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Abstract:



By applying a classical method, already employed by Cauchy, to a terminating curious summation by one of the authors, a new curious bilateral q-series identity is derived. We also apply the same method to a quadratic summation by Gessel and Stanton, and to a cubic summation by Gasper, respectively, to derive a bilateral quadratic and a bilateral cubic summation formula.
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1. Introduction


In [1, Thm. 7.29] one of the authors derived the following curious summation:


(qa/b2c;q)n=∑k=0n(c+1−(a+b))(c+1−(a+bq−k))(bc+a+b)(bc+a+bq−k)(ac−(a+bq−k)2)(ac−(a+b)(a+bq−k))×aqb2c(a+bq−k−c);qnaqc−(a+bq−k)b(a+bq−k);qn−aqb(a+bq−k);qn×(q[image: there is no content];q)k(a+bq−k−c;q)k−1bc(a+bq−k);qk(q;q)k−bq[image: there is no content]a(a+bq−k);qkaqb2c(a+bq−k−c);qkqk



(1)




Here [image: there is no content] denotes the q-shifted factorial, defined by


[image: there is no content]:=(α;q)∞(αqk;q)∞where(α;q)∞:=∏j≥0(1−αqj)








and q (the base) is a fixed complex parameter with [image: there is no content], α is a complex parameter and k is any integer. Note that the previous definition can be rewritten as


[image: there is no content]=1ifk=0(1−α)⋯(1−αqk−1)ifk>01/(1−αq−1)⋯(1−αqk)ifk<0








For brevity, we shall also use the compact notation


[image: there is no content]











The summation in Equation (1) was derived by application of inverse relations to the q-Pfaff–Saalschütz summation (cf. [2, Appendix (II.12)]). In [1] several other “curious summations” (involving series that themselves do not belong to the respective hierarchies of hypergeometric and basic hypergeometric series) were derived by utilizing various summation formulae for hypergeometric and basic hypergeometric series. Similar identities were also derived by the same means in [3]. Special cases of two of the summations were even extended there to bilateral summations by means of analytic continuation.



Another method to obtain bilateral summations from terminating ones was employed in [4] to give a new proof of Ramanujan’s 1ψ1 summation formula and to derive (for the first time) Abel–Rothe type extensions of Jacobi’s triple product identity. Actually, the method of [4] was already utilized by Cauchy [5] in his second proof of Jacobi’s [6] triple product identity. The very same method (which we shall refer to as “Cauchy’s method of bilateralization”) had also been exploited by Bailey [7, Sections 3 and 6], [8] and Slater [9, Section 6.2]. In [10] the current authors used a variant of Cauchy’s method to give a new derivation of Bailey’s [7, Equation (4.7)] very-well-poised 6ψ6 summation (cf. [2, Appendix (II.33)]),


∑k=−∞∞(1−aq2k)(1−a)(b,c,d,e;q)k(aq/b,aq/c,aq/d,aq/e;q)kqa2bcdek=(q,aq,q/a,aq/bc,aq/bd,aq/be,aq/cd,aq/ce,aq/de;q)∞(q/b,q/c,q/d,q/e,aq/b,aq/c,aq/d,aq/e,a2q/bcde;q)∞



(2)




where [image: there is no content] and [image: there is no content].



In Section 2, we apply Cauchy’s method of bilateralization to the curious summation in (1). (This possibility, which appears to be applicable to Equation (1) but, to the best of our knowledge, not to any of the other curious summations of [1, Section 7], was missed so far.) As a result, we obtain the new curious bilateral summation in Proposition 2.1. In the same section, we explicitly display some noteworthy special cases of the new curious bilateral identity. In Section 3 we apply Cauchy’s method to a terminating quadratic summation by Gessel and Stanton [11], and to a terminating cubic summation by Gasper [12]. Hereby we obtain a bilateral quadratic and a bilateral cubic summation, both which evaluate to zero, see Propositions 3.1 and 3.2, respectively.



For a comprehensive treatise on basic hypergeometric series, see Gasper and Rahman’s text [2]. Several of the computations in this paper rely on various elementary identities for q-shifted factorials, listed in [2, Appendix I].




2. A New Curious Bilateral Summation


To apply Cauchy’s method to the terminating summation in Equation (1), we first replace n by [image: there is no content] and then shift the index of summation by n such that the new sum runs from [image: there is no content] to n. Further, we replace b by [image: there is no content]. In total, we thus obtain


(q1−2na/b2c;q)[image: there is no content]=∑k=−nn(c+1−(a+b[image: there is no content]))(c+1−(a+bq−k))(bc[image: there is no content]+a+b[image: there is no content])(bc[image: there is no content]+a+bq−k)(ac−(a+bq−k)2)(ac−(a+b[image: there is no content])(a+bq−k))×(−1)n+kqn2+k2−nk−2n2+n+k(q;q)[image: there is no content](q;q)n+k(q;q)n−k×aq1−2nb2c(a+bq−k−c);q[image: there is no content]aq1−nc−(a+bq−k)b(a+bq−k);q[image: there is no content]−aq1−nb(a+bq−k);q[image: there is no content]×(a+bq−k−c;q)n+k−q[image: there is no content]bc(a+bq−k);qn+k−bq[image: there is no content]a(a+bq−k);qn+kaq1−2nb2c(a+bq−k−c);qn+k








Now, after multiplying both sides by (q;q)n(b2c/a)[image: there is no content]q[image: there is no content]2 we may let [image: there is no content], assuming [image: there is no content], while appealing to Tannery’s theorem [13] for being allowed to interchange the limit and summation. This, after some elementary manipulations of q-shifted factorials, results in the following curious bilateral summation:

Proposition 2.1 

Let a, b, c be indeterminates, let [image: there is no content] and [image: there is no content]. Then


(q,b2c/a;q)∞=∑k=−∞∞(c+1−a)(c+1−(a+bq−k))a(a+bq−k)(ac−(a+bq−k)2)(ac−a(a+bq−k))×b2ca(a+bq−k−c);q∞−bcqa+bq−k;q∞aqc−(a+bq−k)b(a+bq−k);q∞b(a+bq−k)a(c−(a+bq−k));q∞×(a+bq−k−c;q)∞−ba(a+bq−k)qk;q∞×−1bc(a+bq−k);qkb2ca(a+bq−k−c)k



(3)











Remark 2.2 

We checked the validity of the identity in (3) by Mathematica. In particular, by replacing [image: there is no content] with [image: there is no content], respectively, the identity can be interpreted as a power series identity in q (valid for [image: there is no content], in particular, for q around zero). Only a finite number of terms contribute to the coefficient of [image: there is no content] for each [image: there is no content].





We write out some noteworthy special cases of Proposition 2.1. The first one is obtained by replacing [image: there is no content] with [image: there is no content] and then taking the limit [image: there is no content] (which, again, is justified by Tannery’s theorem [13]).



Corollary 2.3 

Let a, b and c be indeterminates and [image: there is no content]. Then


(q;q)∞=∑k=−∞∞(ac−(a+bq−k)2)(ac−a(a+bq−k))a+bq−kak−1ba+bq−k−ck×qk2aqc−(a+bq−k)b(a+bq−k);q∞−1b(a+bq−k)a(c−(a+bq−k));q∞−1



(4)




This turns out to be a generalization of Jacobi’s triple product identity (the [image: there is no content], [image: there is no content] case of Equation (4)).





If instead, we directly take [image: there is no content] in Equation (3), then we obtain another generalization of Jacobi’s triple product identity, a special case of a curious bilateral summation considered in [4].



It is also interesting to take the [image: there is no content] case of Equation (3). The result, after some elementary manipulations, is



Corollary 2.4 

Let a and b be indeterminates, let [image: there is no content] and [image: there is no content]. Then


(q,b2;q)∞(b,bq;q)∞=∑k=−∞∞(2a+bq−k)(a+bq−k)(1/b;q)k−1ab(a+bq−k);qk(b;q)k(−1)kb2k×qk+12−bqka(a+bq−k);q∞−abqa+bq−k;q∞−aq[image: there is no content]a+bq−k;q∞−qka+bq−ka;q∞



(5)









If we now let [image: there is no content], we obtain after some elementary manipulations of q-shifted factorials the following summation for a bilateral 1ψ2 series.



Corollary 2.5 

Let b be an indeterminate and [image: there is no content]. Then


[image: there is no content]



(6)









As a matter of fact, the identity in Equation (6) is not a special case of the bilateral q-Kummer summation [2, Appendix (II.30)]; the latter is an easy consequence of Bailey’s 6ψ6 summation formula (2). Nevertheless, Corollary 2.5 can also be derived from Bailey’s 6ψ6 summation formula. Indeed, note that by replacing the summation index k by [image: there is no content] in Equation (6), the right-hand side becomes


[image: there is no content]








It follows that


[image: there is no content]








But this can be evaluated by the [image: there is no content] limit case of Equation (2), after which one readily obtains the product side of Equation (6).




3. A Bilateral Quadratic and a Bilateral Cubic Summation


First we apply Cauchy’s method of bilateralization to the following quadratic summation formula due to Gessel and Stanton [11, Equation (1.4), q → q2]:


∑k=0n(1−aq3k)(1−a)(a,b,q/b;q)k(d,a2q1+2n/d,q−2n;q2)k(aq/d,dq−2n/a,aq1+2n;q)k(q2,aq2/b,abq;q2)kqk=(aq;q)[image: there is no content](aq/d;q)[image: there is no content](abq/d,aq2/bd;q2)n(aq2/b,abq;q2)n



(7)




We replace n with [image: there is no content] and then shift the index of summation by n such that the new sum runs from [image: there is no content] to n. We also replace a with [image: there is no content], and b with bq[image: there is no content], respectively. After some elementary manipulations of q-shifted factorials, we thus obtain the identity


∑k=−nn(1−aq3k)(1−a)(aq−2n,b,q1+2n/b;q)k(dq[image: there is no content],a2q/d,q−2n;q2)k(aq1−2n/d,d/a,aq1+2n;q)k(q2+2n,aq2/b,abq1−2n;q2)kqk=(aq,q/a;q)[image: there is no content](q/b,d/a;q)[image: there is no content](q2,q2,aq2/bd,bd/a;q2)n(d,aq2/b,q/ab,dq/a2;q2)n(dq/ab;q2)[image: there is no content](q2;q2)[image: there is no content]dabqn








Now, under the assumption [image: there is no content] and [image: there is no content] we may let [image: there is no content], while appealing to Tannery’s theorem for being allowed to interchange the limit and summation. Finally, we perform the substitution [image: there is no content] and arrive at the following bilateral quadratic summation formula:



Proposition 3.1 

Let a, b, c be indeterminates, let [image: there is no content] and [image: there is no content]. Then


[image: there is no content]



(8)









Next, we apply Cauchy’s method of bilateralization to the following cubic summation formula due to Gasper [12, Equation (5.22), c → q−3n]:


∑k=0n(1−aq4k)(1−a)(a,b;q)k(q/b;q)2k(a2bq3n,q−3n;q3)k(aq1+3n,q1−3n/ab;q)k(ab;q)2k(q3,aq3/b;q3)kqk=(aq;q)3n(ab;q)3n(ab2;q3)n(aq3/b;q3)n



(9)




We replace n with [image: there is no content] and then shift the index of summation by n such that the new sum runs from [image: there is no content] to n. We also replace a with [image: there is no content], and b with bq[image: there is no content], respectively. Then, under the assumption [image: there is no content] and [image: there is no content], we let [image: there is no content], while appealing to Tannery’s theorem for being allowed to interchange the limit and summation. We eventually arrive at the following bilateral cubic summation formula:



Proposition 3.2 

Let a, b be indeterminates, let [image: there is no content] and [image: there is no content]. Then


[image: there is no content]



(10)










4. Conclusions


In this paper we applied Cauchy’s method of bilateralization to deduce a new curious bilateral q-series identity. By the same method, we also deduced a new bilateral quadratic and a new bilateral cubic summation. It should be worth checking whether Cauchy’s method of bilateralization could also be applied to other quadratic, cubic or even quartic summation formulae appearing in the literature, leading to other interesting bilateral summations.
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