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Abstract: In this paper, we study input-to-state stability (ISS) of an equilibrium for a scalar conserva-
tion law with nonlocal velocity and measurement error arising in a highly re-entrant manufacturing
system. By using a suitable Lyapunov function, we prove sufficient and necessary conditions on
ISS. We propose a numerical discretization of the scalar conservation law with nonlocal velocity and
measurement error. A suitable discrete Lyapunov function is analyzed to provide ISS of a discrete
equilibrium for the proposed numerical approximation. Finally, we show computational results to
validate the theoretical findings.

Keywords: conservation laws; feedback stabilization; input-to-state stability; numerical approxima-
tions; nonlocal velocity

MSC: 35L65; 93D15; 65N08

1. Introduction

The nature of modern high-volume production is characterized by a large number of
items passing through many production steps. This type of production system has fluid-
like properties and has been modeled successfully by continuum models [1–5]. In these
models, the product at different production stages and the speed of production are the
quantities of interest.

Specifically, in the manufacturing system of a factory that involves a highly re-entrant
system where products visit machines multiple times, such as the production of semi-
conductor devices, a continuum model has been introduced in [3] that is inspired by the
Lighthill–Whitham traffic model [6]. The dynamics of this model is mathematically given
by hyperbolic partial differential equation of the form

∂tρ(t, x) + λ(W(t))∂xρ(t, x) = 0, t ∈ [0,+∞), x ∈ [0, 1], (1)

where ρ(t, x) is the product density which describes the total mass W(t) at the time t and
the production stage x,

W(t) =
∫ 1

0
ρ(t, x)dx, t ∈ (0,+∞). (2)

Contrary to classical traffic flow models, the differential equation depends on the
nonlocal quantity (2). The function λ(W(t)) is a velocity. In production systems, it is
natural to assume that the velocity function is positive and decreasing as the total mass is
increasing. In the manufacturing system, the initial density of products at production stage
x is taken as the initial data

ρ(0, x) = ρ0(x), x ∈ [0, 1], (3)
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and the influx is used to control the system or stabilize the system at an equilibrium.
Since the velocity is positive, we only require boundary conditions at x = 0, i.e., the influx

ρ(t, 0)λ(W(t)) = U(t), t ∈ [0,+∞). (4)

Under suitable assumptions on λ, ρ0 and U, the existence and uniqueness of a clas-
sical solution of the Cauchy problem for the scalar conservation law Equation (1) with
Equations (3) and (4) is proven in [7–10].

General stabilization problems with boundary controls have been studied in the past
years in [11–22] for hyperbolic systems and recently in [7,10] for scalar conservation laws
with nonlocal velocity. The focus is to derive an asymptotic stability around a given
equilibrium such that solutions to the conservation laws reach the equilibrium state as time
tends to infinity. Such a property is attained by an exponential stability result and presented
for example in ([21], Theorem 2.3) for quasi-linear hyperbolic systems. Further references
also on hyperbolic balance laws other hyperbolic systems may be found in the recent
book [15].

However, when boundary controls are subjected to unknown disturbances, solutions
reaching the given equilibrium point are influenced by the disturbances and a notion
of asymptotic stability is required. The concept of input-to-state stability (ISS) [11,20,23]
has been used to describe asymptotic stability. Concerning an asymptotic behavior of
classical solutions, the Lyapunov method is used to investigate sufficient conditions to
achieve an exponential stability in [16,17] for hyperbolic systems and in [7,10] for scalar
conservation laws with nonlocal velocity. The Lyapunov method is also used for ISS of
(local) hyperbolic systems in [11,20]. For the numerical analysis of asymptotic behavior of
numerical solutions discretized by a first-order finite volume scheme, a discrete Lyapunov
function is used to prove exponential stability results for hyperbolic systems in [24–28]
and for scalar conservation laws with nonlocal velocity in [10], and ISS results for (local)
hyperbolic systems could be established recently in [29,30]. Please note that the previous
given references refer to ISS for hyperbolic systems. However, the theory of ISS has also
been developed for other systems as for example, linear systems, time-delay equations or
parabolic differential equations. A detailed review of those results is beyond the scope
of this presentation and we refer the interested reader to the recent review article [31] for
additional references and a review of the state-of-the-art in this field.

The previously given references refer all to ISS theory for hyperbolic problems.
However, it is worth mentioning that there exists a huge amount of literature on ISS
stability for problems related to other differential equations. We can not review those at
this point but would like to point to some references on ISS theory for infinite-dimensional
problems [32,33] and for linear [34], semi-linear [35] and nonlinear [36] parabolic system
with boundary inputs. A systematic treatment of ISS using (linear) operator theory has
been presented for example in [37] and non-coercive Lyapunov theory for ISS in [38,39].

Our focus in this work is hyperbolic problems. In connection with (hyperbolic) scalar
conservation law with nonlocal velocity, in [10], the authors have studied global feedback
stabilization of the closed-loop system in Equation (1) under the feedback law

U(t)− ρ∗λ(ρ∗) = k
(

ρ(t, 1)λ(W(t))− ρ∗λ(ρ∗)
)

, t ∈ (0,+∞), (5)

where k ∈ [0, 1) is the feedback parameter and ρ∗ ∈ R is a given equilibrium. They gen-
eralize the stabilization results of [7] by using a Lyapunov function. In particular, for a
given equilibrium ρ∗ = 0 and a general velocity function λ ∈ C1([0,+∞); [0,+∞)), the
global stabilization result in L2 for the closed-loop system of Equations (1), (3) and (5) is
generalized to Lp (p ≥ 1). Then, the global stabilization result in L2 for the closed-loop
system of Equations (1), (3) and (5) with a family of velocity functions

λ(s) =
A

B + s
, s ∈ [0,+∞) with A > 0, B > 0, (6)
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is obtained for a given equilibrium ρ∗ > 0. By using a discrete Lyapunov function, they
also established stabilization results for a discrete scalar conservation law with nonlocal
velocity and using a first-order finite volume scheme.

In this paper, we study ISS for the closed-loop system of Equations (1) and (3) under
the feedback law defined by

U(t)− ρ∗λ(ρ∗) = k
(
(ρ(t, 1) + d(t))λ(W(t))− ρ∗λ(ρ∗)

)
, t ∈ (0,+∞), (7)

where d(t) ∈ R is a bounded perturbation in the measurement. In particular, we use an
ISS-Lyapunov function to investigate sufficient and necessary conditions for ISS in L2 for
an equilibrium ρ∗ ≥ 0 and the velocity function defined by Equation (6). The numerical
analysis of sufficient and necessary conditions for ISS is performed by using a discrete
ISS-Lyapunov function for numerical solution obtained by a first-order finite volume
scheme. Moreover, we provide numerical simulations to illustrate theoretical results for
some velocity functions of type Equation (6).

The paper is organized as follows: In Section 2, we present stabilization results of
ISS for a scalar conservation law with nonlocal velocity and measurement error. The nu-
merical discretization of stabilization results of ISS for the scalar conservation law with
nonlocal velocity and measurement error is presented in Section 3. Finally, in Section 4,
we show numerical simulations for the scalar conservation law with nonlocal velocity and
measurement error to illustrate the theoretical results.

2. Asymptotic Stability of a Scalar Conservation Law with Nonlocal Velocity and
Measurement Error

We study ISS of a closed-loop system of scalar conservation laws with nonlocal velocity
and measurement error of the form:

∂tρ(t, x) + λ(W(t))∂xρ(t, x) = 0, t ∈ (0,+∞), x ∈ (0, 1),
ρ(0, x) = ρ0(x), x ∈ (0, 1),
U(t)− ρ∗λ(ρ∗) = k((ρ(t, 1) + d(t))λ(W(t))− ρ∗λ(ρ∗)), t ∈ (0,+∞),
ρ(t, 0)λ(W(t)) = U(t), t ∈ [0,+∞),
W(t) =

∫ 1
0 ρ(t, x)dx, t ∈ (0,+∞),

(8)

where ρ(t, x) is the product density, λ(·) ∈ C1([0,+∞), (0,+∞)) is the velocity function,
W(t) is total mass, U(t) is the controller and k ∈ [0, 1) is a non-negative feedback parameter,
ρ∗ ≥ 0 is an equilibrium solution and d(t) ∈ R is a bounded (known) perturbation in the
measurement. A weak solution of the closed-loop system in Equation (8) is defined below.

Definition 1 (Weak solution). Fix T > 0. A function ρ ∈ C0([0, T]; L1(0, 1)) is called a weak
solution to Equation (8) if for every s ∈ (0, T] and every ϕ ∈ C1([0, s]× [0, 1]) satisfying

ϕ(s, x) = 0, ∀x ∈ [0, 1] and ϕ(t, 1) = κϕ(t, 0), ∀t ∈ [0, s],

the following equation holds:∫ s

0

∫ 1

0
ρ(t, x)(∂t ϕ(t, x) + λ(W(t))∂x ϕ(t, x))dxdt

+
∫ s

0
((1− k)ρ∗λ(ρ∗) + d(t))ϕ(t, 0)dt +

∫ 1

0
ρ(0, x)ϕ(0, x)dx = 0.

Let d ≡ 0, ρ∗ ≥ 0, p ∈ [1,+∞) and k ∈ [0, 1] be given. Then, the existence and
uniqueness of the non-negative weak solution ρ ∈ C0([0,+∞); Lp(0, 1)) and the non-negative
classical solution ρ ∈ C1([0,+∞) × [0, 1]) of the closed-loop system in Equation (8) are
available in [7,10].
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We now analyze ISS for the system Equation (8) with ρ∗ ≥ 0 in the sense of the
following definitions. This is also known as global ISS. Note that ISS Lyapunov functions
can be defined within a very general setting and we refer to ([31], Definition 2.11) for such a
definition. In Definition (3) below, we introduce ISS-Lyapunov functions tailored to system
Equation (8).

Definition 2 (Input-to-state stability (ISS)). Let D > 0. An equilibrium ρ∗ ≥ 0 of the closed-
loop system in Equation (8) is exponential ISS in L2-norm with respect to any disturbance function
d(·) ∈ L∞(0, ∞) such that ‖d‖L∞(0,∞) ≤ D if there exist positive constants γ1, γ2, γ3 independent
of d such that, for every initial condition ρ0(x) ∈ L2(0, 1), the L2-solution to the closed-loop system
in Equation (8) satisfies

‖ρ(t, ·)− ρ∗‖L2 ≤ γ2e−γ1t‖ρ0 − ρ∗‖L2 + γ3‖d(s)‖L∞(0,t), t ∈ [0,+∞). (9)

Hence, the equilibrium ρ∗ is ISS with respect to disturbances d ∈ D := {d(·) ∈
L∞(0, ∞) : ‖d‖L∞ ≤ D}.

Definition 3 (ISS-Lyapunov function). The function L : L2(0, 1) → R+ is said to be an
ISS-Lyapunov function for the closed-loop system in Equation (8) if

(i) there exist positive constants α1 > 0 and α2 > 0 such that for all solutions ρ ∈ C0([0, ∞);
L2(0, 1)) and t ∈ [0,+∞)

α1‖ρ(t, ·)− ρ∗‖2
L2 ≤ L(ρ(t, ·)) ≤ α2‖ρ(t, ·)− ρ∗‖2

L2 , (10)

(ii) there exist positive constants η > 0 and ν > 0 such that for all solutions ρ ∈ C0([0, ∞);
L2(0, 1)) and t ∈ [0,+∞)

d
dt

L(ρ(t, ·)) ≤ −ηL(ρ(t, ·)) + νd2(t).

For a notion of differentiability of L, we also refer for example to ([31], Section 2.2).
To simplify the notation we also introduce the function

L(t) := L(ρ(t, ·)), (11)

where ρ ∈ C0([0, ∞); L2(0, 1)) is the solution to Equation (8).

Theorem 1 (ISS for ρ∗ ≥ 0). Fix any ρ∗ ≥ 0, k ∈ [0, 1), R > 0, D > 0 and any ρ0 ∈ L2(0, 1)
satisfying ρ0 ≥ 0 a.e. in (0, 1). Assume further

‖ρ0(·)− ρ∗‖L2(0,1) ≤ R. (12)

Assume there exists a non-negative almost everywhere weak solution ρ ∈ C0([0,+∞); L2(0, 1))
to the Cauchy problem in Equation (8) where λ is given by Equation (6).

Then, the steady-state ρ∗ of the system in Equation (8) is exponential ISS in L2-norm with
respect to any disturbance function d ∈ {d(·) ∈ L∞(0, ∞) : ‖d‖L∞ ≤ D}.

Before we begin the proof of Theorem 1, we consider the following transformation at
the equilibrium ρ∗,

ρ̃(t, x) := ρ(t, x)− ρ∗, W̃(t) := W(t)− ρ∗, ρ̃0(x) := ρ0(x)− ρ∗,

λ̃W̃(t) := λ(ρ∗ + W̃(t)), Ũ(t) := λ̃W̃(t)ρ̃(t, 0).
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Then, the system in Equation (8) with Equation (6) can be rewritten as follows for
t ∈ (0,+∞): 

∂tρ̃(t, x) + λ̃W̃(t)∂x ρ̃(t, x) = 0, x ∈ (0, 1),
ρ̃(0, x) = ρ̃0(x), x ∈ (0, 1),
Ũ(t) = kλ̃W̃(t)(ρ̃(t, 1) + d(t)) + (1− k)ρ∗

(
λ(ρ∗)− λ̃W̃(t)

)
,

λ̃W̃(t) := λ(ρ∗ + W̃(t)),
W̃(t) =

∫ 1
0 ρ̃(t, x)dx ≥ −ρ∗,

λ(s) = A
B+s , with A > 0, B > 0, s ∈ [0,+∞).

(13)

By using the velocity function Equation (6) in Equation (13), we have

ρ∗
(
λ(ρ∗)− λ̃W̃(t)

)
= θλ̃W̃(t)W̃(t), t ∈ [0,+∞), (14)

where

θ :=
ρ∗

B + ρ∗
< 1.

For convenience, until the end of this proof, we omit the symbol “~”. Then, the system
in Equation (13) with Equation (14) can be rewritten in the following form for t ∈ (0,+∞):

∂tρ(t, x) + λW(t)∂xρ(t, x) = 0, x ∈ (0, 1),
ρ(0, x) = ρ0(x), x ∈ (0, 1),

U(t) = kλW(t)(ρ(t, 1) + d(t)) + (1− k)θλW(t)W(t) with θ = ρ∗

B+ρ∗ ,

λW(t) := λ(ρ∗ + W(t)),
ρ(t, 0)λW(t) = U(t),
W(t) =

∫ 1
0 ρ(t, x)dx ≥ −ρ∗,

λ(s) = A
B+s , with A > 0, B > 0, s ∈ [0,+∞).

(15)

With the above notation, the assumption in Equation (12) of Theorem 1 reads

‖ρ0‖L2(0,1) ≤ R. (16)

Proof. The following proof of Theorem 1 is an extension of the proof of Theorem 3.2 in [10].
Since C1-functions are dense in L2(0, 1), we can analyze ISS for the system Equation (15)
with non-negative weak solution ρ ∈ C0([0,+∞); L2(0, 1)) as follows: For φ ∈ L2(0, 1), we
first define a candidate ISS-Lyapunov function by

L(φ) =
∫ 1

0
φ2(x)e−βxdx + a

(∫ 1

0
φ(x)dx

)2

.

and then we have according to (11)

L(t) := L(ρ(t, ·)) =
∫ 1

0
ρ2(t, x)e−βxdx + aW2(t), ∀t ∈ [0,+∞), (17)

where β > 0 and a ∈ R are constants. By definition of W and Hölder inequality, we have

W(t)2 =

(∫ 1

0
ρ(t, x)e−

1
2 βxe

1
2 βxdx

)2

≤
∫ 1

0
eβxdx

∫ 1

0
e−βxρ2(t, x)dx. (18)

Hence, if

a > − β

eβ − 1
, (19)



Axioms 2021, 10, 12 6 of 20

thenL(t) > 0 for all t ≥ 0. We will further assume from now on that a ≤ 0. Furthermore, for
0 < C1 := C1(β) = eβ−1

β we obtain

W2(t) ≤ C1

∫ 1

0
e−βxρ2(t, x)dx (20)

and for C2 := C2(a, β) = C1 + max{a, 1} > 0 we have

L(t) ≤ C2

∫ 1

0
e−βxρ2(t, x)dx. (21)

Since a < 0 we also obtain

(1 + aC1)
∫ 1

0
e−βxρ2(t, x)dx ≤ L(t). (22)

Summarizing, there exist positive constants Ci = Ci(a, β), i ∈ {3, 4} such that for all t ≥ 0

W2(t) ≤ C3

∫ 1

0
ρ2(t, x)e−βxdx ≤ L(t) ≤ C4

∫ 1

0
ρ2(t, x)e−βxdx (23)

and therefore L is equivalent to the L2-norm of ρ. Note that for ρ∗ = 0 we may set a = 0 in
Equation (17). The time derivative of the candidate ISS-Lyapunov function in Equation (17)
is given by:

dL
dt

(t) =
∫ 1

0
2ρ(t, x)ρt(t, x)e−βxdx + 2aW(t)

dW
dt

(t)

=− βλW(t)
∫ 1

0
ρ2(t, x)e−βxdx +

1
λW(t)

(
λ2

W(t)ρ2(t, 0)− λ2
W(t)ρ2(t, 1)e−β

)
+ 2aW(t)(λW(t)ρ(t, 0)− λW(t)ρ(t, 1))

=− βλW(t)
∫ 1

0
ρ2(t, x)e−βxdx + A1(t),

where A1(t) contains all contributions due to the boundary conditions. In the follow-
ing we will analyze and estimate A1. Note that λW(t)ρ(t, 0) = U(t) and U is given by
Equation (15). More precisely, we will use the following estimate for any ε > 0

2aW(t)U(t) = 2aW(t)(kλW(t)(ρ(t, 1) + d(t)) + (1− k)θλW(t)W(t))

≤ k2d2(t)λW(t)
1
ε
+ εa2W2λW(t) + 2aW(t)(kλW(t)ρ(t, 1) + (1− k)θλW(t)W(t)),

U2(t) = (kλW(t)(ρ(t, 1) + d(t)) + (1− k)θλW(t)W(t))2

≤ (1 + ε)(kλW(t)ρ(t, 1) + (1− k)θλW(t)W(t))2 + k2d2(t)λ2
W(t)(1 +

1
ε
).

In order to simplify the notation of the following computations, we neglect the time
dependence and we define

y := y(t) := λW(t)ρ(t, 1), b1 := b1(t) := (1 +
2
ε
)k2λW(t)d2(t) + εa2W2(t)λW(t).

Then, we have
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A1(t) ≤b1 +
1

λW

(
(1 + ε)(ky + (1− k)θλWW)2 − y2e−β

)
+ 2aW((k− 1)y + (1− k)θλW)

=b1 +
(1 + ε)k2 − e−β

λW

(
y + λWW

(
a(k− 1)

(1 + ε)k2 − e−β
− (k− 1)k(1 + ε)θ

(1 + ε)k2 − e−β

))2

+ λWW2
(

θ2(k− 1)2(1 + ε)− 2aθ(k− 1)− (k− 1)2

(1 + ε)k2 − e−β
(a− k(1 + ε)θ)2

)
=b1 +

(1 + ε)k2 − e−β

λW
(. . . )2

− λWW2 (k− 1)2

(1 + ε)k2 − e−β

(
a2 − 2ak(1 + ε)θ + k2(1 + ε)2θ2 +

2aθ((1 + ε)k2 − e−β)

(k− 1)
− θ2(1 + ε)((1 + ε)k2 − e−β)

)
=b1 +

(1 + ε)k2 − e−β

λW
(. . . )2

− λWW2 (k− 1)2

(1 + ε)k2 − e−β

(
a2 − 2aθ

k(1 + ε)− e−β

1− k
+ θ2(1 + ε)e−β

)
=b1 +

(1 + ε)k2 − e−β

λW
(. . . )2

− λWW2 (k− 1)2

(1 + ε)k2 − e−β

(
a− θ

k(1 + ε)− e−β

1− k

)2

− λWW2 (k− 1)2

(1 + ε)k2 − e−β

(
θ2(1 + ε)e−β − θ2

(
k(1 + ε)− e−β

1− k

)2)
.

Even so, it is not necessary that the proof simplifies if ε is chosen depending on β.
We set for

ε := ε(β) = β2. (24)

For any fixed 0 ≤ k < 1 and all 0 < β2 < ε∗ with ε∗ := min{1, 1
2

1−k
k }, we have

(1 + β2)k2 < (1 + β2)k < 1 (25)

and hence for all β < min{
√

ε∗, β∗} with β∗ := − ln((1 + ε∗)k), we have

e−β > (1 + β2)k > (1 + β2)k2. (26)

Furthermore, consider

a(β) = θ
k(1 + β2)− e−β

1− k
< 0. (27)

For β → 0, we have limβ→0 a(β) = −θ > −1 and we have limβ→0
β

eβ−1
= 1.

Hence, there exists a β∗∗ > 0 such that for all β ≤ min{β∗, β∗∗} and for a(β) as given by
Equation (27), the inequalities (26), (27) and (19) hold true. Using the inequality (26) and
the particular choice for a(β) and ε(β), we obtain for all β sufficiently small

A1(t) ≤ b1(t) + θ2λWW2 (k− 1)2(1 + β2)e−β − (k(1 + β2)− e−β)2

e−β − (1 + β2)k2 (28)

=

(
1 +

2
β2

)
k2λWd2 + β2a2(β)W2λW + θ2λWW2b2(β, k), (29)

b2(β, k) :=
(k− 1)2(1 + β2)e−β − (k(1 + β2)− e−β)2

e−β − (1 + β2)k2 . (30)
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Using the estimate (20) to bound W2 and using k < 1, we obtain

A1(t) ≤
(

1 +
2
β2

)
k2λWd2 + λWθ2 eβ − 1

β

(
β2 a2(β)

θ2 + b2(β, k)
) ∫ 1

0
e−βxρ2(t, x)dx

≤λW

(
1 +

2
β2

)
d2 + λWθ2b3(β, k)

∫ 1

0
e−βxρ2(t, x)dx,

b3(θ, k) :=
eβ − 1

β

(
β2 a2(β)

θ2 + b2(β, k)
)

.

An elementary computation shows that f (β, k) has the following properties

b3(0, k) = 0 and ∂βb3(0, k) = 1.

Replacing b3 by a second-order Taylor expansion in β at β = 0 therefore yields the estimate

A1(t) ≤
(

1 +
2
β2

)
λWd2 + θ2λW

(
β + O(β2)

) ∫ 1

0
e−βxρ2(t, x)dx. (31)

Now, we proceed with the estimate of d
dtL(t) as

d
dt
L(t) ≤− βλW(t)

∫ 1

0
e−βxρ2(t, x)dx

(
1− θ2 + O(β)

)
+

(
1 +

2
β2

)
λW(t)d2(t). (32)

Since θ < 1 there exists 0 < β̄ < min{β∗, β∗∗} sufficiently small, such that

0 < 1− θ2 + O(β). (33)

Using the estimate (22) there is a constant 0 < η := η(k, ρ∗), we obtain

d
dt
L(t) ≤− ηλW(t)L(t) +

(
1 +

2
β̄2

)
λW(t)d2(t). (34)

By definition, we have that 0 ≤ λW(t). Next, we show that λW(t) is bounded from
below by a positive constant. This requires to obtain an upper bound on W(t). The previous
inequality (34) yields the following bound on W2(t) for C5 := C5(β̄) = C1

(1+a)C1
and for

C6 := C6(β̄) =
(

1 + 2
β̄2

)
:

1
C5

W2(t) ≤L(t) ≤ e−η
∫ t

0 λW (s)dsL(0) +
∫ t

0
C6λW(s)d2(s)e−η

∫ t
s λW (r)dr (35)

≤L(0) + C6

η
‖d(t)‖L∞(0,t)

(
1− e−η

∫ t
0 λW (s)ds

)
. (36)

By assumption ‖ρ0‖2 ≤ R2. By definition we have −ρ∗ ≤W(t) and therefore

−ρ∗ ≤W(t) ≤
√

C5R2 +
C5C6

η
‖d(·)‖L∞(0,t). (37)

Due to the definition of λW , it is uniformly bounded from above by σ1 := A
B .

Furthermore, we have that W(t) is bounded from above due to Equation (37) and since d is
bounded. Hence, λW is bounded from below by σ2 = σ2(‖d‖L∞(0,∞), R, β̄). Note that the
L∞ norm of the disturbances are uniformly bounded by the constant D. This yields that for
all t ≥ 0

σ1 ≥ λW(t) ≥ σ2. (38)
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Using the previous estimate for λW in Equation (34) yields the assertion. The decay
rate η∗ of the Lyapunov function is η∗ = ησ2 and ν = σ1C6.

Some remarks are in order.

Remark 1. Note that the rate η = η(ρ∗, k) as a function of k tends to zero as k tends to one, this
can be seen for example in Equation (26) defining the upper bound for β̄. Similarly, if θ → 1, i.e.,
ρ∗ → ∞, we observe that η → 0 due to Equation (33).

The bound on W(t) is required to obtain the exponential decay. Therefore, the final rate
depends on the constant R and we refer to Equation (37) and following for its detailed dependence.
Note that in the case ρ∗ = 0 we may set a = 0 and therefore no bound on W is necessary.

Further, the result holds true for any solution ρ ∈ C0([0, ∞); L2(0, 1)) and hence uniqueness
of solutions is not required. Regarding existence of solutions, it might be possible to extend recent
results [40–42]. However, so far existence results in the case d ≡ 0 exist [10].

Note that the decay rate η will be dependent on the bound of the disturbance as well as on R,
but will be uniform with respect to ρ0 provided that ρ0 fulfills (12).

In ([7], Lemma 3.5) it has been shown that in the case d ≡ 0 and ρ∗ = 0 exponential stability
does not hold if k > 1.

For ρ∗ = 0, Theorem 1 holds true for any velocity function λ(·) ∈ C1([0,+∞), (0,+∞)).
This case is similar to a problem studied in [10]. Therein, a detailed discussion of the case d ≡ 0 has
been presented and we refer in particular to ([10], Theorem 3.1).

3. Numerical Study of Asymptotic Stability of a Scalar Conservation Law with
Nonlocal Velocity and Measurement Error

In the following section, we extend the result to a proper discretization of the contin-
uous dynamics. The following results are based on similar estimates as in the previous
section and it is a minor extension of the proof presented in ([10], Section 4.2). In order to
not repeat the estimates obtained in [10], we will use a similar notation and mostly report
on the changes in estimates due to the additional disturbance d. As seen in the previous
proof in Equation (24), it is possible to chose ε = β2 and we will do so in the following
proof directly. This simplifies the notation and reduces the technicality of the computations.

As in ([10], Section 4.2) we introduce a first-order Upwind discretization of the closed-
loop system in Equation (8). To this end we divide the spatial domain [0, 1] using an
equidistant grid with cell width ∆x and J ∈ N cells such that ∆xJ = 1. The cell centers are
denoted by xj = (j− 1

2 )∆x, j ∈ {1, . . . , J} and, the boundary of the domain are x0 and xJ ,
respectively. Moreover, we discretize W(t) by

Wn = ∆x
J

∑
j=1

ρn
j , n ∈ {1, 2, . . .}, (39)

with the point wise values of the solution ρn
j = ρ(tn, xj). Further, we define the discrete

values λn by

λn := λ(Wn) =
A

B + Wn , A > 0, B > 0, (40)

where tn = n∆t, n ∈ {0, 1, . . .} denotes the discrete time such that the time step size ∆t sat-
isfies a stability condition due to Courant–Friedrichs–Lewy condition (CFL). This condition
states that ∆t is chosen such that

0 < rn :=
λn∆t
∆x

≤ 1, ∀n ∈ {0, 1, . . .}. (41)

Since λn ≤ A
B for all n ≥ 0, we can choose a possibly small but fixed ∆t such that

the previous condition (41) holds true for all n with fixed ∆t and ∆x. This choice allows
to take a uniform grid in time. As in the continuous case we have ρ∗ > 0. For the given
initial values ~ρ0 = (ρ0

0, ρ0
1, . . . , ρ0

J )
> with ρ0

j ≥ 0, j ∈ {0, . . . , J}, we employ a first–order
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finite volume scheme, given by the explicit Upwind method, to discretize the system in
Equation (8).{

ρn+1
j = (1− rn)ρn

j + rnρn
j−1, j ∈ {1, . . . , J}, n ∈ {0, 1, . . .},

ρn+1
0 = kρn+1

J + (1− k) ρ∗λ(ρ∗)
λn+1 + kdn+1, n ∈ {0, 1, . . .}.

(42)

We now define discrete version of ISS and ISS-Lyapunov function as follows:

Definition 4 (Discrete ISS). Let D > 0. An equilibrium ρ∗ ≥ 0 of the discrete closed-loop system
in Equation (42) is ISS in L2-norm with respect to discrete disturbances dn ≤ D, n ∈ {1, 2, . . .} if
there exist positive real constants γ1 > 0, γ2 > 0 and γ3 > 0 such that, for every initial condition
ρ0

j , j ∈ {1, . . . , J}, the solution ρn
j , j ∈ {1, . . . , J}, n ∈ {0, 1, . . .} to the discrete closed-loop system

in Equation (42) satisfies

‖−→ρ n − ρ∗‖L2
∆x
≤ γ2e−γ1tn‖−→ρ 0‖L2

∆x
+ γ3 max

0≤s<n
(|ds|), n ∈ {1, 2, . . .}, (43)

where −→ρ n = (ρn
j )

J
j=1 and

‖−→ρ n‖2
`2 := ∆x

J

∑
j=1

(
ρn

j

)2
, n ∈ {0, 1, . . .}.

Definition 5 (Discrete ISS-Lyapunov function). A function L : RJ → R+
0 is said to be a

discrete ISS-Lyapunov function for the discrete closed-loop system in Equation (42) if

(i) there exist positive constants α1 > 0 and α2 > 0 such that for all n ∈ {0, 1, . . .}

α1‖−→ρ n − ρ∗‖2
`2 ≤ L(−→ρ n) ≤ α2‖−→ρ n − ρ∗‖2

`2 , (44)

(ii) there exist positive constants η > 0 and ν > 0 such that for all n ∈ {0, 1, . . .}

L(−→ρ n+1)− L(−→ρ n)

∆t
≤ −ηL(−→ρ n) + ν(dn)2.

To simplify the notation later on we will define the sequence of discrete values Ln by

Ln := L(−→ρ n), n ∈ {0, 1, . . .} (45)

and where −→ρ n are given as solution to the system in (42).

Theorem 2. (Discrete ISS for ρ∗ ≥ 0) Assume that the CFL condition in Equation (41) holds.
Let D > 0. For every ρ∗ ≥ 0, every k ∈ [0, 1), every R > 0 and for every initial data
~ρ0 = (ρ0

0, ρ0
1, . . . , ρ0

J )
> with ρ0

j ≥ 0, j ∈ {1, . . . , J} and

‖~ρ0 − ρ∗~e‖`2 ≤ R, (46)

where ~e =

J+1︷ ︸︸ ︷
(1, . . . , 1)>, the solution ~ρn = (ρn

0 , ρn
1 , . . . , ρn

J )
> to the system in Equation (42)

satisfies ρn
j ≥ 0, j ∈ {0, . . . , J}, n ∈ {0, 1, . . .} and the steady-state ρ∗ of the discrete system in

Equation (42) is ISS in L2-norm with respect any discrete disturbance function dn, n ∈ {1, 2, . . .}
such that dn ≤ D.
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In order to analyze the ISS of the discrete system in Equation (42) by the discrete
Lyapunov method, we use the following transformation

ρ̃n
j = ρn

j − ρ∗, W̃n = ∆x
J

∑
j=1

ρ̃n
j , λ̃n

W̃
= λ

(
ρ∗ + W̃n

)
, r̃n =

∆t
∆x

λ̃n
W̃

, n ∈ {0, 1, . . .}. (47)

For simplicity, we omit the symbol “~” in Equation (47) and discretize the system in
Equation (15) as follows

ρn+1
j = (1− rn)ρn

j + rnρn
j−1, j ∈ {1, . . . , J}, n ∈ {0, 1, . . .},

ρn+1
0 = kρn+1

J + (1− k)θWn+1 + kdn+1 with θ = ρ∗

B+ρ∗ , n ∈ {0, 1, . . .},
rn = ∆t

∆x λn
W , n ∈ {0, 1, . . .},

λn
W = λ(ρ∗ + Wn), n ∈ {0, 1, . . .},

Wn = ∆x ∑J
j=1 ρn

j ≥ −ρ∗, n ∈ {0, 1, . . .},
λ(s) = A

B+s , s ≥ 0.

(48)

Thus, the assumption in Equation (46) in Theorem 2 is now expressed as

‖~ρ0‖`2 ≤ R. (49)

Note that the proof of Theorem 2 is an extension of the proof of Theorem 4.2 in [10].
Thus, some details of the proof can be found in [10] and we will point to the corresponding
estimates in order to reduce the technicality of the proof.

Proof. As in the continuous case the proof simplifies if ρ∗ = 0. Therefore, we consider in
the forthcoming proof only the more interesting case

ρ∗ > 0. (50)

Since the initial data ρ0
j ≥ 0, j ∈ {0, . . . , J}, by the discrete system in Equation (48) and

the CFL condition in Equation (41), we have ρn
j ≥ 0, j ∈ {0, . . . , J}, n ∈ {0, 1, . . .}.

Consider the following candidate Lyapunov function Equation (17) for any
−→
φ ∈ RJ

L(
−→
φ ) = ∆x

J

∑
j=1

(φj)
2e−βxj + a

(
∆x

J

∑
j=1

φj

)2

.

where β > 0. In particular, we set a

a =θ
k− e−β

1− k
< 0 (51)

and since θ < 1 there exists β∗ sufficiently small such that 0 > a > − β

eβ−1
, see ([10], (3.25),

(3.26)).
According to (45), the values of L at the solution −→ρ n at time tn for n ≥ 0 are given by

Ln =‖~ρn‖2
β + a(Wn)2, (52)

‖~ρn‖2
β :=∆x

J

∑
j=1

(ρn
j )

2e−βxj . (53)

For fixed k ∈ [0, 1), we assume as in [10] there exists a β∗∗ such that for 0 < β < β∗∗

exp(−β) > k > k2 and β < 1− k, (54)
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holds true and that

0 < ∆x < 1. (55)

As a first step, we prove that Ln is equivalent to ‖~ρn‖2
β. This part does not dependent

on the boundary condition ρn+1
0 and is therefore analogous to [10]. In particular, due to

estimate ([10], (4.32), (4.34)) we have for all n ≥ 1

(Wn)2 ≤∆x2
J

∑
j=1

(ρn
j )

2e−βxj
J

∑
j=1

eβxj ≤ ∆x(eβ − 1)
1− e−β∆x ‖~ρ

n‖2
β (56)

≤(1 + β)2‖~ρn‖2
β ≤ (1 + 3β)‖~ρn‖2

β. (57)

Due to the bounds on a, we obtain the estimate ([10], (4.38)) for all n ≥ 0

‖~ρn‖2
β ≥ Ln ≥‖~ρn‖2

β

(
1 + θ

k− e−β

1− k
∆x(eβ − 1)
1− e−β∆x

)
(58)

≥(1− θ(1 + 3β))‖~ρn‖2
β ≥

1− θ

2
‖~ρn‖2

β, (59)

where the last inequality is true provided that

0 < β ≤ min{1, β∗, β∗∗,
1− θ

6θ
}. (60)

Furthermore, the discrete weighted norm is equivalent to the `2-norm as in ([10],
(4.39)) for all n ≥ 0

e−β‖~ρn‖2
`2 ≤ ‖~ρn‖2

β ≤ ‖~ρn‖`2 . (61)

As a second step, we estimate a finite difference approximation to the temporal
derivative of L.

Ln+1 −Ln

∆t
=

∆x
∆t

J

∑
j=1

[(
ρn+1

j

)2
−
(

ρn
j

)2
]

e−βxj (62)

+
a(∆x)2

∆t

( J

∑
j=1

ρn+1
j

)2

−
(

J

∑
j=1

ρn
j

)2
. (63)

Precisely, as in [10], we use the discrete scheme (48), the CFL condition (41) that
ensures 0 < rj ≤ 1 and the convexity z→ z2 to estimate for all i = 1, . . . , J and n ≥ 0

(ρn+1
i )2 = [(1− rn)ρn

i + rnρn
i−1]

2 ≤ (1− rn)(ρn
i )

2 + rn(ρn
j )

2. (64)
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Then, we obtain the discrete counterpart to the integration by parts formula

Ln+1 −Ln

∆t
≤λn

W

(
J

∑
j=1

(ρn
j−1)

2e−βxj−1 e−β∆x −
J

∑
j=1

(ρn
j )

2e−βxj

)
(65)

+
a(∆x)2

∆t

( J

∑
j=1

ρn
j − rnρn

J + rnρn
0

)2

−
(

J

∑
j=1

ρn
j

)2
 (66)

=λn
We−β∆x

(
1

∆x
‖~ρn‖2

β − e−β(ρn
J )

2 + (ρn
0 )

2
)
−

λn
W

∆x
‖~ρn‖2

β (67)

+
a

∆t

((
Wn − rn∆xρn

J + rn∆xρn
0

)2
− (Wn)2

)
(68)

=
e−β∆x − 1

∆x
λn

W‖~ρ‖2
β + An

1 . (69)

Here, the last line is as in ([10], (4.29)) except that the boundary term ρn
0 that is part of

An
1 includes now the disturbance dn. We split the boundary condition at x = 0 as

ρn
0 = ρn

0 + kdn, ρn
0 := kρn

J + (1− k)θWn (70)

and obtain

An
1 =λn

We−β∆x
(
(ρn

0 + kdn)2 − e−β(ρn
J )

2
)

(71)

+ aλn
W

(
rn∆x

(
ρn

0 + kdn − ρn
J

)2
+ 2
(

ρn
0 + kdn − ρn

J

)
Wn
)

. (72)

As in the continuous case, we estimate

(ρn
0 + kdn)2 ≤ (1 + β2)(ρn

0 )
2 + (1 +

1
β2 )(kdn)2 (73)

and similarly for the term 2kdnWn and
(

ρn
0 + kdn − ρn

J

)2
, respectively. Hence, we obtain

An
1 ≤An

2 + An
3 + An

4 ,

An
2 :=λn

We−β∆x
(
(ρn

0 )
2 − e−β(ρn

J )
2
)
+ aλn

W

(
rn∆x

(
ρn

0 − ρn
J

)2
+ 2
(

ρn
0 − ρn

J

)
Wn
)

,

An
3 :=β2λn

We−β∆x(ρn
0 )

2 + β2‖a‖λn
Wrn∆x

(
ρn

0 − ρn
J

)2
+ β2λn

W(Wn)2,

An
4 :=λn

We−β∆x(1 +
1
β2 )(kdn)2 + ‖a‖λn

Wrn∆x(1 +
1
β2 )(kdn)2 +

1
β2 ‖a‖λ

n
W(kdn)2.

Next, we estimate An
3 and An

4 . Here, we use that a defined by (51), λn
W , are bounded by

‖a‖ ≤ β

eβ − 1
≤ 1, λn

W ≤
A
B

, and rn ≤ 1,

respectively, and that rn, ∆x and θ are all bounded by one. Additionally, we have a bound
on (Wn)2 due to (56) and β ≤ 1 by (60) such that

(ρn
0 )

2 ≤ 2
(

ρn
J

)2
+ 2(Wn)2 ≤ (2 + 2(1 + 3))‖~ρn‖2

β, and
(

ρn
0 − ρn

J

)2
≤ 22‖~ρn‖2

β.

Hence, there exists a constant C > 0 such that An
3 and An

4 are estimated by

An
3 ≤ Cβ2λn

W‖~ρn‖2
β and An

4 ≤ (1 +
3
β2 )λ

n
W(dn)2. (74)
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A crucial estimate is now performed on An
2 . Due to the previous estimates as well as

due to Equation (70) we have that An
2 coincides with ([10], A2) and hence we may use the

same estimates ([10], (4.31), (4.34)) to obtain

An
2 ≤λn

Wθ2(Wn)2
(
(k− e−β)(2− eβ∆x) + e−β∆x(1− k)

)
≤λn

Wθ2(1 + 3β)‖~ρn‖2
β

(
(k− e−β)(2− eβ∆x) + e−β∆x(1− k)

)
≤λn

Wθ2(1 + 3β)‖~ρn‖2
β β.

The previous estimates allow to estimate the discrete temporal derivative of L in
Equation (65) for n ≥ 0 :

Ln+1 −Ln

∆t
≤ e−β∆x − 1

∆x
λn

W‖~ρ‖2
β + An

2 + An
3 + An

4

≤
(
(−β +

∆x
2

β2) + θ2(β + 3β2) + Cβ2
)

λn
W‖~ρ‖2

β + (1 +
3
β2 )λ

n
W(dn)2,

≤− β

(
1− β

2
− θ2(1 + 3β)− Cβ

)
λn

W‖~ρ‖2
β + (1 +

3
β2 )λ

n
W(dn)2,

≤− β
1− θ2

2
λn

W‖~ρn‖2
β + (1 +

3
β2 )λ

n
W(dn)2.

The last inequality holds true provided that 0 < β is sufficiently small such that
(60) and

β ≤ 1− θ2

7 + 2C
. (75)

hold true.
Finally, it remains to show that λn

W is bounded from below by a strictly positive
number. This is equivalent to show that Wn is bounded from above and similar to the
continuous analysis. Note that due to ‖~ρn‖2

β ≥ Ln and therefore

Ln+1 −Ln

∆t
≤ −b1λn

WLn + b2(dn)2, (76)

b1 := b1(β) = β
1− θ2

2
, b2 := b2(β) := 1 +

3
β2 . (77)

Solving recursively (76), we obtain with ∏n
r=n+1(·) = 1

Ln+1 ≤
n

∏
m=0

(1− ∆tb1λm
W)L0 + b2∆t

n

∑
m=0

λm
W(dm)2

n

∏
r=m+1

(1− b1∆tλr
W) (78)

≤ exp

(
−b1∆t

n

∑
m=0

λm
W

)
L0 + max

0≤s≤n
(ds)2b2∆t

n

∑
m=0

λm
W

n

∏
r=m+1

(1− b1∆tλr
W). (79)
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The following equalities show that the last term of the previous sum can be bounded
independent of λn

W :

− 1
b1∆t

n

∑
m=0
−b1∆tλm

W

n

∏
r=m+1

(1− b1∆tλr
W) (80)

=− 1
b1∆t

n

∑
m=0

(1− b1∆tλm
W − 1)

n

∏
r=m+1

(1− b1∆tλr
W) (81)

=− 1
b1∆t

n

∑
m=0

(
n

∏
r=m

(1− b1∆tλr
W)−

n

∏
r=m+1

(1− b1∆tλr
W)

)
(82)

=− 1
b1∆t

n

∏
r=0

(1− b1∆tλr
W)− 1 (83)

=
1

b1∆t

(
1−

n

∏
r=0

(1− b1∆tλr
W)

)
. (84)

Note that since b1 < 1 and ∆t fulfills the CFL condition (41) we have that for all n ≥ 0,

b1∆tλn
W ≤ b1∆x ≤ 1

and therefore 1− b1∆tλr
W is non–negative. In addition, by definition −ρ∗ ≤Wn and due

to (59) and (60), we have

(Wn)2 ≤ 4‖~ρn‖2
β ≤

8
1− θ

Ln. (85)

Combing the previous estimate, (79) and (84), we obtain

1− θ

8
(Wn)2 ≤ Ln ≤ exp

(
−b1∆t

n

∑
m=0

λm
W

)
L0 + max

0≤s≤n
(ds)2 b2

b1

(
1−

n

∏
r=0

(1− b1∆tλr
W)

)

≤L0 + max
0≤s≤n

(ds)2 b2

b1
≤ ‖~ρ0‖2

β + max
0≤s≤n

(ds)2 2(β2 + 3)
β3(1− θ2)

.

Since the norm of ‖ρ0‖l2 is bounded according to assumption (49), this shows that Wn

is bounded from above by constant c = c(R, θ, β, ‖d‖`∞). This implies that there exists a
constant 0 > σ2 = σ2(R, ρ∗, θ, β, ‖d‖`∞) such that

σ2 ≤ λn
W ≤

A
B

, ∀n ≥ 0. (86)

Note that the norm ‖d‖`∞ can be bounded by D by assumption.
In the last step we now use the bound on λn

W to obtain the exponential decay of Ln.
Using (86) in estimate (76), we obtain for all n ≥ 0

Ln+1 −Ln

∆t
≤ −β

1− θ2

2
σ2Ln + (1 +

3
β2 )

A
B
(dn)2 = −ηLn + ν(dn)2, (87)

and η := β 1−θ2

2 σ2 > 0 and ν := (1+ 3
β2 )

A
B . This concludes the proof in the discrete case.

4. Numerical Simulations

In this section, we illustrate the theoretical results in Sections 2 and 3 by providing
numerical computations of ISS of a scalar conservation law with nonlocal velocity and
boundary measurement error. We apply the discretization introduced in the previous
section and we chose A = B = 1 which leads to the velocity function
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λ(W(t)) =
1

1 + W(t)
, with W(t) =

∫ 1

0
ρ(t, x)dx. (88)

As measurement error, we consider

d(t) = 2.4× 10−3 sin(t), t ∈ (0, ∞). (89)

4.1. Example 1

In this example, we consider the equilibrium solution ρ∗ = 0 and an initial condition
ρ0(x) = 1 + sin(2πx) for x ∈ [0, 1]. In the figures following, we show the decay of the
discrete L2-error ‖~ρn − ρ∗‖`2 of the system Equation (8) for two given CFL conditions 0.5
and 0.9 in Table 1, respectively. Here, CFL=a ≤ 1 is a stronger condition than (41) and it
implies that ∆t is such that

λn
W

∆t
∆x
≤ a < 1, n ≥ 0. (90)

A value CFL≤ 1 improves the stability of the scheme at the expense of additional
artificial diffusion of the scheme. Due to the artificial diffusion and the disturbance we
observe only approximately the excepted first-order convergence with respect to ∆x of the
Upwind scheme. In Figure 1, the convergence of the solution of the system in Equation (8)
to the equilibrium for different values of k is shown. As expected we observe that as k
increases the rate of decay of the Lyapunov function decreases. Furthermore, we observe
that below the mesh accuracy of ∆x = 10−3 no further decay is observed.

Table 1. Comparison of ‖~ρn − ρ∗‖2
`2 for different number of grid points J with ρ∗ = 0, k = 0.3 and

T = 10.

(a) CFL = 0.5.

J ‖~ρn − ρ∗‖`2 order

100 1.9171 e-05 –
200 1.1899 e-05 0.6881 e+00
400 6.9631 e-06 0.7730 e+00
800 3.7638 e-06 0.8875 e+00

1600 1.5902 e-06 1.2430 e+00

(b) CFL = 0.9.

J ‖~ρn − ρ∗‖`2 order

100 1.3831 e-05 –
200 8.1304 e-06 0.7665 e+00
400 4.8604 e-06 0.7423 e+00
800 2.8262 e-06 0.7822 e+00

1600 1.1624 e-06 1.2818 e+00
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Figure 1. Comparison of log-scale of ‖~ρn − ρ∗~e‖L2
∆x

with Courant–Friedrichs–Lewy condition (CFL)
= 0.75 and ρ∗ = 0.

4.2. Example 2

We repeat the previous experiment for a non-zero steady state, i.e., we choose ρ∗ = 1
and as initial condition ρ0(x) = 2 + 2 sin(2πx) x ∈ [0, 1]. We show similar results as above
for the system in Equation (8) which are presented in Table 2 and Figure 2.

Table 2. Comparison of ‖~ρn − ρ∗‖`2 of the solution for number of grids J with ρ∗ = 1, k = 0.3 and
T = 20.

(a) CFL = 0.5.

J ‖~ρn − ρ∗‖`2 order

100 3.0916 e-04 –
200 1.5261 e-04 1.0185 e+00
400 7.2438 e-05 1.0750 e+00
800 3.1425 e-05 1.2048 e+00

1600 1.0567 e-05 1.5723 e+00

(b) CFL = 0.9.

J ‖~ρn − ρ∗‖`2 order

100 2.8645 e-04 –
200 1.4299 e-04 1.0024 e+00
400 6.9982 e-05 1.0309 e+00
800 3.0215 e-05 1.2117 e+00

1600 1.0128 e-05 1.5769 e+00
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Figure 2. Comparison of log-scale of ‖~ρn − ρ∗~e‖`2 with CFL = 0.75 and ρ∗ = 1.

5. Conclusions and Outlook

This paper considered input-to-state stability (ISS) for a scalar conservation law with
nonlocal velocity and boundary measurement error. An ISS-Lyapunov function is em-
ployed to investigate conditions for ISS of an equilibrium for the scalar conservation law
with nonlocal velocity and measurement error. Numerical study of a decay of ISS-Lyapunov
function is analyzed. Finally, numerical simulations illustrate the theoretical results.

Possible extensions might be to consider also ISS with respect to the L2-norm in time
in the continuous and discrete case.

A drawback of Theorem 1 is the fact that the system might not have a solution a priori.
As stated in Remark 1, it might be possible to extend results [40–42] to obtain a continuous
in time and L2-space solution for the presented problem. This is subject of future work.
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