+ c0 + Iα
0+c1 + c.

In view of Dα
0+u(0) =

(
Dβ

0+(Dα
0+u)

)
(0) = 0, we have c0 = c1 = 0. Hence,

u(t) = Iα+β+γ
0+ x(t) + c.

According to u(0) = ∑m−1
i=1 aiu(ξi) and ∑m−1

i=1 ai = 1, we have

m−1

∑
i=1

ai I
α+β+γ
0+ x(ξi) = 0.

On the other hand, suppose x satisfies the above equation. Letting u(t) = Iα+β+γ
0+ x(t),

we can prove u(t) ∈ domL1 and L1u(t) = x.
Similarly, we can obtain

m−1

∑
i=1

bi I
λ+µ+ν
0+ y(ηi) = 0.

Thus, (6) holds. The proof is complete.

Lemma 4. Let L be defined by (4), then L is a Fredholm operator of index zero. Furthermore,
the operator KP : Im L→ dom L ∩KerP can be written by

KP(x, y) =
(

Iα+β+γ
0+ x, Iλ+µ+ν

0+ y
)
.

Proof. Define the operators P1 : X → X, P2 : Y → Y and P : (u, v)→ (P1u, P2v), as

P1u = u(0), P2v = v(0).

Clearly, KerL = Im P and P(u, v) = P2(u, v).
Note that

KerP =
{
(u, v)|u(0) = 0, v(0) = 0

}
.

Since (u, v) = (u, v)− P(u, v) + P(u, v), it is clear that X × Y = KerP + KerL. By a
simple calculation, we have KerL ∩KerP = {(0, 0)}. Thus, we obtain

X×Y = KerL⊕KerP.

Consider the linear operators Q1, Q2 : E→ E defined by

Q1x(t) =
Γ(1 + α + β + γ)

∑m−1
i=1 aiξi

m−1

∑
i=1

ai I
α+β+γ
0+ x(ξi), Q2y(t) =

Γ(1 + λ + µ + ν)

∑m−1
i=1 biηi

m−1

∑
i=1

bi I
λ+µ+ν
0+ y(ηi).

Clearly, Q(x, y) =
(
Q1x(t), Q2y(t)

) ∼= R2. Take x(t) ∈ E, by a direct computation, we
have that

Q1(Q1x(t)) = Q1x(t) · Γ(1 + α + β + γ)

∑m−1
i=1 aiξi

m−1

∑
i=1

ai(Iα+β+γ
0+ 1)(t = ξi) = Q1x(t).
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Similarly, Q2
2 = Q2. This gives that Q2(x, y) = Q(x, y). It is easy to check from (x, y) =

(x, y)− Q(x, y) + Q(x, y) that Z = ImL + ImQ. Take (u, v) ∈ ImL ∩ ImQ. According to
the definitions of ImL and ImQ, we obtain (u, v) = (0, 0). This implies that

Z = ImL⊕ ImQ.

Now, Ind L = dim ker L− codim Im L = 0. This means that L is a Fredholm mapping
of index zero.

Next, we will prove that KP is the inverse of LdomL
⋂

KerP.
For (x, y) ∈ ImL, we have

LKP(x, y) = L(Iα+β+γ
0+ x, Iλ+µ+ν

0+ y) = (Dα+β+γ
0+ Iα+β+γ

0+ x, Dλ+µ+ν
0+ Iλ+µ+ν

0+ y) = (x, y).

For (u, v) ∈ domL ∩KerP, according to the definitions of domL and KerP, it is easy
to verify that the constants ci, di, i = 0, 1, 2 in the following equations

u(t) = Iα+β+γ
0+ x(t) + Iβ+α

0+ c0 + Iα
0+c1 + c2, v(t) = Iλ+µ+ν

0+ y(t) + Iµ+λ
0+ d0 + Iλ

0+d1 + d2,

are all equal to zero. Thus, we obtain

KpL(x, y) =
(

Iα+β+γ
0+ Dγ

0+(Dβ
0+(Dα

0+x)), Iλ+µ+ν
0+ Dν

0+(Dµ
0+(Dλ

0+y))
)
= (x, y).

That shows that KP = (LdomL
⋂

KerP)
−1. The proof is complete.

To simplify our statement, we write

a =
1

Γ(γ + 1)
, b =

1
Γ(ν + 1)

.

For every (u, v) ∈ X×Y,

‖P(u, v)‖X×Y = ‖(P1u, P2v)‖X×Y = max
{
‖P1u‖X ; ‖P2v‖Y

}
= max{‖u(0)‖X ; ‖v(0)‖Y}
= max{|u(0)|; |v(0)|}. (7)

For each (x, y) ∈ ImL, we have

‖KP(x, y)‖X×Y = ‖(Iα+β+γ
0+ x, Iλ+µ+ν

0+ y)‖X×Y

= max
{
‖Iα+β+γ

0+ x‖X ; ‖Iλ+µ+ν
0+ y‖Y

}
≤ max

{
max

{
‖Iα+β+γ

0+ x‖∞, ‖Dα
0+ Iα+β+γ

0+ x‖∞, ‖(Dβ
0+(Dα

0+ Iα+β+γ
0+ x))‖∞

}
;

max
{
‖Iλ+µ+ν

0+ y‖∞, ‖Dλ
0+ Iλ+µ+ν

0+ y‖∞, ‖(Dµ
0+(Dλ

0+ Iλ+µ+ν
0+ y))‖∞

}}
= max

{
max

{
‖Iα+β+γ

0+ x‖∞, ‖Iβ+γ
0+ x‖∞, ‖Iγ

0+x‖∞

}
;

max
{
‖Iλ+µ+ν

0+ y‖∞, ‖Iµ+ν
0+ y‖∞, ‖Iν

0+y‖∞

}}
= max

{
1

Γ(γ + 1)
‖x‖∞;

1
Γ(ν + 1)

‖y‖∞

}
= max{a‖x‖∞; b‖y‖∞}. (8)

With the similar arguments to [21], we obtain the following lemma.

Lemma 5. KP(I −Q)N : Y → Y is completely continuous.

To obtain our main results, we need the following conditions.
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(H1) There exist positive continuous functions ai(t), bi(t), i = 1, 2, 3 such that for all
(x1, x2, x3) ∈ R3, one has

| f (x1, x2, x3)| ≤ a1(t)|x1|+ a2(t)|x2|+ a3(t)|x3|,
|g(x1, x2, x3)| ≤ b1(t)|x1|+ b2(t)|x2|+ b3(t)|x3|.

(H2) There exists a constant A > 0 such that, if for any t ∈ [0, 1], |u(t)| > A or
|v(t)| > A, then

u(t) ·Q1(N1v) > 0, v(t) ·Q2(N2u) > 0

or
u(t) ·Q1(N1v) < 0, v(t) ·Q2(N2u) < 0.

(H3) max
{

p + a
3
∑

i=1
pi, q + b

3
∑

i=1
qi, p + b

3
∑

i=1
qi, q + a

3
∑

i=1
pi

}
< 1,

where pi = ‖ai‖∞, qi = ‖bi‖∞, i = 1, 2, 3, p = p1+p2+p3

Γ
(

α+β+γ+1
) , q = q1+q2+q3

Γ
(

λ+µ+ν+1
) .

Lemma 6. Ω1 =
{
(u, v) ∈ domL \KerL : L(u, v) = λN(u, v), λ ∈ [0, 1]

}
is bounded.

Proof. For (u, v) ∈ Ω1, thus λ 6= 0. And L(u, v) = λN(u, v) ∈ ImL = KerQ, according to
the definition of KerQ, we have

Q1(N1v) = Q2(N2u) = 0.

By (H2), there exit t0, t1 ∈ [0, 1] such that

|u(t0)| ≤ A, |v(t1)| ≤ A.

Again for (u, v) ∈ Ω1, (u, v) ∈ dom(L) \Ker(L), then (I − P)(u, v) ∈ domL ∩KerP
and LP(u, v) = (0, 0); thus, from (8), we have

‖(I − P)(u, v)‖X×Y = ‖KPL(I − P)(u, v)‖X×Y

= ‖KP(L1u, L2v)‖X×Y

≤ max{a‖L1v‖∞; b‖L2u‖∞}
= max{a‖N1v‖∞; b‖N2u‖∞}. (9)

By Lu = λNu and u ∈ domL, we have (L1u, L2v) = (λN1v, λN2u), i.e., L1u = λN1v
and L2v = λN2u. Thus,

u(t) = λIα+β+γ
0+ N1v(t) + Iβ+α

0+ c0 + Iα
0+c1 + c2, v(t) = λIλ+µ+ν

0+ N2u(t) + Iµ+λ
0+ d0 + Iλ

0+d1 + d2.

By the definition of domL, we have ci = di = 0, i = 0, 1. Then,

u(t) = λIα+β+γ
0+ N1v(t) + c2, v(t) = λIλ+µ+ν

0+ N2u(t) + d2.

Furthermore, we have

u(t0)− u(0) = λIα+β+γ
0+ N1v(t0) + c2 −

[
λIα+β+γ

0+ N1v(0) + c2
]
= Iα+β+γ

0+ N1v(t0),

v(t1)− v(0) = λIλ+µ+ν
0+ N2u(t1) + d2 −

[
λIλ+µ+ν

0+ N2u(0) + d2
]
= Iλ+µ+ν

0+ N2u(t1),

that are,

u(0) = u(t0)− λIα+β+γ
0+ N1v(t0), v(0) = v(t1)− λIλ+µ+ν

0+ N2u(t1).
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Together with |u(t0)| ≤ A, we can derive that

|u(0)| ≤ |u(t0)|+
∣∣∣λIα+β+γ

0+ N1v(t0)
∣∣∣

≤ A +

∣∣∣∣ λ

Γ(α + β + γ)

∫ t0

0
(t0 − s)α+β+γ−1 f

(
v(s), Dλ

0+v(s), (Dµ
0+(Dλ

0+v))(s)
)
ds
∣∣∣∣

≤ A +
1

Γ(α + β + γ)

∫ t0

0
(t0 − s)α+β+γ−1

∣∣∣ f (v(s), Dλ
0+v(s), (Dµ

0+(Dλ
0+v))(s)

)∣∣∣ds

≤ A +
1

Γ(α + β + γ)

∫ t0

0
(t0 − s)α+β+γ−1·(

a1(s)|v(s)|+ a2(s)|Dλ
0+v(s)|+ a3(s)|(Dµ

0+(Dλ
0+v))(s)|

)
ds

≤ A +
1

Γ(α + β + γ)

(
p1‖v(t)‖∞ + p2‖Dλ

0+v(t)‖∞ + p3‖(Dµ
0+(Dλ

0+v))(t)‖∞
)
·∫ t0

0
(t0 − s)α+β+γ−1ds

≤ A +
p1 + p2 + p3

Γ
(
α + β + γ

) ∫ t0

0
(t0 − s)α+β+γ−1ds · ‖v(t)‖Y

= A + p‖v(t)‖Y. (10)

With the similar arguments, we obtain

|v(0)| ≤ A +
q1 + q2 + q3

Γ
(
λ + µ + ν + 1

)‖u(t)‖X = A + q‖u(t)‖X . (11)

From (7) and (9), we have

‖(u, v)‖X×Y = ‖P(u, v) + (I − P)(u, v)‖X×Y ≤ ‖P(u, v)‖X×Y + ‖(I − P)(u, v)‖X×Y

≤ max
{
|u(0)|+ a‖N1v‖∞, |u(0)|+ b‖N2u‖∞,

|v(0)|+ a‖N1v‖∞, |v(0)|+ b‖N2u‖∞
}

.

In what follows, the proof can be divided into four cases.
Case 1. ‖(u, v)‖X×Y ≤ |u(0)|+ a‖N1v‖∞.

By (10) and (H1), we have

‖(u, v)‖X×Y ≤
∣∣u(0)∣∣+ a‖N1v‖∞

≤ A + p‖v(t)‖Y + a‖N1v‖∞

= A + p‖v(t)‖Y + a
∥∥ f
(
v(t), Dλ

0+v(t), (Dµ
0+(Dλ

0+v))(t)
)∥∥

∞

≤ A + p‖v(t)‖Y + a
[
a1(t)|v(t)|+ a2(t)|Dλ

0+v(t)|+ a3(t)|(Dµ
0+(Dλ

0+v))(t)|
]

≤ A + p‖v(t)‖Y + a
[
p1‖v(t)‖∞ + p2‖Dλ

0+v(t)‖∞ + p3‖(Dµ
0+(Dλ

0+v))(t)‖∞
]

= A + p‖v(t)‖Y + a(p1 + p2 + p3)‖v(t)‖Y

= A +
(

p + aΣ3
i=1 pi

)
· ‖v(t)‖Y

≤ A +
(

p + aΣ3
i=1 pi

)
· ‖(u, v)‖X×Y.

By (H4), we have

‖(u, v)‖X×Y ≤
A

1− p− aΣ3
i=1 pi

:= M.

Therefore, Ω1 is bounded.
Case 2. ‖(u, v)‖X×Y ≤

∣∣u(0)∣∣+ b‖N2u‖∞.
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From (10) and (H1), we obtain

‖(u, v)‖X×Y ≤
∣∣u(0)∣∣+ b‖N2u‖∞

≤ A + p‖v(t)‖Y + b‖N2u‖∞

= A + p‖v(t)‖Y + b
∥∥g
(
u(t), Dα

0+u(t), (Dβ
0+(Dα

0+u))(t)
)∥∥

∞

≤ A + p‖v(t)‖Y + b
[
q1‖u(t)‖∞ + q2‖Dλ

0+u(t)‖∞ + q3‖(Dµ
0+(Dλ

0+u))(t)‖∞
]

≤ A + p‖v(t)‖Y + b(q1 + q2 + q3)‖u(t)‖Y

≤ A +
(

p + bΣ3
i=1qi

)
· ‖(u, v)‖X×Y.

By (H4), we can obtain

‖(u, v)‖X×Y ≤
1

1− q− bΣ3
i=1qi

:= M.

Therefore, Ω1 is bounded.
Case 3. ‖(u, v)‖∞ ≤

∣∣v(0)∣∣+ a‖N1v‖∞.

According to (11) and (H4), by a similar proof of Case 2, we can derive

‖(u, v)‖X×Y ≤
A

1− q− aΣ3
i=1 pi

:= M.

Therefore, Ω1 is bounded.
Case 4. ‖(u, v)‖Y ≤

∣∣v(0)∣∣+ b‖N2u‖∞.

By a similar proof of Case 1, we obtain

‖(u, v)‖X×Y ≤
A

1− q− bΣ3
i=1qi

:= M.

Therefore, Ω1 is bounded.
According the above arguments, we prove that Ω1 is bounded.

Lemma 7. Ω2 =
{
(u, v) ∈ KerL : N(u, v) ∈ ImL

}
is bounded.

Proof. Let (u, v) ∈ KerL; thus, we have u = c, v = d, c, d ∈ R. In view of N(u, v) =
(N1v, N2u) ∈ ImL = KerQ, we have

Q1(N1v) = Q2(N2u) = 0.

By (H2), there exit constants t0, t1 ∈ [0, 1] such that

|u(t0)| = |c| ≤ A, |v(t1)| = |d| ≤ A.

Hence, Ω2 is bounded.

Lemma 8. Ω3 =
{
(u, v) ∈ KerL : λ(u, v) + (1 − λ)QN(u, v) = (0, 0), λ ∈ [0, 1]

}
is bounded.

Proof. Let (u, v) ∈ KerL; therefore, we have u = c, v = d, c, d ∈ R and

λc + (1− λ)Q1N1(d) = 0, λd + (1− λ)Q2N2(c) = 0. (12)
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If λ = 0, similar to the proof of Lemma 7, we can obtain |c| ≤ A and |d| ≤ A. If λ = 1,
we have c = d = 0. If λ ∈ (0, 1), then we can also obtain |c| ≤ A and |d| ≤ A. Otherwise,
if |c| > A or |d| > A, in view of the first part of (H2), we obtain

λc2 + c(1− λ)Q1N1(d) = 0, λd2 + d(1− λ)Q2N2(c) = 0,

which contradicts (12). Thus, Ω3 is bounded.
If the second part of (H2) holds, then we can prove the set

Ω′3 =
{
(u, v) ∈ KerL : −λ(u, v) + (1− λ)QN(u, v) = (0, 0), λ ∈ [0, 1]

}
is bounded.

Theorem 2. Suppose (H1)–(H3) hold, then the problem (1) and (2) has at least one solution in Y.

Proof. Let Ω be a bounded open subset of Y, such that ∪3
i=1Ωi ⊂ Ω. It follows from

Lemma 5, that N is L-compact on Ω. By Lemmas 6–8, we obtain:

(1) L(u, v) 6= λN(u, v), for every (u, v, λ) ∈ [(domL \KerL) ∩ ∂Ω]× (0, 1).
(2) N(u, v) /∈ ImL for every u ∈ KerL ∩ ∂Ω.
(3) Let H

(
(u, v), λ

)
= ±λI(u, v) + (1− λ)JQN(u, v). Here, we let I and the isomorphism

J : Im Q→ ker L, which are both identical operators. Via the homotopy property of
degree, we obtain that

deg(JQN|ker L, Ω ∩ ker L, 0) = deg(H(·, 0), Ω ∩ ker L, 0)

= deg(H(·, 1), Ω ∩ ker L, 0)

= deg(I, Ω ∩ ker L, 0) = 1 6= 0.

Applying Theorem 1, we conclude that L(u, v) = N(u, v) has at least one solution in
dom L ∩Ω.

4. Example

Let us consider the following coupled system of fractional jerk equations at resonance

D0.1
0+x1(t) = x2(t),

D0.3
0+x2(t) = x3(t),

D0.5
0+x3(t) = f

(
y1, y2, y3

)
,

D0.7
0+y1(t) = y2(t),

D0.4
0+y2(t) = y3(t),

D0.2
0+y3(t) = g

(
x1, x2, x3

)
,

x1(0) = ∑3
i=1 aix1(ξi), x2(0) = x3(0) = 0,

y1(0) = ∑3
i=1 biy1(ηi), y2(0) = y3(0) = 0,

(13)

where

f (y1, y2, y3) =
|y1|
10

+
sin y2

20
+

cos y3

20
,

g(x1, x2, x3) =
sin2 x1

16
+

sin x2

32
+
|x3|
32

,

and a1 = a2 = 1
4 , a3 = 1

2 , b1 = b2 = b3 = 1
3 , ξ1 = 0.3, ξ2 = 0.5, ξ3 = 0.7, η1 = 0.2, η2 = 0.4,

and η1 = 0.6. Corresponding to BVP (1) and (2), we have that α = 0.1, β = 0.5, γ = 0.3,
λ = 0.7, µ = 0.4, and ν = 0.2.
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It is easy to see that

p1 =
1

10
,= p2 =

1
20

, p3 =
1

20
, a =

1
Γ(γ + 1)

=
1

Γ(1.3)
≈ 1.11

q1 =
1

16
, q2 =

1
32

, q3 =
1
16

, b =
1

Γ(ν + 1)
=

1
Γ(1.2)

≈ 1.09.

By direct calculation, we can obtain

p =
p1 + p2 + p3

Γ
(
α + β + γ + 1

) =
0.2

Γ(1.9)
≈ 0.21, p + a

3

∑
i=1

pi ≈ 0.65, q + b
3

∑
i=1

qi ≈ 0.28,

q =
q1 + q2 + q3

Γ
(
λ + µ + ν + 1

) =
0.125
Γ(2.3)

≈ 0.11, p + b
3

∑
i=1

qi ≈ 0.38, q + a
3

∑
i=1

pi ≈ 0.55.

We take A = 18, then we can obtain that (H1)–(H3) hold. Hence, all the conditions of
Theorem 2 are satisfied, and consequently BVP (13) has at least one solution.

5. Conclusions

In this paper, we investigated a resonant boundary value problem of the system of jerk
differential equations with the fractional order. The interesting point is that two fractional
jerk equations are coupled. By coincidence degree theory due to Mawhin, the existence
result is proved. Our result obtained in this paper is new and complements the existing
literature on the topic. As far as our work is concerned, we mainly concentrated on the
existence of solutions. To the best of our knowledge, some results were not considered for
fractional coupled jerk equations with resonant conditions, such as unique solutions, posi-
tive solutions, and numerical solutions. In future research, we will study the corresponding
problem, and we hope to be able to make some progress. The corresponding physical
interpretation of fractional coupled jerk equations, in order to compare the presented
results on integer-order jerk system, is proposed as future work.
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