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Abstract: Let b ∈ Cn \ {0} be a fixed direction. We consider slice holomorphic functions of several
complex variables in the unit ball, i.e., we study functions that are analytic in the intersection of

every slice {z0 + tb : t ∈ C} with the unit ball Bn = {z ∈ C: |z| :=
√
|z|21 + . . . + |zn|2 < 1} for any

z0 ∈ Bn. For this class of functions, there is introduced a concept of boundedness of L-index in the
direction b, where L : Bn → R+ is a positive continuous function such that L(z) >

β|b|
1−|z| , where

β > 1 is some constant. For functions from this class, we describe a local behavior of modulus of
directional derivatives on every ’circle’ {z + tb : |t| = r/L(z)} with r ∈ (0; β], t ∈ C, z ∈ Cn. It
is estimated by the value of the function at the center of the circle. Other propositions concern a
connection between the boundedness of L-index in the direction b of the slice holomorphic function
F and the boundedness of lz-index of the slice function gz(t) = F(z + tb) with lz(t) = L(z + tb). In
addition, we show that every slice holomorphic and joint continuous function in the unit ball has
a bounded L-index in direction in any domain compactly embedded in the unit ball and for any
continuous function L : Bn → R+.

Keywords: bounded index; bounded L-index in direction; slice function; analytic function; bounded
l-index; unit ball; local behavior; maximum modulus

MSC: 32A10; 32A17; 32A37

1. Introduction

The theory of entire functions of bounded index was initiated by the paper of B. Lepson [1].
An entire function f : C→ C is called a function of bounded index [1,2] if there exists m0 ∈ Z+

such that, for all z ∈ C and, for all p ∈ N, one has | f
(p)(z)|

p! ≤ max
0≤k≤m0

{ | f
(k)(z)|

k! }. This theory

has applications in the analytic theory of differential equations [3,4] and its systems [5] and
the value distribution theory [6–8]. It is known that any entire function of bounded index [7]
is a function of exponential type. Using a notion of bounded index for bivariate complex
functions Nuray and Patterson [9] presented a series of sufficient conditions that ensure that
exponential type is preserved. Another interesting application of this notion concerns summa-
bility methods. Nuray [10] presented necessary and sufficient conditions on four-dimensional
matrix transformations that preserve entireness, bounded index, and absolute convergence of
double sequences. He obtained general characterizations for four-dimensional RH-regular
matrix transformations for the space of entire, bounded index, and absolutely summable
double sequences.

Let b ∈ Cn \ {0} be a fixed direction. Recently, a generalization of notion of bounded
index [11–13] was proposed for so-called slice holomorphic functions in Cn. There were two
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classes considered of these functions: 1) H̃b is a class of functions which are holomorphic
on every slice {z0 + tb : t ∈ C} for each z0 ∈ Cn; 2)Hb is a subclass of functions from H̃b
which are jointly continuous.

Those investigations were initiated by the following question of Favorov:

Problem 1 ([14]). Let b ∈ Cn \ {0} be a given direction, L : Cn → R+ be a continuous function.
Is it possible to replace the condition “F is holomorphic in Cn” by the condition “F is holomorphic
on all slices z0 + tb” and to deduce all known properties of entire functions of bounded L-index in
direction for this class of function class?

There is a negative answer to Favorov’s question [14]. This relaxation of restrictions
by the function F does not allow the proving of some theorems. It is known that any entire
function has a bounded index in any bounded domain. An example of a slice holomorphic
function was constructed having an unbounded index in a direction in some unbounded
domain [14].

Note that joint continuity and slice holomophy (in one direction b) do not imply
holomorphy in a whole n-dimensional complex space (see examples in [13]). For these
classes, the theory of a bounded index in the direction was constructed in papers [11–13].
Particularly, growth estimates were obtained, and the described local behavior of holomor-
phic solutions of some partial differential equations [12]. These slice holomorphic functions
in Cn are some generalization of entire functions of several complex variables. Together
with the class of entire functions, the analytic functions in the unit ball or in the polydisc
are very important objects of investigations in the multidimensional complex analysis.
Rudin [15] wrote that ’The ball is the prototype of two important classes of regions that
have been studied in depth, namely the strictly pseudoconvex domains and the bounded
symmetric ones’. Thus, it leads to a general problem to construct a theory of bounded index
for slice holomorphic functions in a bounded symmetric domain. In the paper, we consider
this problem for the unit ball because it is an important model example of a bounded
symmetric domain. Thus, we will study functions that are slice holomorphic in such a
bounded domain as unit ball. Its symmetry simplifies many proofs and helps to select
main ideas with a minimum of fuss and bother.

Moreover, functions analytic in the unit ball have a bounded index in any direction in
a domain compactly embedded in the unit ball [16]. Despite this, the example from [14]
can be easy generalized for the unit ball. In other words, there exist functions which are
analytic on each slice z + tb (z ∈ Bn, t ∈ C) in the unit ball and which have unbounded
index in a some domain compactly embedded in the unit ball.

Therefore, our goal is to construct theory of bounded index for functions which are
slice holomorphic in the unit ball.

Let us introduce some notations and definitions.
Let 0 = (0, . . . , 0), R+ = (0,+∞), R∗+ = [0,+∞), b = (b1, . . . , bn) ∈ Cn \ {0} be a

given direction, Bn = {z ∈ Cn : |z| < 1}, D = {z ∈ C : |z| < 1}, L : Bn → R+ be a
continuous function such that, for all z ∈ Bn

L(z) >
β|b|

1− |z| , β = const > 1. (1)

For a given z ∈ Bn, we denote Sz = {t ∈ C : z + tb ∈ Bn}. Clearly, D = B1.
The slice functions on Sz for fixed z0 ∈ Bn we will denote as gz0(t) = F(z0 + tb) and

lz0(t) = L(z0 + tb) for t ∈ Sz.

Definition 1 ([16]). An analytic function F : Bn → C is called a function of bounded L-index in
a direction b, if there exists m0 ∈ Z+ such that, for every m ∈ Z+, and, for all z ∈ Bn, one has

|∂m
b F(z)|

m!Lm(z)
≤ max

0≤k≤m0

|∂k
bF(z)|

k!Lk(z)
, (2)
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where ∂0
bF(z) = F(z), ∂bF(z) =

n
∑

j=1

∂F(z)
∂zj

bj, ∂k
bF(z) = ∂b

(
∂k−1

b F(z)
)

, k ≥ 2.

The least such integer number m0, obeying (2), is called the L-index in the direction b
of the function F and is denoted by Nb(F, L).

If such m0 does not exist, then we put Nb(F, L) = ∞, and the function F is said to be of
unbounded L-index in the direction b in this case. Let l : D→ R+ be a continuous function
such that l(z) > β

1−|z| . For n = 1, b = 1, L(z) ≡ l(z) (z ∈ D) the inequality (2) defines an
analytic function in the unit disc of bounded l-index with the l-index N(F, l) ≡ N1(F, l)
(see [17]).

Let Nb(F, L, z0) stands for the L-index in the direction b of the function F at the point
z0, i.e., it is the least integer m0, for which the inequality (2) is satisfied at this point z = z0.
By analogy, the notation N( f , l, z0) is defined if n = 1, i.e., in the case of analytic functions
in the unit disc.

There are many papers on entire and slice holomorphic functions of bounded L-index
in the direction. Methods of investigation of properties of these functions often use the
restriction of the function to the slices {z0 + tb : t ∈ C}. For fixed b ∈ Cn \ {0} and
z0 ∈ Cn, using considerations from the one-dimensional case, mathematicians obtain the
estimates which are uniform in z0 ∈ Cn. This is a short description of the main idea.

Please note that the positivity and the continuity of the function L are weak restrictions
to deduce constructive results. Thus, we assume additional restrictions to the function L.

Let us denote

λb(η) = sup
z∈Bn

sup
t1,t2∈Sz

{
L(z + t1b)
L(z + t2b)

: |t1 − t2| ≤
η

min{L(z + t1b), L(z + t2b)}

}
.

By Qb(Bn), we denote a class of positive continuous functions L : Bn → R+, satisfying
the condition

∀η ∈ [0; β] : λb(η) < +∞. (3)

Moreover, it is sufficient to require validity of (3) for one value η ∈ (0; β].

In addition, we denote by 〈a, c〉 =
n
∑

j=1
ajcj the scalar product in Bn, where a, c ∈ Bn.

Let H̃b(Bn) be a class of functions which are holomorphic on every slices {z0 + tb :
t ∈ Sz0} for each z0 ∈ Bn and let Hb(Bn) be a class of functions from H̃b(Bn) which are
joint continuous. The notation ∂bF(z) stands for the derivative of the function gz(t) at the
point 0, i.e., for every p ∈ N ∂

p
bF(z) = g(p)

z (0), where gz(t) = F(z + tb) is an analytic
function of complex variable t ∈ C for given z ∈ Bn. In this research, we will often call this
derivative as a directional derivative because, if F is an analytic function in Bn, then the
derivatives of the function gz(t) matches with directional derivatives of the function F.

Please note that, if F ∈ Hb(Bn), then for every p ∈ N ∂bF ∈ Hb(Bn). It can be proved
by using Cauchy’s formula.

Together, the hypothesis on joint continuity and the hypothesis on holomorphy in one
direction do not imply holomorphy in whole n-dimensional complex unit ball. We give
some examples to demonstrate it. For n = 2, let f : D → C be an analytic function,
g : D→ C be a continuous function. Then, f (z1)g(z2), f (z1)± g(z2) are functions that are
holomorphic in the direction (1, 0) and are joint continuous in B2. Moreover, the function
f (z1 · g(z2)) has the same properties if |g(z)| = 1. If, in addition, we have performed an
affine transformation {

z1 = b2z′1 + b1z′2,
z2 = b2z′1 − b1z′2

then the new functions are also holomorphic in the direction (b1, b2) and are joint continu-
ous in B2, where |b1b2| = 1/2.
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Definition 2. A function F ∈ H̃b(Bn) is said to be of bounded L-index in the direction b, if there
exists m0 ∈ Z+ such that for all m ∈ Z+ and each z ∈ Bn the inequality (2) is true.

All notations, introduced above for analytic functions of bounded L-index in the
direction, remain for functions from H̃b(Bn).

2. Sufficient Sets

Now, we prove several assertions that establish a connection between functions
of bounded L-index in direction and functions of a bounded l-index of one variable.
The similar results were obtained for analytic functions in the unit ball [18] and for slice
holomorphic functions in Cn [13]. The next proofs use ideas from the mentioned papers.

Proposition 1. If a function F ∈ H̃b(Bn) has bounded L-index in the direction b, then, for every
z ∈ Bn, the analytic function gz(t) is of bounded lz-index and N(gz, lz) ≤ Nb(F, L).

Proof. Let z ∈ Bn, g(t) ≡ gz(t), l(t) ≡ lz(t). As for all p ∈ N

g(p)(t) = ∂
p
bF(z + tb), (4)

then, by the definition of the boundedness of the L-index in the direction b for all t ∈ Sz
and p ∈ Z+, we obtain

|g(p)(t)|
p!lp(t)

=
|∂p

bF(z0 + tb)|
p!Lp(z0 + tb)

≤ max
{ |∂k

bF(z0 + tb)|
k!Lk(z0 + tb)

: 0 ≤ k ≤ Nb(F, L)
}
=

= max
{ |g(k)(t)|

k!lk(t)
: 0 ≤ k ≤ Nb(F, L)

}
.

Hence, we obtain that g(t) is of bounded l-index and N(g, l) ≤ Nb(F, L). Proposition 1
is proved.

The equality (4) implies that the following proposition holds.

Proposition 2. If a function F ∈ H̃b(Bn) has bounded L-index in the direction b, then

Nb(F, L) = max {N(gz, lz) : z ∈ Bn}.

Theorem 1. A function F ∈ H̃b(Bn) has bounded L-index in the direction b if and only
if there exists a number M > 0 such that for all z ∈ Bn the function gz(t) is of bounded
lz-index with N(gz, lz) ≤ M < +∞, as a function of variable t ∈ C. Thus, Nb(F, L) =
max{N(gz, lz) :z ∈ Bn}.

Proof. The necessity follows from Proposition 1.
Sufficiency. Since N(gz, lz) ≤ M, there exists max{N(gz, lz) : z ∈ Bn}. We denote Nb(F, L) =
max{N(gz, lz) : z ∈ Bn} < +∞. Suppose that Nb(F, L) is not the L-index in the direction b
of the function F(z). It means that there exists n∗ > Nb(F, L) and z∗ ∈ Bn such that

|∂n∗
b F(z∗)|

n∗!Ln∗(z∗)
> max

{
|∂k

bF(z∗)|
k!Lk(z∗)

: 0 ≤ k ≤ Nb(F, L)

}
. (5)

Since, for gz(t) = F(z + tb), we have g(p)
z (t) = ∂

p
bF(z + tb), the inequality (5) can

be rewritten as

∣∣g(n∗)z∗ (0)
∣∣

n∗ !ln∗
z∗ (0)

> max
{
|g(k)z∗ (0)|
k!lk

z∗ (0)
: 0 ≤ k ≤ Nb(F, L)

}
, but it is impossible (it con-

tradicts that all lz-indices N(gz0 , lz) are not greater than Nb(F, L)). Thus, Nb(F, L) is the
L-index in the direction b of the function F(z). Theorem 1 is proved.
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However, maximum can be calculated on a set A with a property
⋃

z0∈A{z0 + tb : t ∈
Sz0} = Bn. Thus, the following assertion is valid.

Lemma 1. If a function F ∈ H̃b(Bn) has bounded L-index in the direction, b and j0 are chosen
with bj0 6= 0 then Nb(F, L) = max{N(gz0 , lz0) : z0 ∈ Cn, z0

j0
= 0} and if ∑n

j=1 bj 6= 0 then
Nb(F, L) = max{N(gz0 , lz0) : z0 ∈ Cn, ∑n

j=1 z0
j = 0}.

Proof. We prove that, for every z ∈ Bn, there exist z0 ∈ Cn and t ∈ Sz0 with z = z0 + tb
and z0

j0
= 0. Put t = zj0 /bj0 , z0

j = zj − tbj, j ∈ {1, 2, . . . , n}. Clearly, z0
j0
= 0 for this choice.

However, the point z0 may not be contained in Bn. However, there exists t ∈ C that
z0 + tb ∈ Bn. Let z0 /∈ Bn and |z| = R1 < 1. Therefore, |z0 + tb| = |z − zj0

bj0
b + tb| =

|z + (t− zj0
bj0

)b| ≤ |z|+ |t− zj0
bj0
| · |b| ≤ R1 + |t−

zj0
bj0
| · |b| < 1. Thus, |t− zj0

bj0
| < 1−R1

|b| .

In the second part, we prove that, for every z ∈ Bn, there exist z0 ∈ Cn and t ∈ Sz0

such that z = z0 + tb and ∑n
j=1 z0

j = 0. Put t =
∑n

j=1 zj

∑n
j=1 bj

and z0
j = zj − tbj, 1 ≤ j ≤ n. Thus,

the following equality is valid: ∑n
j=1 z0

j = ∑n
j=1(zj − tbj) = ∑n

j=1 zj −∑n
j=1 bjt = 0.

Lemma 1 is proved.

Note that, for a given z ∈ Bn, we can pick uniquely z0 ∈ Cn and t ∈ Sz0 such that
∑n

j=1 z0
j = 0 and z = z0 + tb.

Remark 1. If, for some z0 ∈ Cn {z0 + tb : t ∈ C}⋂Bn = ∅, then we put N(gz0 , lz0) = 0.

Theorem 2. Let A0 ⊂ Cn be such that
⋃

z∈A0
{z + tb : t ∈ Sz} = Bn. A function F ∈ H̃b(Bn)

is of bounded L-index in the direction b if and only if there exists M > 0 such that for all z0 ∈ A0
the function gz0(t) is of bounded lz0 -index with N(gz0 , lz0) ≤ M < +∞, as a function of variable
t ∈ Sz0 and Nb(F, L) = max{N(gz0 , lz0) : z0 ∈ A0}.

Proof. By Theorem 1, the analytic function F is of bounded the L-index in the direction b
if and only if there exists a number M > 0 such that, for every z0 ∈ Bn, the function gz0(t)
is of bounded lz0 -index N(gz0 , lz0) ≤ M < +∞, as a function of variable t ∈ Sz0 . However,
in view of property of the set A0 for every z0 + tb, there exist z̃0 ∈ A0 and t̃ ∈ Bz̃0 such
that z0 + tb = z̃0 + t̃b. In other words, for all p ∈ Z+, (gz0(t))

(p) = (gz̃0(t̃))
(p). However,

t̃ depends on t. Thus, the condition that gz0(t) is of bounded lz0-index for all z0 ∈ Bn is
equivalent to the condition g

z̃0(t) is of bounded lz̃0 -index for all z̃0 ∈ A0.

Remark 2. An intersection of arbitrary hyperplane H = {z ∈ Cn : 〈z, c〉 = 1} and the set
Bn

b = {z + 1−〈z,c〉
〈b,c〉 b : z ∈ Bn}, where 〈b, c〉 6= 0, satisfies conditions of Theorem 2.

We prove that, for every w ∈ Bn, there exist z ∈ H
⋂
Bn

b and t ∈ C such that w =
z + tb.

Choosing z = w + 1−〈w,c〉
〈b,c〉 b ∈ H

⋂
Bn

b, t =
〈w, c〉 − 1
〈b, c〉 , we obtain

z + tb = w +
1− 〈w, c〉
〈b, c〉 b +

〈w, c〉 − 1
〈b, c〉 b = w.

Theorem 3 requires replacement of the space H̃b(Bn) by the spaceHb(Bn). In other
words, we use joint continuity in its proof.

Theorem 3. Let A = Bn, i.e., A be an everywhere dense set in Bn and let a function F ∈ Hb(Bn).
The function F is of bounded L-index in the direction b if and only if there exists M > 0 such
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that, for all z0 ∈ A, a function gz0(t) is of bounded lz0-index N(gz0 , lz0) ≤ M < +∞ and
Nb(F, L) = max{N(gz0 , lz0) : z0 ∈ A}.

Proof. The necessity follows from Theorem 1.
Sufficiency. Since A = Bn, then, for every z0 ∈ Bn, there exists a sequence z(m),

which z(m) → z0 as m → +∞ and z(m) ∈ A for all m ∈ N. However, F(z + tb) is of
bounded lz-index for all z ∈ A as a function of variable t. This is why, in view of the
definition of bounded lz-index, there exists M > 0 that for all z ∈ A, t ∈ C, p ∈ Z+

|g(p)
z (t)|

p!lp(t) ≤ max
{
|g(k)z (t)|
k!lk

z (t)
: 0 ≤ k ≤ M

}
.

Substituting instead of z a sequence z(m) ∈ A, z(m) → z0, we obtain that, for every
m ∈ N,

|∂p
bF(z(m) + tb)|

p!Lp(z(m) + tb)
≤max

{
|∂k

bF(z(m) + tb)|
k!Lk(z(m) + tb)

: 0 ≤ k ≤ M

}
.

However, F and ∂
p
bF are continuous in Bn for all p ∈ N and L is a positive continuous

function. Thus, in the obtained expression, the limiting transition is possible as m→ +∞
(z(m) → z0). Evaluating the limit as m → +∞, we obtain that, for all z0 ∈ Bn, t ∈ C,
m ∈ Z+

|∂p
bF(z0 + tb)|

p!Lp(z0 + tb)
≤max

{
|∂k

bF(z0 + tb)|
k!Lk(z0 + tb)

: 0 ≤ k ≤ M

}
.

This inequality implies that F(z + tb) is of bounded L(z + tb)-index as a function of
variable t for every given z ∈ Bn. Applying Theorem 1, we obtain the desired conclusion.
Theorem 3 is proved.

Remark 2 and Theorem 3 yield the following corollary.

Corollary 1. Let A0 be such that its closure is A0 = {z ∈ Cn : 〈z, c〉 = 1}⋂Bn
b, where

〈c, b〉 6= 0, Bn
b = {z + 1−〈z,c〉

〈b,c〉 b : z ∈ Bn}. A function F ∈ Hb(Bn) is of bounded L-index in the

direction b if and only if there exists number M > 0 such that, for all z0 ∈ A0, the function gz0(t)
is of bounded lz0 -index with N(gz0 , lz0) ≤ M < +∞, as a function of variable t ∈ Sz0 . In addition,
Nb(F, L) = max{N(gz0 , lz0) : z0 ∈ A0}.

Proof. In view of Remark 2 in Theorem 2, we can take B0 = {z ∈ Cn : 〈z, c〉 = 1}∩
{z + 1−〈z,c〉

〈b,c〉 b : z ∈ Bn}, where 〈c, b〉 6= 0. Let A0 be a dense set in B0, A0 = B0. Repeating
considerations of Theorem 3, we obtain the desired conclusion.

Indeed, the necessity follows from Theorem 1 (in this theorem, the same condition is
satisfied for all z0 ∈ Cn, and we need this condition for all z0 ∈ A0.

To prove the sufficiency, we use the density of the set A0. Obviously, for every z0 ∈ B0,
there exists a sequence z(m) → z0 and z(m) ∈ A0. However, gz(t) is of bounded lz-index for
all z ∈ A0. Taking the conditions of Corollary 1 into account, for some M > 0 and for all z ∈

A0, t ∈ C, p ∈ Z+, the following inequality holds: g(p)
z (t)

p!lp
z (t)
≤ max

{
|g(k)z (t)|
k!lk

z (t)
: 0 ≤ k ≤ M

}
.

Substituting an arbitrary sequence z(m) ∈ A, z(m) → z0 instead of z ∈ A0, we have
|g(p)

z(m)
(t)|

p!lp

z(m)
(t)
≤ max

{
|g(k)

z(m)
(t)|

k!lk
z(m)

(t)
: 0 ≤ k ≤ M

}
, that is,

∣∣∂p
bF(z(m)+tb)

∣∣
Lp(z(m)+tb)

≤ max
0≤k≤M

∣∣∂k
bF(z(m)+tb)

∣∣
k!Lk(z(m)+tb)

.
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However, F is an analytic function in Bn, L is a positive continuous. Thus, we calculate
a limit as m→ +∞ (zm → z). For all z0 ∈ B0, t ∈ Sz0 , m ∈ Z+, we have∣∣∣∂p

bF(z0 + tb)
∣∣∣

Lp(z0+tb)
≤ max

0≤k≤M

∣∣∣∂k
bF(z0 + tb)

∣∣∣
k!Lk(z0 + tb)

.

Therefore, F(z0 + tb) is of a bounded L(z0 + tb)-index as a function of t at each
z0 ∈ Bn. By Theorem 3 and Remark 2, F is of bounded L-index in the direction b.

Proposition 3. Let (rp) be a positive sequence such that rp → 1 as p → ∞, Dp = {z ∈ Cn :

|z| = rp}, Ap be a dense set in Dp (i.e., Ap = Dp) and A =
∞⋃

p=1
Ap. A function F ∈ Hb(Bn) is

of bounded L-index in the direction b if and only if there exists number M > 0 such that, for all
z0 ∈ A, the function gz0(t) is of bounded lz0-index N(gz0 , lz0) ≤ M < +∞, as a function of the
variable t ∈ Sz0 . In addition, Nb(F, L) = max{N(gz0 , lz0) : z0 ∈ A}.

Proof. Theorem 1 implies the necessity of this theorem.
Sufficiency. It is easy to prove {z + tb : t ∈ Sz, z ∈ A} = Bn. Furthermore, we repeat

arguments with the proof of sufficiency in Theorem 3 and obtain the desired conclusion.

3. Local Behavior of Directional Derivative

The following proposition is important in the theory of functions of bounded index.
It initializes series of propositions that are necessary to prove the logarithmic criterion of
the index boundedness. It was first obtained by G. H. Fricke [19] for entire functions of
bounded index. Later, the proposition was generalized for entire functions of bounded
l-index [20], analytic functions of bounded l-index [21], and entire functions of bounded
L-index in direction [22], functions analytic in a polydisc [23] or in a ball [24] with bounded
L-index in joint variables, for slice holomorphic functions in Cn [13] and for holomorphic
bivariate entire functions [25].

Theorem 4. Let L ∈ Qb(Bn). A function F ∈ H̃b(Bn) is of bounded L-index in the direction b
if and only if for each η ∈ (0; β], there exist n0 = n0(η) ∈ Z+ and P1 = P1(η) ≥ 1 such that, for
every z ∈ Bn, there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, and

max
{∣∣∣∂k0

b F(z + tb)
∣∣∣ : |t| ≤ η

L(z)

}
≤ P1

∣∣∣∂k0
b F(z)

∣∣∣. (6)

Proof. Our proof is based on the proof of the appropriate theorem for analytic functions in
the unit ball having bounded L-index in direction [16] and for slice holomorphic functions
in Cn [13].

Necessity. Let Nb(F; L)≡N < +∞. Let [a], a ∈ R stands for the integer part of the
number a in this proof. We denote

q(η) = [2η(N + 1)(λb(η))
2N+1] + 1.

For z ∈ Bn and p ∈ {0, 1, . . . , q(η)} we put

Rb
p(z, η) = max

{
|∂k

bF(z + tb)|
k!Lk(z + tb)

: |t| ≤ pη

q(η)L(z)
, 0 ≤ k ≤ N

}
,

R̃b
p(z, η)=max

{
|∂k

bF(z + tb)|
k!Lk(z)

: |t| ≤ pη

q(η)L(z)
, 0≤ k≤N

}
.
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However, |t| ≤ pη
q(η)L(z) ≤

η
L(z) , then λb

(
pη

q(η)

)
≤ λb(η). It is clear that Rb

p(z, η),

R̃b
p(z, η) are well-defined. Moreover,

Rb
p(z, η) =

=max
{
|∂k

b F(z+tb)|
k!Lk(z)

(
L(z)

L(z+tb)

)k

: 0≤ k≤N, |t|≤ pη
q(η)L(z)

}
≤

≤max
{
|∂k

b F(z+tb)|
k!Lk(z)

(
λb
( pη

q(η)

))k
: |t|≤ pη

q(η)L(z), 0≤ k≤N
}
≤

≤max
{
|∂k

b F(z+tb)|
k!Lk(z) (λb(η))

k : |t| ≤ pη
q(η)L(z) , 0 ≤ k≤N

}
≤

≤ (λb(η))
Nmax

{
|∂k

b F(z+tb)|
k!Lk(z) : |t|≤ pη

q(η)L(z) , 0 ≤ k ≤ N
}
=

= R̃b
p(z, η)(λb(η))

N ,

(7)

R̃b
p(z, η) =

=max
{
|∂k

b F(z+tb)|
k!Lk(z+tb)

(
L(z+tb)

L(z)

)k
: |t|≤ pη

q(η)L(z) , 0 ≤ k ≤ N
}
≤

≤max
{
|∂k

b F(z+tb)|
k!Lk(z+tb)

(
λb

(
pη

q(η)

))k
: |t|≤ pη

q(η)L(z) , 0≤ k≤N
}
≤

≤ max
{
(λb(η))

k |∂k
b F(z+tb)|

k!Lk(z+tb) : |t| ≤ pη
q(η)L(z) , 0 ≤ k ≤ N

}
≤

≤ (λb(η))
N max

{
|∂k

b F(z+tb)|
k!Lk(z+tb) : |t| ≤ pη

q(η)L(z) , 0 ≤ k ≤ N
}

=

= Rb
p(z, η)(λb(η))

N .

(8)

Let kz
p ∈ Z, 0 ≤ kz

p ≤ N, and tz
p ∈ Sz, |tz

p| ≤
pη

q(η)L(z) be such that

R̃b
p(z, η) =

|∂kz
p

b F(z + tz
pb)|

kz
p!Lkz

p(z)
. (9)

However, for every given z ∈ Bn, the function gz(t) = F(z + tb) and its derivatives
are analytic as functions of variable t. Then, by the maximum modulus principle, the
equality (9) holds for tz

p such that |tz
p| =

pη
q(η)L(z) . We set t̃z

p = p−1
p tz

p. Then,

|t̃z
p| =

(p− 1)η
q(η)L(z)

, (10)

|t̃z
p − tz

p| =
|tz

p|
p

=
η

q(η)L(z)
. (11)

It follows from (10) and the definition of R̃b
p−1(z, η) that

R̃b
p−1(z, η) ≥

|∂kz
p

b F(z + t̃z
pb)|

kz
p!Lkz

p(z)
.

Therefore,

0≤ R̃b
p(z, η)− R̃b

p−1(z, η)≤

∣∣∣∣∂kz
p

b F(z+tz
pb)
∣∣∣∣−∣∣∣∣∂kz

p
b F(z+t̃z

pb)
∣∣∣∣

kz
p !Lkz

p (z)
=

= 1
kz

p !Lkz
p (z)

∫ 1
0

d
ds

∣∣∣∣∂kz
p

b F(z + (t̃z
p + s(tz

p − t̃z
p))b)

∣∣∣∣ds.

(12)
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For every analytic complex-valued function of real variable ϕ(s), s ∈ R, the inequality
d
ds |ϕ(s)| ≤

∣∣∣ d
ds ϕ(s)

∣∣∣ holds, where ϕ(s) 6= 0. Applying this inequality to (12) and using the
mean value theorem, we obtain

R̃b
p(z, t0, η)− R̃b

p−1(z, t0, η) ≤

≤
|tz

p − t̃z
p|

kz
p!Lkz

p(z)

∫ 1

0

∣∣∣∣∂kz
p+1

b F(z + (t̃z
p + s(tz

p − t̃z
p))b)

∣∣∣∣ds =

=
|tz

p − t̃z
p|

kz
p!Lkz

p(z)

∣∣∣∣∂kz
p+1

b F(z + (t̃z
p + s∗(tz

p − t̃z
p))b)

∣∣∣∣ =
= L(z)(kz

p + 1)|tz
p − t̃z

p|
|∂kz

p+1
b F(z + (t̃z

p + s∗(tz
p − t̃z

p))b)|
(kz

p + 1)!Lkz
p+1(z)

,

where s∗ ∈ [0, 1]. The point t̃z
p + s∗(tz

p − t̃z
p) belongs to the set{

t ∈ C : |t| ≤ pη

q(η)L(z)
≤ η

L(z)

}
.

Using the definition of the boundedness of L-index in direction, the definition of q(η),
inequalities (7) and (11), for kz

p ≤ N, we have

R̃b
p(z, η)− R̃b

p−1(z, η) ≤
|∂kz

p+1
b F(z + (t̃z

p + s∗(tz
p − t̃z

p))b)|
(kz

p + 1)!Lkz
p+1(z + (t̃z

p + s∗(tz
p − t̃z

p))b)
×

×
(L(z+(t̃z

p+s∗(tz
p− t̃z

p))b)
L(z)

)kz
p+1

L(z)(kz
p+1)|tz

p− t̃z
p|≤η

N+1
q(η)

(λb(η))
N+1×

×max

{
|∂k

bF(z + (t̃z
p + s∗(tz

p − t̃z
p))b)|

k!Lk(z + (t̃z
p + s∗(tz

p − t̃z
p))b)

: 0≤ k≤N

}
≤η

N+1
q(η)

(λb(η))
N+1Rb

p(z, η)≤

≤ η(N + 1)(λb(η))
2N+1

[2η(N + 1)(λb(η))2N+1] + 1
R̃b

p(z, η) ≤ 1
2

R̃b
p(z, η)

It follows that R̃b
p(z, η) ≤ 2R̃b

p−1(z, η). Using inequalities (7) and (8), we obtain for

Rb
p(z, η)

Rb
p(z, η) ≤ 2(λb(η))

N R̃b
p−1(z, η) ≤ 2(λb(η))

2N Rb
p−1(z, η).

Hence,

max
{
|∂k

b F(z+tb)|
k!Lk(z+tb) : |t| ≤ η

L(z) ,0 ≤ k ≤ N
}

=Rb
q(η)(z, η) ≤

≤2(λb(η))
2N Rb

q(η)−1(z, η)≤ (2(λb(η))
2N)2Rb

q(η)−2(z, η)≤
≤ · · · ≤ (2(λb(η))

2N)q(η)Rb
0 (z, η) =

= (2(λb(η))
2N)q(η) max

{
|∂k

b F(z)|
k!Lk(z) : 0 ≤ k ≤ N

}
.

(13)

Let kz ∈ Z, 0 ≤ kz ≤ N, and t̃z ∈ C, |t̃z| = η
L(z) be such that

|∂kz
b F(z)|

kz!Lkz(z)
= max

0≤k≤N

|∂k
bF(z)|

k!Lk(z)
,

and
|∂kz

b F(z + t̃zb)| = max{|∂kz
b F(z + tb)| : |t| ≤ η/L(z)}.
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Inequality (13) implies

|∂kz
b F(z + t̃zb)|

kz!Lkz(z + t̃zb)
≤ max

{
|∂kz

b F(z + tb)|
kz!Lkz(z + tb)

: |t| = η

L(z)

}
≤

≤ max

{
|∂k

bF(z + tb)|
k!Lk(z + tb)

: |t| = η

L(z)
, 0 ≤ k ≤ N

}
≤

≤ (2(λb(η))
2N)q(η)

∣∣∂kz
b F(z)

∣∣
kz!Lkz(z)

.

Hence,

max
{
|∂kz

b F(z + tb)| : |t| ≤ η/L(z)
}
≤

≤ (2(λb(η))
2N)q(η) Lkz(z + t̃zb)

Lkz(z)
|∂kz

b F(z)| ≤

≤ (2(λb(η))
2N)q(η)(λb(η))

N |∂kz
b F(z)| ≤

≤ (2(λb(η))
2N)q(η)(λb(η))

N |∂kz
b F(z)|.

Thus, we obtain (6) with n0 = Nb(F, L) and

P1(η) = (2(λb(η))
2N)q(η)(λb(η))

N > 1.

Sufficiency. Suppose that, for each η ∈ (0; β], there exists n0 = n0(η) ∈ Z+ and
P1 = P1(η) ≥ 1 such that, for every z ∈ Bn, there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, for
which inequality (6) holds. We choose η > 1 and j0 ∈ N such that P1 ≤ η j0 . For given
z ∈ Bn, k0 = k0(z) and j ≥ j0 by Cauchy’s formula for F(z + tb) as a function of one
variable t

∂
k0+j
b F(z) =

j!
2πi

∫
|t|=η/L(z)

∂k0
b F(z + tb)

tj+1 dt.

Therefore, in view of (6), we have

|∂k0+j
b F(z)|

j!
≤ Lj(z)

η j max
{
|∂k0

b F(z + tb)| : |t| = η

L(z)

}
≤ P1

Lj(z)
η j |∂

k0
b F(z)|,

Hence, for all j ≥ j0, z ∈ Bn,

|∂k0+j
b F(z)|

(k0 + j)!Lk0+j(z)
≤ j!k0!

(j + k0)!
P1

η j

|∂k0
b F(z)|

k0!Lk0(z)
≤ η j0−j |∂

k0
b F(z)|

k0!Lk0(z)
≤
|∂k0

b F(z)|
k0!Lk0(z)

.

Since k0 ≤ n0, the numbers n0 = n0(η) and j0 = j0(η) are independent of z and
t0, this inequality means that a function F has a bounded L-index in the direction b and
Nb(F, L) ≤ n0 + j0. The proof of Theorem 4 is complete.

4. Application of Theorem on Local Behavior of Functions Having Bounded L-Index
in Direction

Below, we consider an application of Theorem 4. This theorem implies the next
proposition that describes the boundedness of L-index in direction for an equivalent
function to L.

Proposition 4. Let L ∈ Qb(Bn), 1
β < θ1 ≤ θ2 < +∞, θ1L(z) ≤ L∗(z) ≤ θ2L(z). A function

F ∈ H̃b(Bn) is of bounded L∗-index in the direction b if and only if F is of bounded L-index in the
direction b.
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Proof. Obviously, if L ∈ Qb(Bn) and θ1L(z) ≤ L∗(z) ≤ θ2L(z), then L∗ ∈ Qb(Bn) with
β∗ ∈ [θ1β; θ2β] and β∗ > 1 instead of β > 1. Let Nb(F, L∗) < +∞. Therefore, by Theorem 4
for each η∗, 0 < η∗ < βθ2, there exist n0(η

∗) ∈ Z+ and P1(η
∗) ≥ 1 such that, for every

z ∈ Bn, t0 ∈ Sz and some k0, 0 ≤ k0 ≤ n0, inequality (6) is valid with L∗ and η∗ instead of
L and η. Taking η∗ = θ2η, we obtain

P1|∂k0
b F(z)| ≥ max

{
|∂k0

b F(z + tb)| : |t| ≤ η∗/L∗(z)
}
≥

≥ max
{
|∂k0

b F(z + tb)| : |t| ≤ η/L(z)
}

.

Therefore, by Theorem 4, the function F(z) is of bounded L-index in the direction b.
The converse assertion is obtained by replacing L on L∗.

Proposition 5. Let L ∈ Qb(Bn), m ∈ C \ {0}. A function F ∈ H̃b(Bn) is of a bounded L-index
in the direction b ∈ Cn if and only if F(z) is of a bounded L-index in the direction mb.

Proof. Let a function F ∈ H̃b(Bn) be of a bounded L-index in the direction b. By Theorem 4,
(∀η > 0) (∃n0(η) ∈ Z+) (∃P1(η) ≥ 1) (∀z ∈ Bn) (∃k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0), and
the following inequality is valid

max
{
|∂k0

b F(z + tb)| : |t| ≤ η/L(z)
}
≤ P1|∂k0

b F(z)|. (14)

Since ∂k F
∂(mb)k = (m)k ∂k F

∂bk , inequality (14) is equivalent to the inequality

max
{
|m|k0 |∂k0

b F(z + tb)| : |t| ≤ η/L(z)
}
≤ P1|m|k0 |∂k0

b F(z)|

as well as to the inequality

max
{∣∣∂k0

mbF
(
z +

t
m

mb
)∣∣ : |t/m| ≤ η/(|m|L(z))

}
≤ P1|∂k0

mbF(z)|.

Denoting t∗ = t
m , η∗ = η

|m| , we obtain

max
{
|∂k0

mbF(z + t∗mb)| : |t∗| ≤ η∗/L(z)
}
≤ P1|∂k0

b F(z)|.

By Theorem 4, the function F(z) is of bounded L-index in the direction b. The converse
assertion can be proved similarly.

Please note that Proposition 4 can be slightly refined. The following proposition is
easily deduced from (2).

Proposition 6. Let L1(z), L2(z) be positive continuous functions, F ∈ H̃b(Bn) be a function of
bounded L1-index in the direction b, for all z ∈ Bn the inequality L1(z) ≤ L2(z) holds. Then,
Nb(L2, F) ≤ Nb(L1, F).

Using Fricke’s idea [26], we deduce a modification of Theorem 4. Our proof is similar
to proof in [27]. This theorem gives weaker sufficient conditions of boundedness of L-index
in the direction in comparison of Theorem 4. Unlike the last assertion, it turns out that,
under appropriate conditions imposed on the slice holomorphic function, it is sufficient to
demand the validity of the corresponding inequality only for a circle with a certain given
value of the radius but not for all values of the radius from the segment [0; β]. In other
words, the universal quantifier in the sufficient conditions of Theorem 4 are replaced by
the existential quantifier in Theorem 5.
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Theorem 5. Let L ∈ Qb(Bn), F ∈ H̃b(Bn). If there exist η ∈ (0, β], n0 = n0(η) ∈ Z+ and
P1 = P1(η) ≥ 1 such that, for any z ∈ Bn, there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, and

max{|∂k0
b F(z + tb)| : |t| ≤ η/L(z)} ≤ P1|∂k0

b F(z)|,

then the function F has bounded L-index in the direction b ∈ Cn \ {0}.

Proof. Besides the mentioned paper of Fricke [26], our proof is similar to proofs in [13]
(slice holomorphic functions in Cn).

Assume that there exist η ∈ (0, β], n0 = n0(η) ∈ Z+ and P1 = P1(η) ≥ 1 such that, for
any z ∈ Bn, there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, and

max{|∂k0
b F(z + tb)| : |t| ≤ η

L(z)
} ≤ P1|∂k0

b F(z)|. (15)

If η ∈ (1, β], then we choose j0 ∈ N such that P1 ≤ η j0 . In addition, for η ∈ (0; 1], we
choose j0 ∈ N such that j0!k0!

(j0+k0)!
P1 < 1. The j0 is well-defined because

j0!k0!
(j0 + k0)!

P1 =
k0!

(j0 + 1)(j0 + 2) · . . . · (j0 + k0)
P1 → 0, j0 → ∞.

Applying integral Cauchy’s formula to the function gz(t) = F(z + tb) as an analytic
function of one complex variable t for j ≥ j0, we obtain that, for every z ∈ Bn, there exists
k0 = k0(z), 0 ≤ k0 ≤ n0, and

∂
k0+j
b F(z) =

j!
2πi

∫
|t|= η

L(z)

∂k0
b F(z + tb)

tj+1 dt.

Taking into account (15), we deduce

|∂k0+j
b F(z)|

j!
≤ Lj(z)

η j max
{
|∂k0

b F(z + tb)| : |t| = η

L(z)

}
≤ P1

Lj(z)
η j |∂

k0
b F(z)|. (16)

In view of choice j0 with η ∈ (1, β], for all j ≥ j0, one has

|∂k0+j
b F(z)|

(k0 + j)!Lk0+j(z)
≤ j!k0!

(j + k0)!
P1

η j

|∂k0
b F(z)|

k0!Lk0(z + t0b)
≤ η j0−j |∂

k0
b F(z)|

k0!Lk0(z)
≤
|∂k0

b F(z)|
k0!Lk0(z)

.

Since k0 ≤ n0, the numbers n0 = n0(η) and j0 = j0(η) do not depend on z, and z ∈ Bn

is arbitrary, the last inequality is equivalent to the assertion that F has bounded L-index in
the direction b and Nb(F, L) ≤ n0 + j0.

If η ∈ (0, 1), then, from (16), it follows that for all j ≥ j0

|∂k0+j
b F(z)|

(k0 + j)!Lk0+j(z)
≤ j!k0!P1

(j + k0)!
|∂k0

b F(z)|
η jk0!Lk0(z)

≤
|∂k0

b F(z)|
η jk0!Lk0(z)

or in view of choice j0

|∂k0+j
b F(z)|
(k0 + j)!

ηk0+j

Lk0+j(z)
≤
|∂k0

b F(z)|
k0!

ηk0

Lk0(z)
.

Thus, the function F is of bounded L̃-index in the direction b, where L̃(z) = L(z)
η .

Then, by Proposition 4, the function F has bounded L-index in the direction b, if ηβ > 1.
When η ≤ 1

β , we choose arbitrary γ > 1
ηβ . By Proposition 4, the function F is of bounded
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L1-index in the direction b, where L1(z) = ηγL̃(z). Then, by Proposition 5, the function
F has bounded L1-index in the direction γb. Since ∂k

γbF = γk∂k
bF and Lk

1(z) = γkLk(z),
in inequality (2), with the definition of L-index boundedness in direction, the corresponding
multiplier γ is reduced. Hence, the function F is of bounded L-index in the direction b.
The theorem is proved.

5. L-Index in Direction in a Domain Compactly Embedded in the Unit Ball

In this section, we consider an application of Theorem 4.
Let D be an arbitrary bounded domain in Bn such that dist(D,Bn) > 0. If inequality (2)

holds for all z ∈ D instead Bn, then the function F ∈ H̃b(Bn) is called a function of bounded
L-index in the direction b in the domain D. The least such integer m0 is called the L-index in
the direction b ∈ Cn \ {0} in domain D and is denoted by Nb(F, L, D) = m0. The notation D
stands for a closure of the domain D.

Lemma 2. Let D be a bounded domain in Bn such that d = dist(D,Bn) = infz∈D(1− |z|) > 0,
β > 1, b ∈ Cn \ {0} be an arbitrary direction. If L : Bn → R+ is a continuous function such
that L(z) ≥ β|b|

d and a function F ∈ Hb(Bn) are such that (∀z0 ∈ D) : F(z0 + tb) 6≡ 0, then
Nb(F, L, D) < ∞.

Proof. This proof is similar to proof in [13] for slice entire functions in Cn.
For every fixed z0 ∈ D, we expand the analytic function F(z0 + tb) in a power series

by powers of t in the disc
{

t ∈ C : |t| ≤ 1
L(z0)

}
F(z0 + tb) =

∞

∑
m=0

∂m
b F(z0)

m!
tm. (17)

The quantity |∂
m
b F(z0)|

m! is the modulus of a coefficient of the power series (17) at the
point t ∈ C such that |t| = 1

L(z0)
. Since F(z) is an analytic function, for every z0 ∈ D

|∂m
b F(z0)|

m!Lm(z0)
→ 0 (m→ ∞),

i.e., there exists m0 = m(z0, b) such that inequality (2) holds at the point z = z0 for all
m ∈ Z+.

We prove that sup{m0 : z0 ∈ D} < +∞. On the contrary, we assume that the set of
all values m0 is unbounded in z0, i.e., sup{m0 : z0 ∈ D} = +∞. Hence, for every m ∈ Z+,
there exists z(m) ∈ D and pm > m

|∂pm
b F(z(m))|

pm!Lpm(z(m))
> max

{
|∂k

bF(z(m))|
k!Lk(z(m))

: 0 ≤ k ≤ m

}
. (18)

Since {z(m)} ⊂ D, there exists a subsequence z
′(m) → z′ ∈ G as m→ +∞. By Cauchy’s

integral formula
∂

p
bF(z)

p!
=

1
2πi

∫
|t|=r

F(z + tb)
tp+1 dt

for any p ∈ N, z ∈ D. Rewrite (18) as follows:

max

{
|∂k

bF(z(m))|
k!Lk(z(m))

: 0 ≤ k ≤ m

}
<

<
1

Lpm(z(m))

∫
|t|=r/L(z(m))

|F(z(m) + tb)|
|t|pm+1 |dt| ≤ 1

rpm
max{|F(z)| : z ∈ Dr}, (19)
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where Dr =
⋃

z∗∈D{z ∈ Cn : |z− z∗| ≤ |b|r
L(z∗)}. We can choose r ∈ (1, β), because gz(m)(t) =

F(z(m) + tb) is an analytic function in Sz(m) . Evaluating the limit for every directional
derivative of fixed order in (19) as m→ ∞, we obtain

(∀k ∈ Z+) :
|∂k

bF(z′)|
k!Lk(z′)

≤ lim
m→∞

1
rpm

max{|F(z)| : z ∈ Dr} ≤ 0.

Thus, all derivatives in the direction b of the function F at the point z′ equal 0 and
F(z′) = 0. In view of (17), F(z′ + tb) ≡ 0. It is a contradiction.

6. Discussion

The proposed approach can be used in an analytic theory of partial differential equa-
tions. For cases of entire functions and analytic functions, it is known that similar results
allow for deducing sufficient conditions by coefficients of partial differential equations
and its systems providing index boundedness of every analytic solution. In addition, it
gives growth estimates, local behavior, and some value distribution for these functions. By
analogy, we hope that the obtained results allow for obtaining similar applications for slice
holomorphic functions in the unit ball in the future investigations.
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